
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/364866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlating the electronic structure of perovskite La1â^'Sr CoO3 with activity for the oxygen evolution reaction: The critical role of Co 3d hole state. Journal of Energy Chemistry, 2022, 65, 637-645.	12.9	39
2	The role of the surface acidic/basic centers and redox sites on TiO2 in the photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2022, 303, 120931.	20.2	34
3	Improved Methane Production by Photocatalytic CO2 Conversion over Ag/In2O3/TiO2 Heterojunctions. Materials, 2022, 15, 843.	2.9	5
4	Structural and electronic insight into the effect of indium doping on the photocatalytic performance of TiO ₂ for CO ₂ conversion. Journal of Materials Chemistry A, 2022, 10, 6054-6064.	10.3	13
5	New Insight into Sorption Cycling Stability of Three Al-Based MOF Materials in Water Vapour. Nanomaterials, 2022, 12, 2092.	4.1	1
6	Unravelling nanostructured Nb-doped TiO ₂ dual band behaviour in smart windows by <i>in situ</i> spectroscopies. Journal of Materials Chemistry A, 2022, 10, 19994-20004.	10.3	6
7	One-Metal/Two-Ligand for Dual Activation Tandem Catalysis: Photoinduced Cu-Catalyzed Anti-hydroboration of Alkynes. Journal of the American Chemical Society, 2022, 144, 13006-13017.	13.7	24
8	Laser-Reduced BiVO ₄ for Enhanced Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 33200-33210.	8.0	15
9	Highly efficient multi-metal catalysts for carbon dioxide reduction prepared from atomically sequenced metal organic frameworks. Nano Research, 2021, 14, 493-500.	10.4	12
10	Assessing the feasibility of reduced graphene oxide as an electronic promoter for photocatalytic hydrogen production over Nb-Ta perovskite photocatalysts. Catalysis Today, 2021, 362, 22-27.	4.4	9
11	Selectivity in UV photocatalytic CO2 conversion over bare and silver-decorated niobium-tantalum perovskites. Catalysis Today, 2021, 361, 85-93.	4.4	17
12	Macroscopic yarns of FeCl3-intercalated collapsed carbon nanotubes with high doping and stability. Carbon, 2021, 173, 311-321.	10.3	14
13	Self-supported ultra-active NiO-based electrocatalysts for the oxygen evolution reaction by solution combustion. Journal of Materials Chemistry A, 2021, 9, 12700-12710.	10.3	14
14	The electronic structure of transition metal oxides for oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 19465-19488.	10.3	90
15	Understanding ultrafast charge transfer processes in SnS and SnS ₂ : using the core hole clock method to measure attosecond orbital-dependent electron delocalisation in semiconducting layered materials. Journal of Materials Chemistry C, 2021, 9, 11859-11872.	5.5	5
16	Tailoring the Electronic Structures of the La ₂ NiMnO ₆ Double Perovskite as Efficient Bifunctional Oxygen Electrocatalysis. Chemistry of Materials, 2021, 33, 2062-2071.	6.7	58
17	lonic liquid-assisted synthesis of F-doped titanium dioxide nanomaterials with high surface area for multi-functional catalytic and photocatalytic applications. Applied Catalysis A: General, 2021, 613, 118029.	4.3	14
18	Photoâ€Induced Selfâ€Cleaning and Wettability in TiO ₂ Nanocolumn Arrays Obtained by Glancingâ€Angle Deposition with Sputtering. Advanced Sustainable Systems, 2021, 5, 2100071.	5.3	11

#	Article	IF	CITATIONS
19	Bringing Earth-Abundant Plasmonic Catalysis to Light: Gram-Scale Mechanochemical Synthesis and Tuning of Activity by Dual Excitation of Antenna and Reactor Sites. ACS Sustainable Chemistry and Engineering, 2021, 9, 9750-9760.	6.7	7
20	A molecular approach to the synthesis of platinum-decorated mesoporous graphitic carbon nitride as selective CO2 reduction photocatalyst. Journal of CO2 Utilization, 2021, 50, 101574.	6.8	13
