Rolf F Barth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3648559/publications.pdf

Version: 2024-02-01

109321 102487 4,752 77 35 66 h-index citations g-index papers 79 79 79 4325 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Boron Neutron Capture Therapy of Cancer: Current Status and Future Prospects. Clinical Cancer Research, 2005, 11, 3987-4002.	7. O	882
2	Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiation Oncology, 2012, 7, 146.	2.7	375
3	Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. Journal of Neuro-Oncology, 2009, 94, 299-312.	2.9	353
4	Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas., 1998, 36, 91-102.		321
5	Boron delivery agents for neutron capture therapy of cancer. Cancer Communications, 2018, 38, 1-15.	9.2	266
6	Site-Specific Conjugation of Boron-Containing Dendrimers to Anti-EGF Receptor Monoclonal Antibody Cetuximab (IMC-C225) and Its Evaluation as a Potential Delivery Agent for Neutron Capture Therapy. Bioconjugate Chemistry, 2004, 15, 185-194.	3.6	176
7	A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Communications, 2018, 38, 1-7.	9.2	137
8	Boron neutron capture therapy at the crossroads: Challenges and opportunities. Applied Radiation and Isotopes, 2009, 67, S3-S6.	1.5	108
9	Molecular Targeting and Treatment of Composite EGFR and EGFRvIII-Positive Gliomas Using Boronated Monoclonal Antibodies. Clinical Cancer Research, 2008, 14, 883-891.	7.0	101
10	A critical assessment of boron neutron capture therapy: an overview. Journal of Neuro-Oncology, 2003, 62, 1-5.	2.9	99
11	Boron Neutron Capture Therapy of Brain Tumors: Past History, Current Status, and Future Potential. Cancer Investigation, 1996, 14, 534-550.	1.3	97
12	Molecular Targeting and Treatment of EGFRvIII-Positive Gliomas Using Boronated Monoclonal Antibody L8A4. Clinical Cancer Research, 2006, 12, 3792-3802.	7.0	93
13	Boron-Containing Nucleosides as Potential Delivery Agents for Neutron Capture Therapy of Brain Tumors. Cancer Research, 2004, 64, 6287-6295.	0.9	75
14	Enhanced Survival and Cure of F98 Glioma–Bearing Rats following Intracerebral Delivery of Carboplatin in Combination with Photon Irradiation. Clinical Cancer Research, 2007, 13, 5195-5201.	7.0	65
15	Thymidine kinase 1 as a molecular target for boron neutron capture therapy of brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17493-17497.	7.1	63
16	Enhanced Delivery of Boronophenylalanine for Neutron Capture Therapy by Means of Intracarotid Injection and Blood-Brain Barrier Disruption. Neurosurgery, 1996, 38, 985-992.	1.1	62
17	Molecular targeting of the epidermal growth factor receptor for neutron capture therapy of gliomas. Cancer Research, 2002, 62, 3159-66.	0.9	61
18	Neutron capture therapy of epidermal growth factor (+) gliomas using boronated cetuximab (IMC-C225) as a delivery agent. Applied Radiation and Isotopes, 2004, 61, 899-903.	1.5	59

