Anna Christina Nobre

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/364775/anna-christina-nobre-publications-by-year.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17,569 128 69 255 h-index g-index citations papers 278 20,597 5.7 7.14 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
255	Multiple spatial frames for immersive working memory Nature Human Behaviour, 2022,	12.8	2
254	The future of human behaviour research <i>Nature Human Behaviour</i> , 2022 , 6, 15-24	12.8	3
253	Eyes wide open: Regulation of arousal by temporal expectations <i>Cognition</i> , 2022 , 224, 105062	3.5	2
252	Transient beta activity and cortico-muscular connectivity during sustained motor behaviour <i>Progress in Neurobiology</i> , 2022 , 102281	10.9	1
251	Consequences of predictable temporal structure in multi-task situations <i>Cognition</i> , 2022 , 225, 105156	3.5	O
250	Right place, right time: Spatiotemporal predictions guide attention in dynamic visual search. <i>Journal of Experimental Psychology: General</i> , 2021 ,	4.7	2
249	EMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Python. <i>Journal of Open Source Software</i> , 2021 , 6,	5.2	24
248	Output planning at the input stage in visual working memory. Science Advances, 2021, 7,	14.3	8
247	Looking ahead in working memory to guide sequential behaviour. <i>Current Biology</i> , 2021 , 31, R779-R780	6.3	3
246	Toward a neurobiology of internal selective attention. <i>Trends in Neurosciences</i> , 2021 , 44, 513-515	13.3	3
245	Superior short-term memory in APOE 2 carriers across the age range. <i>Behavioural Brain Research</i> , 2021 , 397, 112918	3.4	О
244	Temporal orienting in Parkinson's disease. European Journal of Neuroscience, 2021, 53, 2713-2725	3.5	3
243	When Natural Behavior Engages Working Memory. <i>Current Biology</i> , 2021 , 31, 869-874.e5	6.3	13
242	Rhythmic Modulation of Visual Perception by Continuous Rhythmic Auditory Stimulation. <i>Journal of Neuroscience</i> , 2021 , 41, 7065-7075	6.6	О
241	Gender bias in academia: A lifetime problem that needs solutions. <i>Neuron</i> , 2021 , 109, 2047-2074	13.9	11
240	Revealing the Dynamic Nature of Amplitude Modulated Neural Entrainment With Holo-Hilbert Spectral Analysis. <i>Frontiers in Neuroscience</i> , 2021 , 15, 673369	5.1	2
239	Decoding visual colour from scalp electroencephalography measurements. <i>NeuroImage</i> , 2021 , 237, 118	0 ₇ 3.63	6

238	20 years of temporal orienting: an introduction. <i>Journal of Vision</i> , 2021 , 21, 41	0.4	
237	Spatial-temporal predictions in a dynamic visual search. <i>Journal of Vision</i> , 2021 , 21, 39	0.4	O
236	Within-cycle instantaneous frequency profiles report oscillatory waveform dynamics. <i>Journal of Neurophysiology</i> , 2021 , 126, 1190-1208	3.2	7
235	Shielding working-memory representations from temporally predictable external interference. <i>Cognition</i> , 2021 , 217, 104915	3.5	2
234	Reduced cortico-muscular beta coupling in Parkinson's disease predicts motor impairment. <i>Brain Communications</i> , 2021 , 3, fcab179	4.5	2
233	The Oxford Brain Health Centre: Embedding dementia research in clinical practice. <i>Alzheimeris and Dementia</i> , 2020 , 16, e044907	1.2	
232	Short-term memory advantage for brief durations in human APOE 4 carriers. <i>Scientific Reports</i> , 2020 , 10, 9503	4.9	8
231	Synchronisation of Neural Oscillations and Cross-modal Influences. <i>Trends in Cognitive Sciences</i> , 2020 , 24, 481-495	14	21
230	Temporal Expectations Prepare Visual Working Memory for Behavior. <i>Journal of Cognitive Neuroscience</i> , 2020 , 32, 2320-2332	3.1	5
229	Multiple reference frames for oculomotor contributions to visual working memory in an immersive and unconstrained virtual reality environment. <i>Journal of Vision</i> , 2020 , 20, 526	0.4	
228	Temporal regularities guide spatial attention in young children. Journal of Vision, 2020, 20, 1050	0.4	O
227	The association between visual working and long-term memory in apolipoprotein E (APOE) e4 carriers and non-carriers. <i>Journal of Vision</i> , 2020 , 20, 1121	0.4	
226	Orienting attention in short-term and long-term memory across ageing. Journal of Vision, 2020, 20, 113	7 0.4	1
225	Prospective action imprinting into visual working memory. <i>Journal of Vision</i> , 2020 , 20, 1017	0.4	
224	Proactive memory-guided attentional templates are flexibly weighted across feature dimensions. <i>Journal of Vision</i> , 2020 , 20, 796	0.4	
223	The cost of utilizing working memory under natural constraints. <i>Journal of Vision</i> , 2020 , 20, 1034	0.4	
222	Functional biases in attentional templates from associative memory. <i>Journal of Vision</i> , 2020 , 20, 7	0.4	1
221	Dissecting beta-state changes during timed movement preparation in ParkinsonѢ disease. <i>Progress in Neurobiology</i> , 2020 , 184, 101731	10.9	13

