
LucÃ-lia P Da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3648128/publications.pdf Version: 2024-02-01

<u>Γιις Ατιλ Ρ. Ολ. Silva</u>

#	Article	IF	CITATIONS
1	Hydrogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annual Review of Biomedical Engineering, 2019, 21, 145-169.	12.3	122
2	Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering. Materials Science and Engineering C, 2014, 43, 27-36.	7.3	110
3	Electric Phenomenon: A Disregarded Tool in Tissue Engineering and Regenerative Medicine. Trends in Biotechnology, 2020, 38, 24-49.	9.3	88
4	Engineering cell-adhesive gellan gum spongy-like hydrogels for regenerative medicine purposes. Acta Biomaterialia, 2014, 10, 4787-4797.	8.3	81
5	A thermo-/pH-responsive hydrogel (PNIPAM-PDMA-PAA) with diverse nanostructures and gel behaviors as a general drug carrier for drug release. Polymer Chemistry, 2018, 9, 4063-4072.	3.9	64
6	Neovascularization Induced by the Hyaluronic Acid-Based Spongy-Like Hydrogels Degradation Products. ACS Applied Materials & Interfaces, 2016, 8, 33464-33474.	8.0	62
7	Gellan gumâ€hydroxyapatite composite spongyâ€ŀike hydrogels for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 479-490.	4.0	50
8	Human Skin Cell Fractions Fail to Self-Organize Within a Gellan Gum/Hyaluronic Acid Matrix but Positively Influence Early Wound Healing. Tissue Engineering - Part A, 2014, 20, 1369-1378.	3.1	46
9	Gellan Gum Hydrogels with Enzyme‣ensitive Biodegradation and Endothelial Cell Biorecognition Sites. Advanced Healthcare Materials, 2018, 7, 1700686.	7.6	39
10	Synthesis and Characterization of Electroactive Gellan Gum Spongy-Like Hydrogels for Skeletal Muscle Tissue Engineering Applications. Tissue Engineering - Part A, 2017, 23, 968-979.	3.1	28
11	Lactoferrin-Hydroxyapatite Containing Spongy-Like Hydrogels for Bone Tissue Engineering. Materials, 2019, 12, 2074.	2.9	24
12	Neurotensin Decreases the Proinflammatory Status of Human Skin Fibroblasts and Increases Epidermal Growth Factor Expression. International Journal of Inflammation, 2014, 2014, 1-9.	1.5	21
13	Electroactive Gellan Gum/Polyaniline Spongy-Like Hydrogels. ACS Biomaterials Science and Engineering, 2018, 4, 1779-1787.	5.2	21
14	Differentiation of osteoclast precursors on gellan gum-based spongy-like hydrogels for bone tissue engineering. Biomedical Materials (Bristol), 2018, 13, 035012.	3.3	18
15	Eumelanin-releasing spongy-like hydrogels for skin re-epithelialization purposes. Biomedical Materials (Bristol), 2017, 12, 025010.	3.3	17
16	Micropatterned gellan gum-based hydrogels tailored with laminin-derived peptides for skeletal muscle tissue engineering. Biomaterials, 2021, 279, 121217.	11.4	17
17	Micropatterned Silk-Fibroin/Eumelanin Composite Films for Bioelectronic Applications. ACS Biomaterials Science and Engineering, 2021, 7, 2466-2474.	5.2	16
18	Injectable laminin-biofunctionalized gellan gum hydrogels loaded with myoblasts for skeletal muscle regeneration. Acta Biomaterialia, 2022, 143, 282-294.	8.3	13

LUCÃŁIA P DA SILVA

#	Article	IF	CITATIONS
19	Tailoring Gellan Gum Spongy-Like Hydrogels' Microstructure by Controlling Freezing Parameters. Polymers, 2020, 12, 329.	4.5	11
20	<i>In vitro</i> vascularization of tissue engineered constructs by non-viral delivery of pro-angiogenic genes. Biomaterials Science, 2021, 9, 2067-2081.	5.4	9
21	Generation of Gellan Gum-Based Adipose-Like Microtissues. Bioengineering, 2018, 5, 52.	3.5	7
22	<scp>3D</scp> bioprinting of gellan gumâ€based hydrogels tethered with lamininâ€derived peptides for improved cellular behavior. Journal of Biomedical Materials Research - Part A, 2022, 110, 1655-1668.	4.0	6
23	Microscopyâ€guided laser ablation for the creation of complex skin models with folliculoid appendages. Bioengineering and Translational Medicine, 2021, 6, e10195.	7.1	4
24	Convection patterns gradients of non-living and living micro-entities in hydrogels. Applied Materials Today, 2020, 21, 100859.	4.3	3
25	1,1′-[(5-Hydroxymethyl-1,3-phenylene)bis(methylene)]dipyridin-4(1H)-one monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1859-o1860.	0.2	0
26	Skin in vitro models to study dermal white adipose tissue role in skin healing. , 2018, , 327-352.		0