21	Conjugated Porous Polymers Based on BODIPY and BOPHY Dyes in Hybrid Heterojunctions for Artificial Photosynthesis. Advanced Functional Materials, 2021, 31, 2105384.	14.9	25
22	Conjugated Porous Polymers: Groundâ€Breaking Materials for Solar Energy Conversion. Advanced Energy Materials, 2021, 11, 2101530.	19.5	44
23	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Ni</mml:mi>-induced semiconductor-to-metal transition in spinel nickel cobaltite thin films. Physical Review B, 2021, 104.</mml:mrow></mml:msup></mml:math 	1row> <mr 3.2</mr 	nl:ŋrow> <m< td=""></m<>
24	TiO2-reduced graphene oxide-Pt nanocomposites for the photogeneration of hydrogen from ethanol liquid and gas phases. Catalysis Today, 2021, 380, 41-52.	4.4	8
25	Heterogeneous photocatalysis. , 2021, , 1-38.		0
26	Photoinduced Charge Transfer and Trapping on Single Gold Metal Nanoparticles on TiO ₂ . ACS Applied Materials & Interfaces, 2021, 13, 50531-50538.	8.0	12
27	Metal-catalyst-free gas-phase synthesis of long-chain hydrocarbons. Nature Communications, 2021, 12, 5937.	12.8	7
28	Recent Advances Towards Sustainable Materials and Processes for Energy Conversion and Storage. Advanced Energy Materials, 2021, 11, 2102874.	19.5	3
29	Controlled Synthesis of Up-Conversion NaYF4:Yb,Tm Nanoparticles for Drug Release under Near IR-Light Therapy. Biomedicines, 2021, 9, 1953.	3.2	2
30	Ferrite Materials for Photoassisted Environmental and Solar Fuels Applications. Topics in Current Chemistry, 2020, 378, 6.	5.8	39
31	Fundamental Insights into Photoelectrocatalytic Hydrogen Production with a Hole-Transport Bismuth Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 318-326.	13.7	60
32	Hybrids Based on BOPHY-Conjugated Porous Polymers as Photocatalysts for Hydrogen Production: Insight into the Charge Transfer Pathway. ACS Catalysis, 2020, 10, 9804-9812.	11.2	38
33	Exploring the alternative MnO-Na2CO3 thermochemical cycle for water splitting. Journal of CO2 Utilization, 2020, 42, 101264.	6.8	9
34	Highly porous Ti–Ni anodes for electrochemical oxidations. Sustainable Energy and Fuels, 2020, 4, 4003-4007.	4.9	1
35	Silver–Gold Bimetal-Loaded TiO ₂ Photocatalysts for CO ₂ Reduction. Industrial & Engineering Chemistry Research, 2020, 59, 9440-9450.	3.7	30
36	Combined Photoredox and Iron Catalysis for the Cyclotrimerization of Alkynes. Angewandte Chemie - International Edition, 2020, 59, 13473-13478.	13.8	47

#	Article	IF	CITATIONS
37	Interfacial studies in CNT fibre/TiO2 photoelectrodes for efficient H2 production. Applied Catalysis B: Environmental, 2020, 268, 118613.	20.2	16
38	Understanding Charge Transfer Mechanism on Effective Truxene-Based Porous Polymers–TiO ₂ Hybrid Photocatalysts for Hydrogen Evolution. ACS Applied Energy Materials, 2020, 3, 4411-4420.	5.1	29
39	Hierarchical Co ₃ O ₄ nanorods anchored on nitrogen doped reduced graphene oxide: a highly efficient bifunctional electrocatalyst for rechargeable Zn–air batteries. Catalysis Science and Technology, 2020, 10, 1444-1457.	4.1	13
40	Ferrite Materials for Photoassisted Environmental and Solar Fuels Applications. Topics in Current Chemistry Collections, 2020, , 107-162.	0.5	7
41	Influence of Post-Synthesis Modifications of Ti1â^'xZrxO2 Nanocrystallites on Their Photocatalytic Activity for Toluene and Methylcyclohexane Degradation. Journal of Nanoscience and Nanotechnology, 2019, 19, 7810-7818.	0.9	1
42	New Concepts for Production of Scalable Single Layer Oxidized Regions by Local Anodic Oxidation of Graphene. Small, 2019, 15, 1902817.	10.0	4
43	Hydroxamate Titanium–Organic Frameworks and the Effect of Siderophore-Type Linkers over Their Photocatalytic Activity. Journal of the American Chemical Society, 2019, 141, 13124-13133.	13.7	73