220	Comparing the prioritization of items and feature-dimensions in visual working memory. <i>Journal of Vision</i> , 2020 , 20, 25	0.4	10
219	Goal-directed and stimulus-driven selection of internal representations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 24590-24598	11.5	13
218	Purpose-Dependent Consequences of Temporal Expectations Serving Perception and Action. Journal of Neuroscience, 2020 , 40, 7877-7886	6.6	7
217	Under the Mindቼ Hood: What We Have Learned by Watching the Brain at Work. <i>Journal of Neuroscience</i> , 2020 , 40, 89-100	6.6	5
216	One Thing Leads to Another: Anticipating Visual Object Identity Based on Associative-Memory Templates. <i>Journal of Neuroscience</i> , 2020 , 40, 4010-4020	6.6	7
215	The tempos of performance. Current Opinion in Psychology, 2019, 29, 254-260	6.2	8
214	Time for What? Breaking Down Temporal Anticipation. <i>Trends in Neurosciences</i> , 2019 , 42, 373-374	13.3	11
213	Whole-brain white matter organization, intelligence, and educational attainment. <i>Trends in Neuroscience and Education</i> , 2019 , 15, 38-47	3.7	17
212	Human gaze tracks attentional focusing in memorized visual space. <i>Nature Human Behaviour</i> , 2019 , 3, 462-470	12.8	37
211	Neural markers of category-based selective working memory in aging. <i>NeuroImage</i> , 2019 , 194, 163-173	7.9	2
210	The Functional Consequences of Social Attention for Memory-guided Attention Orienting and Anticipatory Neural Dynamics. <i>Journal of Cognitive Neuroscience</i> , 2019 , 31, 686-698	3.1	3
209	The Oxford study of Calcium channel Antagonism, Cognition, Mood instability and Sleep (OxCaMS): study protocol for a randomised controlled, experimental medicine study. <i>Trials</i> , 2019 , 20, 120	2.8	13
208	Punishment-related memory-guided attention: Neural dynamics of perceptual modulation. <i>Cortex</i> , 2019 , 115, 231-245	3.8	4
207	Encoding-related brain activity and accelerated forgetting in transient epileptic amnesia. <i>Cortex</i> , 2019 , 110, 127-140	3.8	7
206	Dynamic sustained attention markers differentiate atypical development: The case of Williams syndrome and Down's syndrome. <i>Neuropsychologia</i> , 2019 , 132, 107148	3.2	4
205	Biomagnetic biomarkers for dementia: A pilot multicentre study with a recommended methodological framework for magnetoencephalography. <i>Alzheimeris and Dementia: Diagnosis, Assessment and Disease Monitoring</i> , 2019 , 11, 450-462	5.2	14
	<u> </u>		
204	Dissociable Catecholaminergic Modulation of Visual Attention: Differential Effects of Catechol-O-Methyltransferase and Dopamine Beta-Hydroxylase Genes on Visual Attention. <i>Neuroscience</i> , 2019 , 412, 175-189	3.9	9