#	Article	IF	CITATIONS
19	Boron-Containing Polyamines as DNA Targeting Agents for Neutron Capture Therapy of Brain Tumors:Â Synthesis and Biological Evaluation. Journal of Medicinal Chemistry, 1997, 40, 3887-3896.	6.4	53
20	Preparation, Biodistribution and Neurotoxicity of Liposomal Cisplatin following Convection Enhanced Delivery in Normal and F98 Glioma Bearing Rats. PLoS ONE, 2012, 7, e48752.	2.5	53
21	Convection enhanced delivery of boronated EGF as a molecular targeting agent for neutron capture therapy of brain tumors. Journal of Neuro-Oncology, 2009, 95, 355-365.	2.9	52
22	Synthesis and Biological Evaluation of Boron-Containing Polyamines as Potential Agents for Neutron Capture Therapy of Brain Tumors. Journal of Medicinal Chemistry, 1999, 42, 1282-1292.	6.4	51
23	Combination of boron neutron capture therapy and external beam radiotherapy for brain tumors. International Journal of Radiation Oncology Biology Physics, 2004, 58, 267-277.	0.8	51
24	Efficacy of intracerebral delivery of cisplatin in combination with photon irradiation for treatment of brain tumors. Journal of Neuro-Oncology, 2010, 98, 287-295.	2.9	51
25	Boron Neutron Capture Therapy of Brain Tumors: Biodistribution, Pharmacokinetics, and Radiation Dosimetry of Sodium Borocaptate in Patients with Gliomas. Neurosurgery, 2000, 47, 608-622.	1.1	49
26	Boron neutron capture therapy for vulvar melanoma and genital extramammary Paget's disease with curative responses. Cancer Communications, 2018, 38, 1-10.	9.2	45
27	A Call to Action. Chest, 2020, 158, 43-44.	0.8	45
28	Neutron capture therapy of intracerebral melanoma: enhanced survival and cure after blood-brain barrier opening to improve delivery of boronophenylalanine. International Journal of Radiation Oncology Biology Physics, 2002, 52, 858-868.	0.8	44
29	Development of a syngeneic rat brain tumor model expressing EGFRvIII and its use for molecular targeting studies with monoclonal antibody L8A4. Clinical Cancer Research, 2005, 11, 341-50.	7.0	43
30	Rat brain tumor models to assess the efficacy of boron neutron capture therapy: a critical evaluation. Journal of Neuro-Oncology, 2003, 62, 61-74.	2.9	41
31	Convection enhanced delivery of carboplatin in combination with radiotherapy for the treatment of brain tumors. Journal of Neuro-Oncology, 2011, 101, 379-390.	2.9	41
32	The Importance of the Autopsy in Medicine: Perspectives of Pathology Colleagues. Academic Pathology, 2019, 6, 2374289519834041.	1.1	41
33	Efficacy of Intracerebral Delivery of Carboplatin in Combination With Photon Irradiation for Treatment of F98 Glioma-Bearing Rats. International Journal of Radiation Oncology Biology Physics, 2009, 73, 530-536.	0.8	40
34	Boron neutron capture therapy at the crossroads - Where do we go from here?. Applied Radiation and Isotopes, 2020, 160, 109029.	1.5	40
35	Boron neutron capture therapy for the treatment of glioblastomas and extracranial tumours: As effective, more effective or less effective than photon irradiation?. Radiotherapy and Oncology, 2007, 82, 119-122.	0.6	38
36	Enhanced survival of glioma bearing rats following boron neutron capture therapy with blood-brain barrier disruption and intracarotid injection of boronophenylalanine. Journal of Neuro-Oncology, 1997, 33, 59-70.	2.9	36

#	Article	IF	Citations
37	Boron neutron capture therapy of brain tumorscurrent status and future prospects., 1997, 33, 03-07.		32
38	Convection enhanced delivery of carboranylporphyrins for neutron capture therapy of brain tumors. Journal of Neuro-Oncology, 2011, 103, 175-185.	2.9	32
39	Synthesis and evaluation of thymidine kinase 1-targeting carboranyl pyrimidine nucleoside analogs for boron neutron capture therapy of cancer. European Journal of Medicinal Chemistry, 2015, 100, 197-209.	5.5	30
40	The spectrum of pathological findings in coronavirus disease (COVID-19) and the pathogenesis of SARS-CoV-2. Diagnostic Pathology, 2020, 15, 85.	2.0	28
41	Radiation therapy combined with intracerebral administration of carboplatin for the treatment of brain tumors. Radiation Oncology, 2014, 9, 25.	2.7	26
42	Lack of natural killer cell activity in hairy cell leukemia patients and partial restoration with interleukin-2. Cancer, 1986, 57, 988-993.	4.1	25
43	Impact of dose size in single fraction spatially fractionated (grid) radiotherapy for melanoma. Medical Physics, 2014, 41, 021727.	3.0	24
44	Quantitative imaging of magnesium distribution at single-cell resolution in brain tumors and infiltrating tumor cells with secondary ion mass spectrometry (SIMS). Journal of Neuro-Oncology, 2016, 127, 33-41.	2.9	23
45	Evaluation of unnatural cyclic amino acids as boron delivery agents for treatment of melanomas and gliomas. Applied Radiation and Isotopes, 2014, 88, 38-42.	1.5	21
46	Evaluation of systemically administered radiolabeled epidermal growth factor as a brain tumor targeting agent. Journal of Neuro-Oncology, 2001, 55, 19-28.	2.9	20
47	An obesity paradox: an inverse correlation between body mass index and atherosclerosis of the aorta. Cardiovascular Pathology, 2016, 25, 515-520.	1.6	20
48	Improved Survival after Boron Neutron Capture Therapy of Brain Tumors by Cereport-mediated Blood-Brain Barrier Modulation to Enhance Delivery of Boronophenylalanine. Neurosurgery, 2000, 47, 189-198.	1.1	17
49	A Critical Assessment of Boron Neutron Capture Therapy: An Overview. Journal of Neuro-Oncology, 2003, 62, 1-5.	2.9	17
50	Intracerebral delivery of Carboplatin in combination with either 6 MV Photons or monoenergetic synchrotron X-rays are equally efficacious for treatment of the F98 rat glioma. Journal of Experimental and Clinical Cancer Research, 2012, 31, 78.	8.6	17
51	Design, synthesis, and evaluation of cisplatin-containing EGFR targeting bioconjugates as potential therapeutic agents for brain tumors. OncoTargets and Therapy, 2016, 9, 2769.	2.0	16
52	Clinicopathological complexity in the application of the universal definition of myocardial infarction. Cardiovascular Pathology, 2020, 44, 107153.	1.6	16
53	Boron neutron capture therapy of brain tumors: functional and neuropathologic effects of blood-brain barrier disruption and intracarotid injection of sodium borocaptate and boronophenylalanine. Journal of Neuro-Oncology, 2000, 48, 179-190.	2.9	15
54	Phase I trial of intracerebral convection-enhanced delivery of carboplatin for treatment of recurrent high-grade gliomas. PLoS ONE, 2020, 15, e0244383.	2. 5	15