44	Conjugated porous polymer based on BOPHY dyes as photocatalyst under visible light. Applied Catalysis B: Environmental, 2019, 258, 117933.	20.2	46
45	2D Materials Oxidation: New Concepts for Production of Scalable Single Layer Oxidized Regions by Local Anodic Oxidation of Graphene (Small 40/2019). Small, 2019, 15, 1970217.	10.0	1
46	Carbon nanotube synthesis and spinning as macroscopic fibers assisted by the ceramic reactor tube. Scientific Reports, 2019, 9, 9239.	3.3	28
47	Demonstrator devices for artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 345-363.	3.2	2
48	Synthetic approaches to artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 242-281.	3.2	5
49	Chromoselective access to Z- or E- allylated amines and heterocycles by a photocatalytic allylation reaction. Nature Communications, 2019, 10, 2634.	12.8	38
50	Mesityl or Imide Acridinium Photocatalysts: Accessible Versus Inaccessible Chargeâ€∎ransfer States in Photoredox Catalysis. ChemPhotoChem, 2019, 3, 609-612.	3.0	8
51	Correcting Flaws in the Assignment of Nitrogen Chemical Environments in N-Doped Graphene. Journal of Physical Chemistry C, 2019, 123, 11319-11327.	3.1	33
52	Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications. Chemical Society Reviews, 2019, 48, 5454-5487.	38.1	228
53	High rate hybrid MnO ₂ @CNT fabric anodes for Li-ion batteries: properties and a lithium storage mechanism study by <i>in situ</i> synchrotron X-ray scattering. Journal of Materials Chemistry A, 2019, 7, 26596-26606.	10.3	43
54	Photoelectrochemical Hydrogen Evolution Driven by Visible-to-Ultraviolet Photon Upconversion. ACS Applied Energy Materials, 2019, 2, 207-211.	5.1	41

#	Article	IF	CITATIONS
55	A Facile Synthesis of Blue Luminescent [7]Helicenocarbazoles Based on Goldâ€Catalyzed Rearrangementâ€lodonium Migration and Suzuki–Miyaura Benzannulation Reactions. Chemistry - A European Journal, 2018, 24, 7620-7625.	3.3	11
56	Influence of surface density on the CO2 photoreduction activity of a DC magnetron sputtered TiO2 catalyst. Applied Catalysis B: Environmental, 2018, 224, 912-918.	20.2	30
57	Dichromatic Photocatalytic Substitutions of Aryl Halides with a Small Organic Dye. Chemistry - A European Journal, 2018, 24, 105-108.	3.3	113
58	Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nature Communications, 2018, 9, 4986.	12.8	168
59	Mechanistic View of the Main Current Issues in Photocatalytic CO ₂ Reduction. Journal of Physical Chemistry Letters, 2018, 9, 7192-7204.	4.6	76
60	Covalent organic nanosheets for bioimaging. Chemical Science, 2018, 9, 8382-8387.	7.4	84
61	Synchronized biphotonic process triggering C C coupling catalytic reactions. Applied Catalysis B: Environmental, 2018, 237, 18-23.	20.2	38
62	A Bifunctional Photoaminocatalyst for the Alkylation of Aldehydes: Design, Analysis, and Mechanistic Studies. ACS Catalysis, 2018, 8, 5928-5940.	11.2	46
63	On the selectivity of CO2 photoreduction towards CH4 using Pt/TiO2 catalysts supported on mesoporous silica. Applied Catalysis B: Environmental, 2018, 239, 68-76.	20.2	98
64	Sulfur polyconjugated organic ligands as building block in photoactive metal–organic frameworks. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e372-e373.	0.1	0
65	Elucidating the Photoredox Nature of Isolated Iron Active Sites on MCM-41. ACS Catalysis, 2017, 7, 1646-1654.	11.2	19
66	Effect of La as Promoter in the Photoreduction of CO2 Over TiO2 Catalysts. Topics in Catalysis, 2017, 60, 1119-1128.	2.8	9
67	Addressed realization of multication complex arrangements in metal-organic frameworks. Science Advances, 2017, 3, e1700773.	10.3	47
68	CO2 reduction over NaNbO3 and NaTaO3 perovskite photocatalysts. Photochemical and Photobiological Sciences, 2017, 16, 17-23.	2.9	76