202	Premembering Experience: A Hierarchy of Time-Scales for Proactive Attention. <i>Neuron</i> , 2019 , 104, 132-	1<u>4</u>6 9	36
201	Rhythmic Temporal Expectation Boosts Neural Activity by Increasing Neural Gain. <i>Journal of Neuroscience</i> , 2019 , 39, 9806-9817	6.6	14
200	Human gaze tracks the focusing of attention within the internal space of visual working memory. Journal of Vision, 2019 , 19, 133b	0.4	
199	Item-based and feature-based selection in working memory. <i>Journal of Vision</i> , 2019 , 19, 270d	0.4	
198	Neural indices of proactive target templates. <i>Journal of Vision</i> , 2019 , 19, 247c	0.4	
197	The association between visual working and long-term memory across normal ageing. <i>Journal of Vision</i> , 2019 , 19, 73c	0.4	
196	Changing interpretations of emotional expressions in working memory with aging. <i>Emotion</i> , 2019 , 19, 1060-1069	4.1	1
195	Emotional distraction in the context of memory-based orienting of attention. <i>Emotion</i> , 2019 , 19, 1366-1	3476	2
194	Concurrent visual and motor selection during visual working memory guided action. <i>Nature Neuroscience</i> , 2019 , 22, 477-483	25.5	41
193	The functional consequences of social attention on memory precision and on memory-guided orienting in development. <i>Developmental Cognitive Neuroscience</i> , 2019 , 36, 100625	5.5	5
192	Unpacking Transient Event Dynamics in Electrophysiological Power Spectra. <i>Brain Topography</i> , 2019 , 32, 1020-1034	4.3	20
191	Dissociable effects of the apolipoprotein-E (APOE) gene on short- and long-term memories. <i>Neurobiology of Aging</i> , 2019 , 73, 115-122	5.6	14
190	Temporally Unconstrained Decoding Reveals Consistent but Time-Varying Stages of Stimulus Processing. <i>Cerebral Cortex</i> , 2019 , 29, 863-874	5.1	25
189	Differential Effects of Salient Visual Events on Memory-Guided Attention in Adults and Children. <i>Child Development</i> , 2019 , 90, 1369-1388	4.9	6
188	Building on a Solid Baseline: Anticipatory Biases in Attention. <i>Trends in Neurosciences</i> , 2018 , 41, 120-122	213.3	1
187	Decoding the influence of anticipatory states on visual perception in the presence of temporal distractors. <i>Nature Communications</i> , 2018 , 9, 1449	17.4	25
186	Increased cerebral functional connectivity in ALS: A resting-state magnetoencephalography study. <i>Neurology</i> , 2018 , 90, e1418-e1424	6.5	15
185	APOE genotype and cognition in healthy individuals at risk of Alzheimer's disease: Alreview. <i>Cortex</i> , 2018 , 104, 103-123	3.8	70

