Anna Baldycheva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3648617/publications.pdf

Version: 2024-02-01

83 1,003 16 30 g-index

83 83 83 83 1324

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices. Journal of Applied Physics, 2021, 129, .	1.1	20
2	Coherent anti-stokes Raman scattering spectroscopy (CARS) and imaging of DNA on graphene layers and glass covers. FlatChem, 2021, 27, 100243.	2.8	1
3	Anisotropy of Optical Properties of Hexagonal Boron Nitride Films. Physics of the Solid State, 2021, 63, 1437-1441.	0.2	1
4	Silicon Nitride Photonics for the Near-Infrared. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-13.	1.9	40
5	Photoexcited terahertz conductivity in multi-layered and intercalated graphene. Optics Communications, 2020, 459, 124982.	1.0	11
6	Graphene-based optically tunable structure for terahertz polarization control. Journal of Physics: Conference Series, 2020, 1461, 012062.	0.3	0
7	Wireless graphene-enabled wearable temperature sensor. Journal of Physics: Conference Series, 2020, 1571, 012001.	0.3	6
8	Spatial tracking of individual fluid dispersed particles via Raman spectroscopy. Scientific Reports, 2020, 10, 14350.	1.6	0
9	Transmission properties of van der Waals materials for terahertz time-domain spectroscopy applications. AIP Conference Proceedings, 2020, , .	0.3	3
10	Applied computing approach calculations for g-Factor and HFS calculations of Light Ions. Journal of Physics: Conference Series, 2020, 1571, 012002.	0.3	0
11	O-band N-rich silicon nitride MZI based on GST. Applied Physics Letters, 2020, 116, 093502.	1.5	23
12	Tunable optical metasurfaces enabled by chalcogenide phase-change materials: from the visible to the THz. Journal of Optics (United Kingdom), 2020, 22, 114001.	1.0	45
13	High-Quality Green-Emitting Nanodiamonds Fabricated by HPHT Sintering of Polycrystalline Shockwave Diamonds. Nanoscale Research Letters, 2020, 15, 209.	3.1	12
14	On-chip sub-wavelength Bragg grating design based on novel low loss phase-change materials. Optics Express, 2020, 28, 16394.	1.7	39
15	Simple technique for determining the refractive index of phase-change materials using near-infrared reflectometry. Optical Materials Express, 2020, 10, 1675.	1.6	13
16	Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands. Optical Materials Express, 2020, 10, 1778.	1.6	16
17	Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica, 2020, 7, 476.	4.8	153
18	Reconfigurable photonic integrated circuits (RPICs) based on functional materials for integrated optical communication applications. , 2020, , .		0

#	Article	IF	CITATIONS
19	Photo-tunable terahertz absorber based on intercalated few-layer graphene. Journal of Optics (United) Tj ETQq1 1	0.784314 1.0	rgBT /Over
20	Non-volatile integrated photonic memory using GST phase change material on a fully etched Si3N4/SiO2 waveguide. , 2020, , .		4
21	Sub-wavelength plasmonic-enhanced phase-change memory. , 2020, , .		1
22	Simple technique for determining the refractive index of phase-change materials using near-infrared reflectometry. Optical Materials Express, 2020, 10, 1675.	1.6	2
23	Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands. Optical Materials Express, 2020, 10, 1778.	1.6	2
24	Multilayer graphene: ion gel amplitude modulator for terahertz frequency range. , 2020, , .		1
25	Wireless Graphene Temperature Sensor. , 2020, , .		3
26	The terahertz near-field response of graphene layers and graphene structures. , 2019, , .		0
27	Transmission Properties of FeCl3-Intercalated Graphene and WS2 Thin Films for Terahertz Time-Domain Spectroscopy Applications. Nanoscale Research Letters, 2019, 14, 225.	3.1	8
28	Photoluminescence from NVâ^' Centres in 5 nm Detonation Nanodiamonds: Identification and High Sensitivity to Magnetic Field. Nanoscale Research Letters, 2019, 14, 279.	3.1	15
29	2D WS ₂ liquid crystals: tunable functionality enabling diverse applications. Nanoscale, 2019, 11, 16886-16895.	2.8	6
30	Multi-layer graphene as a selective detector for future lung cancer biosensing platforms. Nanoscale, 2019, 11, 2476-2483.	2.8	39
31	Tunable Volatility of Ge ₂ Sb ₂ Te ₅ in Integrated Photonics. Advanced Functional Materials, 2019, 29, 1807571.	7.8	57
32	Terahertz Time-Domain Polarimetry of Carbon Nanomaterials., 2019,,.		0
33	Multi-layered Graphene Based Optically Tunable Terahertz Absorber. , 2019, , .		1
34	Polarization properties of few-layer graphene on silicon substrate in terahertz frequency range. SN Applied Sciences, 2019, 1, 1.	1.5	12
35	Mechanochemical synthesis of carbon-stabilized Cu/C, Co/C and Ni/C nanocomposites with prolonged resistance to oxidation. Scientific Reports, 2019, 9, 17435.	1.6	18
36	Transmission properties of transition metal dichalcogenides and modified graphene thin films in visible, NIR and THz frequency ranges. , 2019, , .		0