69	Metal–organic frameworks based on conjugated organic ligands for optoelectronic applications. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C202-C202.	0.1	0
70	Hierarchical TiO 2 nanofibres as photocatalyst for CO 2 reduction: Influence of morphology and phase composition on catalytic activity. Journal of CO2 Utilization, 2016, 15, 24-31.	6.8	61
71	Factors influencing the photocatalytic activity ofÂalkali Nb Ta perovskites for hydrogen production from aqueous methanol solutions. International Journal of Hydrogen Energy, 2016, 41, 19921-19928.	7.1	11
72	Ga-Promoted Photocatalytic H2 Production over Pt/ZnO Nanostructures. ACS Applied Materials & Interfaces, 2016, 8, 23729-23738.	8.0	43

#	Article	IF	CITATIONS
73	Crystal phase competition by addition of a second metal cation in solid solution metal–organic frameworks. Dalton Transactions, 2016, 45, 4327-4337.	3.3	13
74	Photocatalytic H2 production from aqueous methanol solutions using metal-co-catalysed Zn2SnO4 nanostructures. Applied Catalysis B: Environmental, 2016, 191, 106-115.	20.2	20
75	Ce-promoted Ni/SBA-15 catalysts for anisole hydrotreating under mild conditions. Applied Catalysis B: Environmental, 2016, 197, 206-213.	20.2	37
76	Role of the physicochemical properties of hausmannite on the hydrogen production via the Mn3O4–NaOH thermochemical cycle. International Journal of Hydrogen Energy, 2016, 41, 113-122.	7.1	15
77	Mixed NaNb _x Ta _{1â^'x} O ₃ perovskites as photocatalysts for H ₂ production. Green Chemistry, 2015, 17, 1735-1743.	9.0	28
78	Influence of the Ni/P ratio and metal loading on the performance of NixPy/SBA-15 catalysts for the hydrodeoxygenation of methyl oleate. Fuel, 2015, 144, 60-70.	6.4	70
79	Current Challenges of CO2 Photocatalytic Reduction Over Semiconductors Using Sunlight. , 2015, , 171-191.		7
80	Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels. Journal of Nanoscience and Nanotechnology, 2015, 15, 6642-6650.	0.9	12
81	Effect of Au surface plasmon nanoparticles on the selective CO2 photoreduction to CH4. Applied Catalysis B: Environmental, 2015, 178, 177-185.	20.2	94
82	Effect of metal–support interaction on the selective hydrodeoxygenation of anisole to aromatics over Ni-based catalysts. Applied Catalysis B: Environmental, 2014, 145, 91-100.	20.2	192
83	Localization and Impact of Pb-Non-Bonded Electronic Pair on the Crystal and Electronic Structure of Pb2YSbO6. Inorganic Chemistry, 2014, 53, 5609-5618.	4.0	6
84	Enhancing Metal–Organic Framework Net Robustness by Successive Linker Coordination Increase: From a Hydrogen-Bonded Two-Dimensional Supramolecular Net to a Covalent One Keeping the Topology. Crystal Growth and Design, 2014, 14, 5227-5233.	3.0	36
85	Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides: Pure oxides versus mixed ones. Solar Energy Materials and Solar Cells, 2014, 123, 47-57.	6.2	137
86	Photocatalytic hydrogen production in the water/methanol system using Pt/RE:NaTaO3 (REÂ=ÂY, La, Ce,) Tj ETQc	0.00 rgB1 7:1	[Qverlock] 43
87	Enhancement of hydrocarbon production via artificial photosynthesis due to synergetic effect of Ag supported on TiO2 and ZnO semiconductors. Chemical Engineering Journal, 2013, 224, 128-135.	12.7	63
88	H2 production by CH4 decomposition over metallic cobalt nanoparticles: Effect of the catalyst activation. Applied Catalysis A: General, 2013, 467, 371-379.	4.3	16
89	Advances in the design of ordered mesoporous materials for low-carbon catalytic hydrogen production. Journal of Materials Chemistry A, 2013, 1, 12016.	10.3	33

Influence of structural and morphological characteristics onÂtheÂhydrogen production and sodium recovery in the NaOH–MnO thermochemical cycle. International Journal of Hydrogen Energy, 2013, 38, 7.1 17 13143-13152.