184	Impaired corticomuscular and interhemispheric cortical beta oscillation coupling in amyotrophic lateral sclerosis. <i>Clinical Neurophysiology</i> , 2018 , 129, 1479-1489	4.3	21
183	Mood instability and reward processing: daily remote monitoring as a modern phenotyping tool for bipolar disorder. <i>European Neuropsychopharmacology</i> , 2018 , 28, S87	1.2	1
182	Preventing intrusive memories after trauma via a brief intervention involving Tetris computer game play in the emergency department: a proof-of-concept randomized controlled trial. <i>Molecular Psychiatry</i> , 2018 , 23, 674-682	15.1	104
181	Methylphenidate enhances implicit learning in healthy adults. <i>Journal of Psychopharmacology</i> , 2018 , 32, 70-80	4.6	9
180	Temporal alignment of anticipatory motor cortical beta lateralisation in hidden visual-motor sequences. <i>European Journal of Neuroscience</i> , 2018 , 48, 2684-2695	3.5	14
179	Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks. <i>Nature Communications</i> , 2018 , 9, 2987	17.4	137
178	Neural Oscillations: Sustained Rhythms or Transient Burst-Events?. <i>Trends in Neurosciences</i> , 2018 , 41, 415-417	13.3	74
177	Anticipatory neural dynamics of spatial-temporal orienting of attention in younger and older adults. <i>NeuroImage</i> , 2018 , 178, 46-56	7.9	23
176	Task-Evoked Dynamic Network Analysis Through Hidden Markov Modeling. <i>Frontiers in Neuroscience</i> , 2018 , 12, 603	5.1	64
175	Not All Predictions Are Equal: "What" and "When" Predictions Modulate Activity in Auditory Cortex through Different Mechanisms. <i>Journal of Neuroscience</i> , 2018 , 38, 8680-8693	6.6	40
174	Benefits of flexible prioritization in working memory can arise without costs. <i>Journal of Experimental Psychology: Human Perception and Performance</i> , 2018 , 44, 398-411	2.6	26
173	Anticipated moments: temporal structure in attention. <i>Nature Reviews Neuroscience</i> , 2018 , 19, 34-48	13.5	206
172	Early Behavioural Facilitation by Temporal Expectations in Complex Visual-motor Sequences. <i>Neuroscience</i> , 2018 , 389, 74-84	3.9	1
171	Magnetoencephalography as a Tool in Psychiatric Research: Current Status and Perspective. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2017 , 2, 235-244	3.4	20
170	Feature-based attentional weighting and spreading in visual working memory. <i>Scientific Reports</i> , 2017 , 7, 42384	4.9	28
169	Prioritizing Information during Working Memory: Beyond Sustained Internal Attention. <i>Trends in Cognitive Sciences</i> , 2017 , 21, 449-461	14	162
168	Cognitive Training in the Elderly: Bottlenecks and New Avenues. <i>Journal of Cognitive Neuroscience</i> , 2017 , 29, 1473-1482	3.1	14
167	Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated Expectations. <i>Journal of Neuroscience</i> , 2017 , 37, 437-445	6.6	65

(2016-2017)

166	The Cumulative Effects of Predictability on Synaptic Gain in the Auditory Processing Stream. Journal of Neuroscience, 2017 , 37, 6751-6760	6.6	30
165	Sex and APOE: A memory advantage in male APOE 2 carriers in midlife. <i>Cortex</i> , 2017 , 88, 98-105	3.8	24
164	Task relevance modulates the behavioural and neural effects of sensory predictions. <i>PLoS Biology</i> , 2017 , 15, e2003143	9.7	27
163	Competitive interactions affect working memory performance for both simultaneous and sequential stimulus presentation. <i>Scientific Reports</i> , 2017 , 7, 4785	4.9	9
162	Differences between endogenous attention to spatial locations and sensory modalities. Experimental Brain Research, 2017 , 235, 2983-2996	2.3	4
161	Temporal Anticipation Based on Memory. <i>Journal of Cognitive Neuroscience</i> , 2017 , 29, 2081-2089	3.1	20
160	The functional consequences of social distraction: Attention and memory for complex scenes. <i>Cognition</i> , 2017 , 158, 215-223	3.5	12
159	Altered cortical beta-band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis. <i>Human Brain Mapping</i> , 2017 , 38, 237-254	5.9	40
158	Increased rostral anterior cingulate activity following positive mental imagery training in healthy older adults. <i>Social Cognitive and Affective Neuroscience</i> , 2017 , 12, 1950-1958	4	12
157	[P4033]: DEEP AND FREQUENT PHENOTYPING: A FEASIBILITY STUDY FOR EXPERIMENTAL MEDICINE IN DEMENTIA 2017 , 13, P1268-P1269		2
157 156		6.6	4
	MEDICINE IN DEMENTIA 2017 , 13, P1268-P1269 Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through	6.6	
156	MEDICINE IN DEMENTIA 2017, 13, P1268-P1269 Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated Expectations. Journal of Neuroscience, 2017, 37, 437-445 Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control		4
156 155	MEDICINE IN DEMENTIA 2017, 13, P1268-P1269 Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated Oscillations. Journal of Neuroscience, 2017, 37, 437-445 Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions. Journal of Neuroscience, 2016, 36, 9001-11	6.6	4
156 155 154	MEDICINE IN DEMENTIA 2017, 13, P1268-P1269 Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated Descillations. Journal of Neuroscience, 2017, 37, 437-445 Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions. Journal of Neuroscience, 2016, 36, 9001-11 Slow wave sleep and accelerated forgetting. Cortex, 2016, 84, 80-89 Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing.	6.6 3.8	4 30 13
156 155 154 153	Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated Descillations. Journal of Neuroscience, 2017, 37, 437-445 Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions. Journal of Neuroscience, 2016, 36, 9001-11 Slow wave sleep and accelerated forgetting. Cortex, 2016, 84, 80-89 Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing. Cortex, 2016, 74, 67-78 Oxford Lithium Trial (OxLith) of the early affective, cognitive, neural and biochemical effects of lithium carbonate in bipolar disorder: study protocol for a randomised controlled trial. Trials, 2016,	6.6 3.8 3.8	4 30 13
156 155 154 153 152	Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated Dscillations. <i>Journal of Neuroscience</i> , 2017 , 37, 437-445 Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions. <i>Journal of Neuroscience</i> , 2016 , 36, 9001-11 Slow wave sleep and accelerated forgetting. <i>Cortex</i> , 2016 , 84, 80-89 Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing. <i>Cortex</i> , 2016 , 74, 67-78 Oxford Lithium Trial (OxLith) of the early affective, cognitive, neural and biochemical effects of lithium carbonate in bipolar disorder: study protocol for a randomised controlled trial. <i>Trials</i> , 2016 , 17, 116 Behavioral and Neural Markers of Flexible Attention over Working Memory in Aging. <i>Cerebral</i>	6.6 3.8 3.8 2.8	4 30 13 13

