Cyril Godard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/364871/publications.pdf Version: 2024-02-01

CVDII CODADD

#	Article	IF	CITATIONS
1	Supported Catalysts. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	1
2	Controlled Oneâ€pot Synthesis of PdAg Nanoparticles and Their Application in the Semiâ€hydrogenation of Acetylene in Ethyleneâ€rich Mixtures. ChemNanoMat, 2022, 8, .	2.8	3
3	Metal complexes bearing ONO ligands as highly active catalysts in carbon dioxide and epoxide coupling reactions. Inorganica Chimica Acta, 2021, 517, 120194.	2.4	8
4	Cooperative NHCâ€based Catalytic System Immobilised onto Carbon Materials for the Cycloaddition of CO ₂ to Epoxides. ChemCatChem, 2021, 13, 1706-1710.	3.7	11
5	Pd, Cu and Bimetallic PdCu NPs Supported on CNTs and Phosphineâ€Functionalized Silica: Oneâ€Pot Preparation, Characterization and Testing in the Semiâ€Hydrogenation of Alkynes. European Journal of Inorganic Chemistry, 2021, 2021, 4970-4978.	2.0	6
6	Evolution in the metal-catalyzed asymmetric hydroformylation of 1,1′-disubstituted alkenes. Advances in Catalysis, 2021, 69, 181-215.	0.2	0
7	Regioselectivity Control in Pd-Catalyzed Telomerization of Isoprene Enabled by Solvent and Ligand Selection. ACS Catalysis, 2020, 10, 11458-11465.	11.2	9
8	Rh-Catalyzed Asymmetric Hydroaminomethylation of Î \pm -Substituted Acrylamides: Application in the Synthesis of RWAY. Organic Letters, 2020, 22, 9036-9040.	4.6	9
9	Progress in the Selective Semi-hydrogenation of Alkynes by Nanocatalysis. Molecular Catalysis, 2020, , 303-344.	1.3	9
10	Efficient synthesis of chiral γ-aminobutyric esters <i>via</i> direct rhodium-catalysed enantioselective hydroaminomethylation of acrylates. Catalysis Science and Technology, 2020, 10, 630-634.	4.1	8
11	Heterogeneous palladium SALOPHEN onto porous polymeric microspheres as catalysts for heck reaction. Pure and Applied Chemistry, 2019, 91, 1651-1664.	1.9	2
12	Synthesis of β ^{2,2} â€Amino Esters via Rh atalysed Regioselective Hydroaminomethylation. Advanced Synthesis and Catalysis, 2019, 361, 4201-4207.	4.3	8
13	Immobilized chiral rhodium nanoparticles stabilized by chiral P-ligands as efficient catalysts for the enantioselective hydrogenation of 1-phenyl-1,2-propanedione. Molecular Catalysis, 2019, 477, 110551.	2.0	0
14	Novel Chiral PNNP Ligands with a Pyrrolidine Backbone – Application in the Fe atalyzed Asymmetric Transfer Hydrogenation of Ketones. European Journal of Inorganic Chemistry, 2019, 2019, 4211-4220.	2.0	7
15	Using <i>para</i> hydrogen induced polarization to study steps in the hydroformylation reaction. Dalton Transactions, 2019, 48, 2664-2675.	3.3	7
16	A General Oneâ€Pot Methodology for the Preparation of Mono―and Bimetallic Nanoparticles Supported on Carbon Nanotubes: Application in the Semiâ€hydrogenation of Alkynes and Acetylene. Chemistry - A European Journal, 2019, 25, 8321-8331.	3.3	24
17	Highly Efficient Rhâ€catalysts Immobilised by Ï€â€Ï€ Stacking for the Asymmetric Hydroformylation of Norbornene under Continuous Flow Conditions. ChemCatChem, 2019, 11, 2195-2205.	3.7	29
18	Hollow PdAg-CeO2 heterodimer nanocrystals as highly structured heterogeneous catalysts. Scientific Reports, 2019, 9, 18776.	3.3	13

#	Article	IF	CITATIONS
19	Selective Oxidative Carbonylation of Aniline to Diphenylurea with Ionic Liquids. ChemCatChem, 2018, 10, 2450-2457.	3.7	12
20	Numerical and experimental modelization of the two-phase mixing in a small scale stirred vessel. Journal of Industrial and Engineering Chemistry, 2018, 60, 286-296.	5.8	3
21	Recyclable supported Pd-NHC catalytic systems for the copper-free Sonogashira cross-coupling in flow. Sustainable Chemistry and Pharmacy, 2018, 9, 69-75.	3.3	6