#	Article	IF	CITATIONS
91	Effect of copper on the performance of ZnO and ZnO1â^'xNx oxides as CO2 photoreduction catalysts. Catalysis Today, 2013, 209, 21-27.	4.4	62
92	H3O2 Bridging Ligand in a Metal–Organic Framework. Insight into the Aqua-Hydroxo↔Hydroxyl Equilibrium: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 2013, 135, 5782-5792.	13.7	42
93	Hydrocarbons production through hydrotreating of methyl esters over Ni and Co supported on SBA-15 and Al-SBA-15. Catalysis Today, 2013, 210, 81-88.	4.4	94
94	The Role of Co-catalysts: Interaction and Synergies with Semiconductors. Green Energy and Technology, 2013, , 195-216.	0.6	1
95	Green Microwave Synthesis of MILâ€100(Al, Cr, Fe) Nanoparticles for Thinâ€Film Elaboration. European Journal of Inorganic Chemistry, 2012, 2012, 5165-5174.	2.0	176
96	Insight into the SBU Condensation in Mg Coordination and Supramolecular Frameworks: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 2012, 134, 4762-4771.	13.7	24
97	Synthesis of Nickel Phosphide Nanorods as Catalyst for the Hydrotreating of Methyl Oleate. Topics in Catalysis, 2012, 55, 991-998.	2.8	22
98	Insight into the Correlation between Net Topology and Ligand Coordination Mode in New Lanthanide MOFs Heterogeneous Catalysts: A Theoretical and Experimental Approach. Crystal Growth and Design, 2012, 12, 5535-5545.	3.0	45
99	Ni ₂ P/SBA-15 As a Hydrodeoxygenation Catalyst with Enhanced Selectivity for the Conversion of Methyl Oleate Into <i>n</i> -Octadecane. ACS Catalysis, 2012, 2, 592-598.	11.2	160
100	Mild temperature hydrogen production by methane decomposition over cobalt catalysts prepared with different precipitating agents. International Journal of Hydrogen Energy, 2012, 37, 7034-7041.	7.1	27
101	VALORIZACION DE CO2. Â; RESIDUO O MATERIA PRIMA?. Dyna (Spain), 2012, 87, 145-148.	0.2	3
102	Co-production of graphene sheets and hydrogen by decomposition of methane using cobalt based catalysts. Energy and Environmental Science, 2011, 4, 778.	30.8	36
103	Direct evidence of the SMSI decoration effect: the case of Co/TiO2 catalyst. Chemical Communications, 2011, 47, 7131.	4.1	87
104	Heterogeneous Catalysis with Alkalineâ€Earth Metalâ€Based MOFs: A Green Calcium Catalyst. ChemCatChem, 2010, 2, 147-149.	3.7	68
105	Electronic and magnetic structure of bulk cobalt: The α, β, and ε-phases from density functional theory calculations. Journal of Chemical Physics, 2010, 133, 024701.	3.0	83
106	Dynamic Calcium Metal–Organic Framework Acts as a Selective Organic Solvent Sponge. Chemistry - A European Journal, 2010, 16, 11632-11640.	3.3	53
107	Cobalt based catalysts prepared by Pechini method for CO2-free hydrogen production by methane decomposition. International Journal of Hydrogen Energy, 2010, 35, 10285-10294.	7.1	68
108	Thermodynamic and Kinetic Control on the Formation of Two Novel Metal-Organic Frameworks Based on the Er(III) Ion and the Asymmetric Dimethylsuccinate Ligand. Inorganic Chemistry, 2010, 49, 5063-5071.	4.0	30

#	Article	IF	CITATIONS
109	Kinetics and selectivity of methyl-ethyl-ketone combustion in air over alumina-supported PdOx–MnOx catalysts. Journal of Catalysis, 2009, 261, 50-59.	6.2	45
110	Methyl ethyl ketone combustion over La-transition metal (Cr, Co, Ni, Mn) perovskites. Applied Catalysis B: Environmental, 2009, 92, 445-453.	20.2	54
111	Development of Hexagonal Closed-Packed Cobalt Nanoparticles Stable at High Temperature. Chemistry of Materials, 2009, 21, 5637-5643.	6.7	81
112	The role of the Pb2+ 6s lone pair in the structure of the double perovskite Pb2ScSbO6. Dalton Transactions, 2009, , 5453.	3.3	22
113	Three Lanthanum MOF Polymorphs: Insights into Kinetically and Thermodynamically Controlled Phases. Inorganic Chemistry, 2009, 48, 4707-4713.	4.0	56
114	Palladium-manganese catalysts supported on monolith systems for methane combustion. Applied Catalysis B: Environmental, 2008, 79, 122-131.	20.2	30