148	Tracking the changing feature of a moving object. <i>Journal of Vision</i> , 2016 , 16, 22	0.4	7
147	Retrospective Attention Interacts with Stimulus Strength to Shape Working Memory Performance. <i>PLoS ONE</i> , 2016 , 11, e0164174	3.7	3
146	Apolipoprotein e4 breaks the association between declarative long-term memory and memory-based orienting of spatial attention in middle-aged individuals. <i>Cortex</i> , 2016 , 82, 206-216	3.8	13
145	Early behavioural facilitation by temporal expectations in complex visual-motor sequences. <i>Journal of Physiology (Paris)</i> , 2016 , 110, 487-496		2
144	An investigation of mental imagery in bipolar disorder: Exploring "the mind' eye". <i>Bipolar Disorders</i> , 2016 , 18, 669-683	3.8	29
143	Innovative approaches to bipolar disorder and its treatment. <i>Annals of the New York Academy of Sciences</i> , 2016 , 1366, 76-89	6.5	57
142	Imagining a brighter future: the effect of positive imagery training on mood, prospective mental imagery and emotional bias in older adults. <i>Psychiatry Research</i> , 2015 , 230, 36-43	9.9	37
141	Supraliminal but not subliminal distracters bias working memory recall. <i>Journal of Experimental Psychology: Human Perception and Performance</i> , 2015 , 41, 826-39	2.6	14
140	Reward boosts working memory encoding over a brief temporal window. Visual Cognition, 2015, 23, 29	1-382	17
139	Time in Cortical Circuits. <i>Journal of Neuroscience</i> , 2015 , 35, 13912-6	6.6	50
138	Modulation of hippocampal theta and hippocampal-prefrontal cortex function by a schizophrenia risk gene. <i>Human Brain Mapping</i> , 2015 , 36, 2387-95	5.9	36
137	Testing sensory evidence against mnemonic templates. <i>ELife</i> , 2015 , 4, e09000	8.9	79
136	ERP markers of target selection discriminate children with high vs. low working memory capacity. <i>Frontiers in Systems Neuroscience</i> , 2015 , 9, 153	3.5	12
135	Frontoparietal and Cingulo-opercular Networks Play Dissociable Roles in Control of Working Memory. <i>Journal of Cognitive Neuroscience</i> , 2015 , 27, 2019-34	3.1	92
134	The Neural Dynamics of Fronto-Parietal Networks in Childhood Revealed using Magnetoencephalography. <i>Cerebral Cortex</i> , 2015 , 25, 3868-76	5.1	21
133	Temporal dynamics of attention during encoding versus maintenance of working memory: complementary views from event-related potentials and alpha-band oscillations. <i>Journal of Cognitive Neuroscience</i> , 2015 , 27, 492-508	3.1	69
132	Sleep-dependent memory consolidation and accelerated forgetting. <i>Cortex</i> , 2014 , 54, 92-105	3.8	33
131	Attention biases visual activity in visual short-term memory. <i>Journal of Cognitive Neuroscience</i> , 2014 , 26, 1377-89	3.1	25