22	A new approach for the preparation of well-defined Rh and Pt nanoparticles stabilized by phosphine-functionalized silica for selective hydrogenation reactions. Chemical Communications, 2017, 53, 3261-3264.	4.1	19
23	Core-substituted naphthalenediimides anchored on BiVO ₄ for visible light-driven water splitting. Green Chemistry, 2017, 19, 2448-2462.	9.0	11
24	Facile synthesis of NHC-stabilized Ni nanoparticles and their catalytic application in the Z-selective hydrogenation of alkynes. Chemical Communications, 2017, 53, 7894-7897.	4.1	51
25	NHC-stabilised Rh nanoparticles: Surface study and application in the catalytic hydrogenation of aromatic substrates. Journal of Catalysis, 2017, 354, 113-127.	6.2	48
26	Salcyâ€Naphthalene Cobalt Complexes as Catalysts for the Synthesis of High Molecular Weight Polycarbonates. ChemCatChem, 2017, 9, 3974-3981.	3.7	10
27	Advances in the preparation of highly selective nanocatalysts for the semi-hydrogenation of alkynes using colloidal approaches. Dalton Transactions, 2017, 46, 12381-12403.	3.3	117
28	Asymmetric Hydroformylation Using Rhodium. Topics in Organometallic Chemistry, 2017, , 99-143.	0.7	8
29	Effect of the Polymeric Stabilizer in the Aqueous Phase Fischer-Tropsch Synthesis Catalyzed by Colloidal Cobalt Nanocatalysts. Nanomaterials, 2017, 7, 58.	4.1	4
30	Robust Zinc Complexes that Contain Pyrrolidineâ€Based Ligands as Recyclable Catalysts for the Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides. ChemCatChem, 2016, 8, 234-243.	3.7	44
31	Effect of polymeric stabilizers on Fischer–Tropsch synthesis catalyzed by cobalt nanoparticles supported on TiO2. Journal of Molecular Catalysis A, 2016, 417, 43-52.	4.8	8
32	A Simple and Versatile Approach for the Fabrication of Paperâ€Based Nanocatalysts: Low Cost, Easy Handling, and Catalyst Recovery. ChemCatChem, 2016, 8, 3041-3044.	3.7	8
33	A Million Turnover Molecular Anode for Catalytic Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 15382-15386.	13.8	90
34	Fischer–Tropsch synthesis catalysed by small TiO2 supported cobalt nanoparticles prepared by sodium borohydride reduction. Applied Catalysis A: General, 2016, 513, 39-46.	4.3	34
35	Development of silica-supported frustrated Lewis pairs: highly active transition metal-free catalysts for the Z-selective reduction of alkynes. Catalysis Science and Technology, 2016, 6, 882-889. 	4.1	39
36	A mild route to solid-supported rhodium nanoparticle catalysts and their application to the selective hydrogenation reaction of substituted arenes. Catalysis Science and Technology, 2015, 5, 3762-3772.	4.1	17

#	Article	IF	CITATIONS
37	Surface characterisation of phosphine and phosphite stabilised Rh nanoparticles: a model study. RSC Advances, 2015, 5, 97036-97043.	3.6	17
38	Correlation between Hydrocarbon Product Distribution and Solvent Composition in the Fischer–Tropsch Synthesis Catalyzed by Colloidal Cobalt Nanoparticles. ACS Catalysis, 2015, 5, 4568-4578.	11.2	11
39	Effect of pH on catalyst activity and selectivity in the aqueous Fischer–Tropsch synthesis catalyzed by cobalt nanoparticles. Catalysis Communications, 2015, 71, 88-92.	3.3	13
40	Selective catalytic deuteration of phosphorus ligands using ruthenium nanoparticles: a new approach to gain information on ligand coordination. Chemical Communications, 2015, 51, 16342-16345.	4.1	24
41	Heterogenization of Pd–NHC complexes onto a silica support and their application in Suzuki–Miyaura coupling under batch and continuous flow conditions. Catalysis Science and Technology, 2015, 5, 310-319.	4.1	58
42	Tuning the Selectivity in the Hydrogenation of Aromatic Ketones Catalyzed by Similar Ruthenium and Rhodium Nanoparticles. ChemCatChem, 2014, 6, 3160-3168.	3.7	42
