Azhar Iqbal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3648522/publications.pdf

Version: 2024-02-01

361388 414395 1,112 46 20 32 citations h-index g-index papers 48 48 48 1642 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Elucidating the Sizeâ€dependent FRET Efficiency in Interfacially Engineered Quantum Dots Attached to PBSA Sunscreen. Photochemistry and Photobiology, 2022, 98, 1017-1024.	2.5	2
2	Exploring the photoexcited electron transfer dynamics in artificial sunscreen PBSA-coupled biocompatible ZnO quantum dots. New Journal of Chemistry, 2022, 46, 9526-9533.	2.8	9
3	Damping the phase segregation in mixed halide perovskites: Influence of X-site anion. Materials Chemistry and Physics, 2022, 287, 126335.	4.0	2
4	Elucidating the Photoluminescence Quenching in Ensulizole: an Artificial Water Soluble Sunscreen. Journal of Fluorescence, 2021, 31, 1055-1063.	2.5	10
5	A novel binder free high performance Y2Zr2O7/MnS nanocomposite electrode for supercapacitor applications. Journal of Energy Storage, 2021, 37, 102505.	8.1	11
6	Stoichiometric modulation of triazine based polyurea frameworks for carbon dioxide capture. Polymer, 2021, 224, 123762.	3.8	1
7	Enhanced photoelectrochemical water splitting using zinc selenide/graphitic carbon nitride type-ll heterojunction interface. International Journal of Hydrogen Energy, 2021, 46, 25424-25435.	7.1	24
8	Influence of nickel and lanthanum ions co-doping on photocatalytic properties of TiO2 for effective degradation of reactive yellow 145 in the visible region. Journal of Sol-Gel Science and Technology, 2020, 93, 438-451.	2.4	27
9	Green emitter and thermally stable layered tetraethyl ammonium lead bromoiodide perovskite. Optik, 2020, 207, 163828.	2.9	2
10	Effect of halide-mixing on tolerance factor and charge-carrier dynamics in (CH3NH3PbBr3â^'xClx) perovskites powders. Journal of Materials Science: Materials in Electronics, 2020, 31, 19415-19428.	2.2	4
11	Photoinduced charge carrier dynamics in a ZnSe quantum dot-attached CdTe system. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190616.	2.1	6
12	Excellent electrochemical performance of SrZrO3 nanorods as supercapacitor electrode in aqueous electrolytes. Applied Surface Science, 2019, 495, 143587.	6.1	17
13	Doped quaternary metal chalcogenides Cu2ZnSnS4 nanocrystals as efficient light harvesters for solar cell devices. Journal of Materials Science: Materials in Electronics, 2019, 30, 20860-20869.	2.2	5
14	Photoresponsive azobenzene ligand as an efficient electron acceptor for luminous CdTe quantum dots. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 48-53.	3.9	10
15	Charge/energy transfer dynamics in CuO quantum dots attached to photoresponsive azobenzene ligand. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 44-49.	3.9	6
16	Mesoporous Ce ₂ Zr ₂ O ₇ /PbS Nanocomposite with an Excellent Supercapacitor Electrode Performance and Cyclic Stability. ChemistrySelect, 2019, 4, 655-661.	1.5	17
17	Hole transfer from CdSe nanoparticles to TQ1 polymer in hybrid solar cell device. Journal of Molecular Structure, 2018, 1159, 67-73.	3.6	13
18	Highly stable mesoporous CeO2/CeS2 nanocomposite as electrode material with improved supercapacitor electrochemical performance. Ceramics International, 2018, 44, 22262-22270.	4.8	47