#	Article	IF	CITATIONS
55	Rat and Mouse Brain Tumor Models for Experimental Neuro-Oncology Research. Journal of Neuropathology and Experimental Neurology, 2022, 81, 312-329.	1.7	15
56	An Obesity Paradox: Increased Body Mass Index Is Associated with Decreased Aortic Atherosclerosis. Current Hypertension Reports, 2017, 19, 55.	3.5	14
57	Evaluation of TK1 targeting carboranyl thymidine analogs as potential delivery agents for neutron capture therapy of brain tumors. Applied Radiation and Isotopes, 2015, 106, 251-255.	1.5	12
58	Radiation therapy combined with intracerebral convection-enhanced delivery of cisplatin or carboplatin for treatment of the F98 rat glioma. Journal of Neuro-Oncology, 2020, 149, 193-208.	2.9	12
59	Effects of I-DOPA pre-loading on the uptake of boronophenylalanine using the F98 glioma and B16 melanoma models. Applied Radiation and Isotopes, 2014, 88, 69-73.	1.5	11
60	Tumoricidal activity of low-energy 160-KV versus 6-MV X-rays against platinum-sensitized F98 glioma cells. Journal of Radiation Research, 2015, 56, 77-89.	1.6	11
61	Comparison of intracerebral delivery of carboplatin and photon irradiation with an optimized regimen for boron neutron capture therapy of the F98 rat glioma. Applied Radiation and Isotopes, 2011, 69, 1813-1816.	1.5	9
62	A Comparison of the Clinical, Viral, Pathologic, and Immunologic Features of Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus 2019 (COVID-19) Diseases. Archives of Pathology and Laboratory Medicine, 2021, 145, 1194-1211.	2.5	9
63	Physicochemical studies of dinitrophenylated bovine serum albumin. International Journal of Peptide and Protein Research, 1982, 20, 73-80.	0.1	8
64	From the laboratory to the clinic: How translational studies in animals have lead to clinical advances in boron neutron capture therapy. Applied Radiation and Isotopes, 2015, 106, 22-28.	1.5	8
65	Assessment of atherosclerotic luminal narrowing of coronary arteries based on morphometrically generated visual guides. Cardiovascular Pathology, 2017, 29, 53-60.	1.6	8
66	Title is missing!. Journal of Neuro-Oncology, 2003, 62, 61-74.	2.9	7
67	Heterogeneity of peripheral blood reticulocytes: A flow cytometric analysis with monoclonal antibody HAE9 and thiazole orange. American Journal of Hematology, 1991, 38, 61-63.	4.1	6
68	Response to Dr. Nicholas Foray's commentary on the paper by Rousseau etÂal. entitled "Efficacy of intracerebral delivery of cisplatin in combination with photon irradiation for treatment of brain tumorsâ€. Journal of Neuro-Oncology, 2011, 101, 165-167.	2.9	4
69	What did Joseph Stalin really die of? A reappraisal of his illness, death, and autopsy findings. Cardiovascular Pathology, 2019, 40, 55-58.	1.6	3
70	Labeling and distribution of technetium-99m corynebacterium parvum as determined by whole-body imaging. Cancer, 1981, 47, 2844-2849.	4.1	2
71	Phenotypic changes associated with chemically induced differentiation of a hairy cell leukemia cell line. American Journal of Hematology, 1987, 24, 401-414.	4.1	2
72	Title is missing!. Journal of Neuro-Oncology, 2003, 62, 157-169.	2.9	2

#	Article	IF	CITATIONS
73	REMOVED: Boron neutron capture therapy in the treatment of glioblastoma: As effective, more effective or less effective than photon irradiation?. Radiotherapy and Oncology, 2006, , 142-144.	0.6	2
74	Morphometric data on severely and morbidly obese deceased, established on forensic and non-forensic autopsies. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2016, 469, 451-458.	2.8	2
75	What did Sun Yat-sen really die of? A re-assessment of his illness and the cause of his death. Chinese Journal of Cancer, 2016, 35, 81.	4.9	2
76	An unexpected paradox: wall shear stress in the aorta is less in patients with severe atherosclerosis regardless of obesity. Cardiovascular Pathology, 2021, 51, 107313.	1.6	2
77	The illness and death of King George VI of England: the pathologists' reassessment. Cardiovascular Pathology, 2021, 53, 107340.	1.6	0