130	Magnetoencephalography. <i>Practical Neurology</i> , 2014 , 14, 336-43	2.4	37
129	Perceiving the passage of time: neural possibilities. <i>Annals of the New York Academy of Sciences</i> , 2014 , 1326, 60-71	6.5	27
128	Power corrupts co-operation: cognitive and motivational effects in a double EEG paradigm. <i>Social Cognitive and Affective Neuroscience</i> , 2014 , 9, 218-24	4	5
127	Inter- and intra-individual variability in alpha peak frequency. <i>NeuroImage</i> , 2014 , 92, 46-55	7.9	293
126	Oscillatory brain state predicts variability in working memory. <i>Journal of Neuroscience</i> , 2014 , 34, 7735-4	13 6.6	72
125	Preferential encoding of behaviorally relevant predictions revealed by EEG. <i>Frontiers in Human Neuroscience</i> , 2014 , 8, 687	3.3	3
124	Resting GABA and glutamate concentrations do not predict visual gamma frequency or amplitude. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 9301-6	11.5	78
123	Tan you look me in the face?TShort-term SSRI administration reverts avoidant ocular face exploration in subjects at risk for psychopathology. <i>Neuropsychopharmacology</i> , 2014 , 39, 3059-66	8.7	12
122	Distinct neural mechanisms of individual and developmental differences in VSTM capacity. <i>Developmental Psychobiology</i> , 2014 , 56, 601-10	3	13
121	Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment. <i>NeuroImage</i> , 2014 , 101, 765-77	7.9	43
120	Combining spatial and temporal expectations to improve visual perception. <i>Journal of Vision</i> , 2014 , 14,	0.4	87
119	Age group and individual differences in attentional orienting dissociate neural mechanisms of encoding and maintenance in visual STM. <i>Journal of Cognitive Neuroscience</i> , 2014 , 26, 864-77	3.1	23
118	Failure to perceive clinical events: an under-recognised source of error. <i>Resuscitation</i> , 2014 , 85, 952-6	4	20
117	Orienting attention within visual short-term memory: development and mechanisms. <i>Child Development</i> , 2014 , 85, 578-92	4.9	47
116	Time for the Fourth Dimension in Attention 2014,		14
115	Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex. <i>Journal of Neuroscience</i> , 2013 , 33, 4002-10	6.6	198
114	Reward associations magnify memory-based biases on perception. <i>Journal of Cognitive Neuroscience</i> , 2013 , 25, 245-57	3.1	19
113	Attention restores discrete items to visual short-term memory. <i>Psychological Science</i> , 2013 , 24, 550-6	7.9	69