43	Pdâ€Catalysed Mono―and Dicarbonylation of Aryl Iodides: Insights into the Mechanism and the Selectivity. Chemistry - A European Journal, 2014, 20, 10982-10989.	3.3	26
44	Modular Synthesis of Functionalisable Alkoxyâ€Tethered Nâ€Heterocyclic Carbene Ligands and an Active Catalyst for Buchwald–Hartwig Aminations. Advanced Synthesis and Catalysis, 2014, 356, 460-474.	4.3	30
45	Novel Polymer Stabilized Water Soluble Ru-Nanoparticles as Aqueous Colloidal Fischer–Tropsch Catalysts. Topics in Catalysis, 2013, 56, 1208-1219.	2.8	11
46	Pd-catalysed asymmetric Suzuki–Miyaura reactions using chiral mono- and bidentate phosphorus ligands. Journal of Organometallic Chemistry, 2013, 743, 31-36.	1.8	12
47	Ligand effect in the Rh-NP catalysed partial hydrogenation of substituted arenes. Catalysis Science and Technology, 2013, 3, 2828.	4.1	16
48	Feâ€Catalyzed Olefin Epoxidation with Tridentate Nonâ€Heme Ligands and Hydrogen Peroxide as the Oxidant. ChemCatChem, 2013, 5, 1092-1095.	3.7	12
49	Asymmetric Hydroformylation. Topics in Current Chemistry, 2013, 342, 79-115.	4.0	15
50	Novel Metal Nanoparticles Stabilized with (2R,4R)-2,4-bis(diphenylphosphino) Pentane on SiO2. Their Use as Catalysts in Enantioselective Hydrogenation Reactions. Current Organic Chemistry, 2012, 16, 2754-2762.	1.6	5
51	Interception of a Rh(I)–Rh(III) dinuclear trihydride complex revealing the dihydrogen activation by [Rh(CO)2{(R,R)-Ph–BPE}]. Dalton Transactions, 2012, 41, 3369.	3.3	7
52	A phosphine-free Pd catalyst for the selective double carbonylation of aryl iodides. Chemical Communications, 2012, 48, 1695-1697.	4.1	46
53	Highly Selective Palladium atalysed Aminocarbonylation of Aryl Iodides using a Bulky Diphosphine Ligand. Advanced Synthesis and Catalysis, 2012, 354, 1971-1979.	4.3	20
54	Interplay between Cationic and Neutral Species in the Rhodium atalyzed Hydroaminomethylation Reaction. Chemistry - A European Journal, 2012, 18, 7128-7140.	3.3	38

#	Article	IF	CITATIONS
55	Room temperature asymmetric Pd-catalyzed methoxycarbonylation of norbornene: highly selective catalysis and HP-NMR studies. Dalton Transactions, 2012, 41, 6980.	3.3	27
56	Colloidal Ru, Co and Fe-nanoparticles. Synthesis and application as nanocatalysts in the Fischer–Tropsch process. Catalysis Today, 2012, 183, 154-171.	4.4	90
57	Efficient recycling of a chiral palladium catalytic system for asymmetric allylic substitutions in ionic liquid. Chemical Communications, 2011, 47, 7869.	4.1	20
58	Pd nanoparticles for C–C coupling reactions. Chemical Society Reviews, 2011, 40, 4973.	38.1	744
59	Highly Efficient Rhodium Catalysts for the Asymmetric Hydroformylation of Vinyl and Allyl Ethers using <i>C</i> ₁ ‣ymmetrical Diphosphite Ligands. Advanced Synthesis and Catalysis, 2010, 352, 463-477.	4.3	49
60	Highlights of the Rh-catalysed asymmetric hydroformylation of alkenes using phosphorus donor ligands. Tetrahedron: Asymmetry, 2010, 21, 1135-1146.	1.8	91
61	Soluble transition-metal nanoparticles-catalysed hydrogenation of arenes. Dalton Transactions, 2010, 39, 11499.	3.3	118
62	A parahydrogen based NMR study of Pt catalysed alkyne hydrogenation. Dalton Transactions, 2010, 39, 3495.	3.3	20
63	Unprecedent Chemo―and Stereoselective Palladium atalysed Methoxycarbonylation of Norbornene. Advanced Synthesis and Catalysis, 2009, 351, 1813-1816.	4.3	14
64	Carbohydrateâ€Derived 1,3â€Diphosphite Ligands as Chiral Nanoparticle Stabilizers: Promising Catalytic Systems for Asymmetric Hydrogenation. ChemSusChem, 2009, 2, 769-779.	6.8	54
65	<i>C</i> ₁ â€5ymmetric Diphosphite Ligands Derived from Carbohydrates: Influence of Structural Modifications on the Rhodium atalyzed Asymmetric Hydroformylation of Styrene. European Journal of Organic Chemistry, 2009, 2009, 1191-1201.	2.4	33