115	Evidence for spontaneous CO2 activation on cobalt surfaces. Chemical Physics Letters, 2008, 454, 262-268.	2.6	76
116	Catalytic behaviour of bifunctional pumice-supported and zeolite/pumice hybrid catalysts for n-pentane hydroisomerization. Applied Catalysis A: General, 2008, 350, 38-45.	4.3	13
117	Development of robust Co-based catalysts for the selective H2-production by ethanol steam-reforming. The Fe-promoter effect. International Journal of Hydrogen Energy, 2008, 33, 3601-3606.	7.1	48
118	Synergistic effect of Pd in methane combustion PdMnO /Al2O3 catalysts. Catalysis Communications, 2007, 8, 1287-1292.	3.3	40
119	Catalytic behaviour of Pt or Pd metal nanoparticles–zeolite bifunctional catalysts for n-pentane hydroisomerization. Catalysis Communications, 2007, 8, 2081-2086.	3.3	17
120	A Molecule-Based Nanoporous Material Showing Tuneable Spin-Crossover Behavior near Room Temperature. Advanced Materials, 2007, 19, 1397-1402.	21.0	83
121	Fischer–Tropsch synthesis on mono- and bimetallic Co and Fe catalysts in fixed-bed and slurry reactors. Applied Catalysis A: General, 2007, 326, 65-73.	4.3	103
122	X-ray diffraction study of Co3O4 activation under ethanol steam-reforming. Catalysis Today, 2007, 126, 148-152.	4.4	85
123	Spin transition in a triazine-based Fe(ii) complex: variable-temperature structural, thermal, magnetic and spectroscopic studies. Journal of Materials Chemistry, 2006, 16, 2669-2676.	6.7	36
124	TD-DFT analysis of the electronic spectra of Ti-containing catalysts. Topics in Catalysis, 2006, 41, 27-34.	2.8	23
125	Structural changes and activation treatment in a Co/SiO2 catalyst for Fischer–Tropsch synthesis. Catalysis Today, 2006, 114, 422-427.	4.4	51
126	Surface and Structural Features of Co-Fe Oxide Nanoparticles Deposited on a Silica Substrate. European Journal of Inorganic Chemistry, 2006, 2006, 5057-5068.	2.0	50

#	Article	IF	CITATIONS
127	Influence of feed composition on the activity of Mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol. Applied Catalysis B: Environmental, 2005, 57, 191-199.	20.2	101
128	Strong dependence on pressure of the performance of a Co/SiO2 catalyst in Fischer–Tropsch slurry reactor synthesis. Catalysis Letters, 2005, 100, 105-116.	2.6	33
129	Formaldehyde/methanol combustion on alumina-supported manganese-palladium oxide catalyst. Applied Catalysis B: Environmental, 2004, 51, 83-91.	20.2	128
130	Synthesis of bis[N,O-{2′-pyridyl-methanolate}]dioxomolybdenum(VI) epoxidation catalyst and novel crystal structure derived from X-ray diffraction and DFT calculations. Journal of Molecular Catalysis A, 2004, 214, 269-272.	4.8	23
131	Strong enhancement of the Fischer–Tropsch synthesis on a Co/SiO2 catalyst activate in syngas mixture. Catalysis Communications, 2004, 5, 635-638.	3.3	34
132	Unusually High Selectivity to C2+ Alcohols on Bimetallic CoFe Catalysts During CO Hydrogenation. Catalysis Letters, 2003, 88, 123-128.	2.6	46
133	The Usefulness of Time-Dependent Density Functional Theory to Describe the Electronic Spectra of Ti-Containing Catalysts. Angewandte Chemie - International Edition, 2003, 42, 5851-5854.	13.8	42
134	DFT study of electronic spectra and excited-state properties of some 1,8-naphthalimide derivatives. International Journal of Quantum Chemistry, 2003, 91, 446-450.	2.0	11
135	Alumina-supported manganese- and manganese–palladium oxide catalysts for VOCs combustion. Catalysis Communications, 2003, 4, 223-228.	3.3	126
136	The Usefulness of Density Functional Theory To Describe the Tautomeric Equilibrium of 4,6-Dimethyl-2-mercaptopyrimidine in Solution. Journal of Physical Chemistry A, 2003, 107, 7490-7495.	2.5	35
137	Effect of the TiO 2 Nanocrystal Dispersion Over SBAâ€15 in the Photocatalytic H 2 Production Using Ethanol as Electron Donor. Advanced Sustainable Systems, 0, , 2100133.	5.3	9