#	Article	IF	CITATIONS
37	Nitrogen impurities and fluorescent nitrogen-vacancy centers in detonation nanodiamonds: identification and distinct features. Journal of Optical Technology (A Translation of Opticheskii) Tj ETQq1 1	0.7843 b42rgBT	/Overlock 10
38	Plasmonically-enhanced all-optical integrated phase-change memory. Optics Express, 2019, 27, 24724.	1.7	35
39	Tuning silicon-rich nitride microring resonances with graphene capacitors for high-performance computing applications. Optics Express, 2019, 27, 35129.	1.7	8
40	Integrated Phase-change Photonics: A Strategy for Merging Communication and Computing. , 2019, , .		1
41	NLL-Assisted Multilayer Graphene Patterning. ACS Omega, 2018, 3, 1546-1554.	1.6	15
42	From colloidal CdSe quantum dots to microscale optically anisotropic supercrystals through bottom-up self-assembly. Journal of Materials Chemistry C, 2018, 6, 12904-12911.	2.7	5
43	The study of optical properties of graphene intercalated with ferric chloride for application in terahertz photonics. Journal of Physics: Conference Series, 2018, 1124, 071007.	0.3	1
44	Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles. Npj Flexible Electronics, 2018, 2, .	5.1	62
45	2D Material Liquid Crystals for Optoelectronics and Photonics. , 2018, , .		0
46	One-Dimensional Multi-Channel Photonic Crystal Resonators Based on Silicon-On-Insulator With High Quality Factor. Frontiers in Physics, 2018, 6, .	1.0	16
47	Phase-Change Metadevices for the Dynamic and Reconfigurable Control of Light. , 2018, , .		0
48	Transmission of modified graphene layers on glass, sapphire and polyimide film substrates in UV, visible, NIR and THz spectral ranges. , 2018 , , .		2
49	Double-cavity Fabry-Perot resonators based on one-dimensional silicon photonic crystals. AIP Conference Proceedings, 2018, , .	0.3	0
50	Phase-change band-pass filters for multispectral imaging. , 2018, , .		7
51	Multilayer graphene based tunable metasurface for terahertz wave control. , 2018, , .		2
52	2D Material Liquid Crystal Nanocomposites for Optoelectronic and Photonic Devices. , 2018, , .		0
53	Raman Spectroscopy as a Tool for Characterisation of Liquid Phase Devices. , 2018, , .		0
54	Ultra-narrow-linewidth erbium-doped lasers on a silicon photonics platform. , 2018, , .		0