#	Article	IF	CITATIONS
19	Designing Efficient Energy Funneling Kinetics in Ruddlesden–Popper Perovskites for Highâ€Performance Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1800818.	21.0	85
20	Novel hetero-bimetallic coordination polymer as a single source of highly dispersed Cu/Ni nanoparticles for efficient photocatalytic water splitting. Inorganic Chemistry Frontiers, 2018, 5, 1816-1827.	6.0	24
21	Enhanced photocatalytic activity of water stable hydroxyl ammonium lead halide perovskites. Materials Science in Semiconductor Processing, 2017, 63, 6-11.	4.0	26
22	Synthesis and time-resolved photoluminescence of SnO2 nanorods. Journal of Molecular Structure, 2017, 1144, 355-359.	3.6	16
23	Design and fabrication of covalently linked PEGylated nanohybrids of ZnO quantum dots with preserved and tunable fluorescence. Materials and Design, 2017, 131, 156-166.	7.0	11
24	Influence of Mn-doping on the photocatalytic and solar cell efficiency of CuO nanowires. Inorganic Chemistry Communication, 2017, 76, 71-76.	3.9	73
25	Effect of Fe doping on the crystallinity of CuO nanotubes and the efficiency of the hybrid solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 335, 112-118.	3.9	21
26	Synthesis and Electrochemical Performance of Urea Assisted Pristine LiMn2O4 Cathode for Li Ion Batteries. Russian Journal of Physical Chemistry A, 2017, 91, 2671-2679.	0.6	3
27	On the Synergism between Cu and Ni for Photocatalytic Hydrogen Production and their Potential as Substitutes of Noble Metals. ChemCatChem, 2016, 8, 3146-3155.	3.7	31
28	CdS nanocapsules and nanospheres as efficient solar light-driven photocatalysts for degradation of Congo red dye. Inorganic Chemistry Communication, 2016, 72, 33-41.	3.9	47
29	Cr2O3–carbon composite as a new support material for efficient methanol electrooxidation. Materials Research Bulletin, 2016, 77, 221-227.	5.2	13
30	Indium phosphide nanowires and their applications in optoelectronic devices. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20150804.	2.1	25
31	Fluorescence modulation of cadmium sulfide quantum dots by azobenzene photochromic switches. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20150692.	2.1	16
32	Bulk-like transverse electron mobility in an array of heavily <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> -doped InP nanowires probed by terahertz spectroscopy. Physical Review B, 2014, 90, .	3.2	24
33	Large-energy-shift photon upconversion in degenerately doped InP nanowires by direct excitation into the electron gas. Nano Research, 2013, 6, 752-757.	10.4	6
34	Photoluminescence study of as-grown vertically standing wurtzite InP nanowire ensembles. Nanotechnology, 2013, 24, 115706.	2.6	15
35	Reflection measurements to reveal the absorption in nanowire arrays. Optics Letters, 2013, 38, 1449.	3.3	11
36	Active Participation of ¹ ï€ïf* States in the Photodissociation of Tyrosine and Its Subunits. Journal of Physical Chemistry Letters, 2010, 1, 2274-2278.	4.6	40

#	Article	IF	CITATIONS
37	Exploring the Time Scales of H-Atom Elimination from Photoexcited Indole. Journal of Physical Chemistry A, 2010, 114, 68-72.	2.5	36
38	Exploring the Time-Scales of H-Atom Detachment from Photoexcited Phenol- <i>h</i> ₆ and Phenol- <i>d</i> ₅ : Statistical vs Nonstatistical Decay. Journal of Physical Chemistry A, 2009, 113, 8157-8163.	2.5	84
39	Thermoâ€viscoelastic behavior of PCNFâ€filled polypropylene nanocomposites. Journal of Applied Polymer Science, 2008, 107, 2695-2703.	2.6	12
40	Melt mixing of carbon fibers and carbon nanotubes incorporated polyurethanes. Journal of Applied Polymer Science, 2008, 110, 196-202.	2.6	41
41	Direct versus Indirect H Atom Elimination from Photoexcited Phenol Molecules. Journal of Physical Chemistry A, 2008, 112, 9531-9534.	2.5	69
42	The Effect of Tri(n-butyl) Tin(IV) –2– [3–Benzoyl phenyl] Propionate on the Degradation and Stabilisation of PVC in Inert and Oxidative Atmospheres. Polymers and Polymer Composites, 2007, 15, 121-129.	1.9	0
43	The effect of filler concentration on the electrical, thermal, and mechanical properties of carbon particle and carbon fiber-reinforced poly(styrene-co-acrylonitrile) composites. Polymer Composites, 2007, 28, 186-197.	4.6	34
44	High performance thermoplastic composites: Study on the mechanical, thermal, and electrical resistivity properties of carbon fiberâ€reinforced polyetheretherketone and polyethersulphone. Polymer Composites, 2007, 28, 785-796.	4.6	91
45	Mechanical, Thermal and Electrical Resisitivity Properties of Thermoplastic Composites Filled with Carbon Fibers and Carbon Particles. Journal of Polymer Research, 2007, 14, 121-127.	2.4	44
46	Synthesis and comparative evaluation of optical and electrochemical properties of Ni+2 and Pr+3 ions co-doped mesoporous TiO2 nanoparticles with undoped Titania. Applied Nanoscience (Switzerland), 0, , 1.	3.1	1