112	Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection. <i>Journal of Neuroscience</i> , 2013 , 33, 16443-58	6.6	50
111	Is attention based on spatial contextual memory preferentially guided by low spatial frequency signals?. <i>PLoS ONE</i> , 2013 , 8, e65601	3.7	9
110	Attentional control constrains visual short-term memory: insights from developmental and individual differences. <i>Quarterly Journal of Experimental Psychology</i> , 2012 , 65, 277-94	1.8	39
109	Top-down modulation: bridging selective attention and working memory. <i>Trends in Cognitive Sciences</i> , 2012 , 16, 129-35	14	818
108	Temporal expectation improves the quality of sensory information. <i>Journal of Neuroscience</i> , 2012 , 32, 8424-8428	6.6	165
107	Inferring task-related networks using independent component analysis in magnetoencephalography. <i>Neurolmage</i> , 2012 , 62, 530-41	7.9	99
106	Attention modulates maintenance of representations in visual short-term memory. <i>Journal of Cognitive Neuroscience</i> , 2012 , 24, 51-60	3.1	126
105	Orienting attention to locations in mental representations. <i>Attention, Perception, and Psychophysics</i> , 2012 , 74, 146-62	2	85
104	Long-term memories bias sensitivity and target selection in complex scenes. <i>Journal of Cognitive Neuroscience</i> , 2012 , 24, 2281-91	3.1	36
103	Response inhibition results in the emotional devaluation of faces: neural correlates as revealed by fMRI. <i>Social Cognitive and Affective Neuroscience</i> , 2012 , 7, 649-59	4	35
102	Dissociable prior influences of signal probability and relevance on visual contrast sensitivity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 3593-8	11.5	159
101	Long-term memory prepares neural activity for perception. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E360-7	11.5	92
100	Effects of decision variables and intraparietal stimulation on sensorimotor oscillatory activity in the human brain. <i>Journal of Neuroscience</i> , 2012 , 32, 13805-18	6.6	54
99	Lacking control over the trade-off between quality and quantity in visual short-term memory. <i>PLoS ONE</i> , 2012 , 7, e41223	3.7	16
98	Top-down Biases in Visual Short-term Memory 2012 , 209-228		3
97	Imagery for shapes activates position-invariant representations in human visual cortex. <i>NeuroImage</i> , 2011 , 56, 1540-5	7.9	30
96	Functionally dissociating temporal and motor components of response preparation in left intraparietal sulcus. <i>NeuroImage</i> , 2011 , 54, 1221-30	7.9	40
95	Behavioural dissociation between exogenous and endogenous temporal orienting of attention. <i>PLoS ONE</i> , 2011 , 6, e14620	3.7	88

(2009-2011)

94	Markers of preparatory attention predict visual short-term memory performance. <i>Neuropsychologia</i> , 2011 , 49, 1458-65	3.2	50
93	Modulation of working-memory maintenance by directed attention. <i>Neuropsychologia</i> , 2011 , 49, 1569-	773.2	76
92	Modulation of neural activity by motivational and spatial biases. <i>Neuropsychologia</i> , 2011 , 49, 2489-97	3.2	27
91	Endogenous modulation of low frequency oscillations by temporal expectations. <i>Journal of Neurophysiology</i> , 2011 , 106, 2964-72	3.2	101
90	Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations. <i>Journal of Neurophysiology</i> , 2011 , 105, 1318-26	3.2	176
89	Ebscillations related to anticipatory attention follow temporal expectations. <i>Journal of Neuroscience</i> , 2011 , 31, 14076-84	6.6	240
88	Age-related changes in orienting attention in time. <i>Journal of Neuroscience</i> , 2011 , 31, 12461-70	6.6	88
87	Biasing perception by spatial long-term memory. <i>Journal of Neuroscience</i> , 2011 , 31, 14952-60	6.6	37
86	Subliminally presented and stored objects capture spatial attention. <i>Journal of Neuroscience</i> , 2010 , 30, 3567-71	6.6	21
85	Purely endogenous capture of attention by task-defining features proceeds independently from spatial attention. <i>Neurolmage</i> , 2010 , 51, 859-66	7.9	11
84	The two sides of temporal orienting: facilitating perceptual selection, disrupting response selection. <i>Experimental Psychology</i> , 2010 , 57, 142-8	1.5	31
83	How can temporal expectations bias perception and action? 2010 , 371-390		15
82	Applying an attentional set to perceived and remembered features. PLoS ONE, 2009, 4, e7613	3.7	9
81	Spatial selection of features within perceived and remembered objects. <i>Frontiers in Human Neuroscience</i> , 2009 , 3, 6	3.3	34
80	Searching for targets within the spatial layout of visual short-term memory. <i>Journal of Neuroscience</i> , 2009 , 29, 8032-8	6.6	109
79	The timing of neural activity during shifts of spatial attention. <i>Journal of Cognitive Neuroscience</i> , 2009 , 21, 2369-83	3.1	12
78	Anticipating conflict facilitates controlled stimulus-response selection. <i>Journal of Cognitive Neuroscience</i> , 2009 , 21, 1461-72	3.1	38
77	Modelling distractor devaluation (DD) and its neurophysiological correlates. <i>Neuropsychologia</i> , 2009 , 47, 2354-66	3.2	14