#	Article	IF	CITATIONS
55	2D materials integrated in Si3N4 photonics platform. , 2018, , .		O
56	Visible light emitting waveguide on Si chip. , 2018, , .		0
57	Time resolved terahertz spectroscopy of optically pumped multilayered graphene on silicon substrate. , 2018, , .		0
58	Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip. Scientific Reports, 2017, 7, 42120.	1.6	15
59	2D material liquid crystals for optoelectronics and photonics. Journal of Materials Chemistry C, 2017, 5, 11185-11195.	2.7	61
60	Smart textile: Exploration of wireless sensing capabilities. , 2017, , .		3
61	Ultra-narrow-linewidth Al_2O_3:Er^3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform. Optics Express, 2017, 25, 13705.	1.7	40
62	Integrated Mode-Locked Lasers in a CMOS-Compatible Silicon Photonic Platform., 2015,,.		7
63	Erbium-Doped Laser with Multi-segmented Silicon Nitride Structure. , 2014, , .		1
64	Integrated Al2O3:Er3+ DFB Laser for Temperature Control Free Operation with Silicon Nitride Ring Filter. , 2014, , .		1
65	Tunable Microcavity Based on Macroporous Silicon: Feasibility of Fabrication. Journal of Lightwave Technology, 2013, 31, 2694-2700.	2.7	1
66	Surface Tamm states in a photonic crystal slab with asymmetric termination. Physica Status Solidi - Rapid Research Letters, 2013, 7, 481-484.	1.2	4
67	Fine tunable multi-cavity Si photonic crystal filters. Proceedings of SPIE, 2012, , .	0.8	0
68	Surface states in the optical spectra of two-dimensional photonic crystals with various surface terminations. Physical Review B, 2012, 86, .	1.1	30
69	Multi-channel Si-liquid crystal filter with fine tuning capability of individual channels for compensation of fabrication tolerances. Nanoscale Research Letters, 2012, 7, 387.	3.1	6
70	INFLUENCE OF FLUCTUATIONS OF THE GEOMETRICAL PARAMETERS ON THE PHOTONIC BAND GAPS IN ONE-DIMENSIONAL PHOTONIC CRYSTALS. Progress in Electromagnetics Research, 2012, 126, 285-302.	1.6	12
71	ELECTRICALLY TUNABLE FABRY-PEROT RESONATOR BASED ON MICROSTRUCTURED SI CONTAINING LIQUID CRYSTAL. Progress in Electromagnetics Research, 2012, 122, 293-309.	1.6	15
72	Formation of Infrared Regions of Transparency in One-Dimensional Silicon Photonic Crystals. IEEE Photonics Technology Letters, 2011, 23, 200-202.	1.3	7

#	Article	IF	CITATIONS
73	Transformation of one-dimensional silicon photonic crystal into Fabry-Perot resonator., 2011,,.		1
74	Silicon photonic crystal filter with ultrawide passband characteristics. Optics Letters, 2011, 36, 1854.	1.7	23
75	Fabrication technology of heterojunctions in the lattice of a 2D photonic crystal based on macroporous silicon. Semiconductors, 2011, 45, 1103-1110.	0.2	15
76	Design of three-component one-dimensional photonic crystals with tuning of optical contrast and regions of transparency. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1961-1965.	0.8	2
77	Design, fabrication, and optical characterization of multicomponent photonic crystals for integrated silicon microphotonics. , 2011, , .		1
78	Optical spectra of two-dimensional photonic crystal bars based on macroporous Si., 2011,,.		2
79	Design of three-component one-dimensional photonic crystals for alteration of optical contrast and omni-directional reflection. Proceedings of SPIE, 2010, , .	0.8	1
80	Design, fabrication, and optical characterization of Fabry-P $\tilde{A}f\hat{A}$ ©rot tunable resonator based on microstructured Si and liquid crystal. Proceedings of SPIE, 2010, , .	0.8	2
81	Optical Contrast Tuning in Three-Component One-Dimensional Photonic Crystals. Journal of Lightwave Technology, 2010, 28, 1521-1529.	2.7	11
82	Optical characteristics of a one-dimensional photonic crystal with an additional regular layer. Proceedings of SPIE, 2009, , .	0.8	8
83	Silicon Periodic Structures and their Liquid Crystal Composites. Solid State Phenomena, 0, 156-158, 547-554.	0.3	2