66	Rhodium-Catalyzed Intermolecular Hydroiminoacylation of Alkenes: Comparison of Neutral and Cationic Catalytic Systems. Organometallics, 2009, 28, 2976-2985.	2.3	13
67	An NMR study of cobalt-catalyzed hydroformylation using para-hydrogen induced polarisation. Dalton Transactions, 2009, , 2496.	3.3	29
68	Detection of platinum dihydride bisphosphine complexes and studies of their reactivity through para-hydrogen-enhanced NMR methods. Magnetic Resonance in Chemistry, 2008, 46, S107-S114.	1.9	8
69	HPâ€NMR Study of the Pdâ€Catalyzed Methoxycarbonylation of Styrene Using Monodentate and Bidentate Phosphaneâ€Modified Systems. European Journal of Inorganic Chemistry, 2008, 2008, 4625-4637.	2.0	13
70	Pd-catalysed asymmetric mono- and bis-alkoxycarbonylation of vinylarenes. Dalton Transactions, 2008, , 853-860.	3.3	81
71	An outstanding palladium system containing a C2-symmetrical phosphite ligand for enantioselective allylic substitution processes. Chemical Communications, 2008, , 6197.	4.1	30
72	Palladium catalysed alkyne hydrogenation and oligomerisation: a parahydrogen based NMR investigation. Dalton Transactions, 2008, , 4270.	3.3	20

#	Article	IF	CITATIONS
73	Pd-catalysed methoxycarbonylation of vinylarenes using chiral monodentate phosphetanes and phospholane as ligands. Effect of substrate substituents on enantioselectivity. Dalton Transactions, 2007, , 5524.	3.3	36
74	Alternating and Nonâ€Alternating Pdâ€Catalysed Co―and Terpolymerisation of Carbon Monoxide and Alkenes. European Journal of Inorganic Chemistry, 2007, 2007, 2582-2593.	2.0	69
75	Parahydrogen studies of H2addition to Ir(i) complexes containing chiral phosphine–thioether ligands: implications for catalysis. Dalton Transactions, 2006, , 3350-3359.	3.3	17
76	Coordination Chemistry and Diphenylacetylene Hydrogenation Catalysis of Planar Chiral Ferrocenylphosphane-Thioether Ligands with Cyclooctadieneiridium(I). European Journal of Inorganic Chemistry, 2006, 2006, 1803-1816.	2.0	26
77	Systematic Study of the Asymmetric Methoxycarbonylation of Styrene Catalyzed by Palladium Systems Containing Chiral Ferrocenyl Diphosphine Ligands. Helvetica Chimica Acta, 2006, 89, 1610-1622.	1.6	52
78	Detection of Intermediates in Cobalt-Catalyzed Hydroformylation Using para-Hydrogen-Induced Polarization. Journal of the American Chemical Society, 2005, 127, 4994-4995.	13.7	39
79	Applications of the Parahydrogen Phenomenon in Inorganic Chemistry. ChemInform, 2004, 35, no.	0.0	0
80	New perspectives in hydroformylation : a para-hydrogen study. Chemical Communications, 2004, , 1826-1827.	4.1	32
81	Applications of the parahydrogen phenomenon in inorganic chemistry. Dalton Transactions, 2004, , 2601.	3.3	70
82	The reaction of M(CO)3(Ph2PCH2CH2PPh2) (M = Fe, Ru) with parahydrogen: probing the electronic structure of reaction intermediates and the internal rearrangement mechanism for the dihydride products. Dalton Transactions, 2004, , 3218-3224.	3.3	39
83	Dipyridylketone binding and subsequent C–C bond insertion reactions at cyclopentadienylrhodium. Chemical Communications, 2003, , 2332-2333.	4.1	24
84	NMR characterisation of unstable solvent and dihydride complexes generated at low temperature by in-situ UV irradiation. Chemical Communications, 2002, , 2836-2837.	4.1	26
85	Aromaticity and homoaromaticity of annulene ring carbomers. New Journal of Chemistry, 2001, 25, 572-580.	2.8	44
86	On Ring Carbomers of Cyclobutane, Cyclopentane, and Cyclodecane and Cyclization Reactions through Bis(alkynyl-propargyl) Coupling. Chemistry - A European Journal, 2001, 7, 1165-1170.	3.3	25
87	Aromaticity and Homoaromaticity of Annulene Ring Carbomers ChemInform, 2001, 32, 29-29.	0.0	0
88	DFT exploration of structural and magnetic properties of [n]annulene ring carbomers. Chemical Communications, 2000, , 1833-1834.	4.1	36