76	Shape-specific preparatory activity mediates attention to targets in human visual cortex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 19569-74	11.5	113
75	Feature-based inhibition underlies the affective consequences of attention. <i>Visual Cognition</i> , 2009 , 17, 500-530	1.8	40
74	Dissociating explicit timing from temporal expectation with fMRI. <i>Current Opinion in Neurobiology</i> , 2008 , 18, 137-44	7.6	362
73	Dissociable top-down anticipatory neural states for different linguistic dimensions. <i>Neuropsychologia</i> , 2008 , 46, 1151-60	3.2	12
72	Differential modulation of word recognition by semantic and spatial orienting of attention. <i>Journal of Cognitive Neuroscience</i> , 2008 , 20, 787-801	3.1	18
71	The cerebellum predicts the timing of perceptual events. <i>Journal of Neuroscience</i> , 2008 , 28, 2252-60	6.6	202
70	Attention modulates initial stages of visual word processing. <i>Journal of Cognitive Neuroscience</i> , 2008 , 20, 1727-36	3.1	45
69	Social contact and other-race face processing in the human brain. <i>Social Cognitive and Affective Neuroscience</i> , 2008 , 3, 16-25	4	106
68	Neural modulation by regularity and passage of time. <i>Journal of Neurophysiology</i> , 2008 , 100, 1649-55	3.2	107
67	Response inhibition is linked to emotional devaluation: behavioural and electrophysiological evidence. <i>Frontiers in Human Neuroscience</i> , 2008 , 2, 13	3.3	40
66	Acquisition of the temporal and ordinal structure of movement sequences in incidental learning. <i>Journal of Neurophysiology</i> , 2008 , 99, 2731-5	3.2	43
65	Choosing where to attend and the medial frontal cortex: an FMRI study. <i>Journal of Neurophysiology</i> , 2008 , 100, 1397-406	3.2	22
64	Spatial and temporal acuity of visual perception can be enhanced selectively by attentional set. <i>Experimental Brain Research</i> , 2008 , 189, 339-44	2.3	17
63	Spatial attention can bias search in visual short-term memory. <i>Frontiers in Human Neuroscience</i> , 2007 , 1, 4	3.3	60
62	The hazards of time. Current Opinion in Neurobiology, 2007, 17, 465-70	7.6	377
61	Auditory evoked visual awareness following sudden ocular blindness: an EEG and TMS investigation. <i>Experimental Brain Research</i> , 2007 , 176, 288-98	2.3	22
60	FEF TMS affects visual cortical activity. Cerebral Cortex, 2007, 17, 391-9	5.1	154
59	Efficient attentional selection predicts distractor devaluation: event-related potential evidence for a direct link between attention and emotion. <i>Journal of Cognitive Neuroscience</i> , 2007 , 19, 1316-22	3.1	60

(2005-2007)

58	Subsecond changes in top down control exerted by human medial frontal cortex during conflict and action selection: a combined transcranial magnetic stimulation electroencephalography study. <i>Journal of Neuroscience</i> , 2007 , 27, 11343-53	6.6	130
57	Attentional modulation of object representations in working memory. <i>Cerebral Cortex</i> , 2007 , 17, 2072-8	33.1	182
56	Influence of attentional demands on the processing of emotional facial expressions in the amygdala. <i>NeuroImage</i> , 2007 , 38, 357-66	7.9	87
55	Cognitive control of attention in the human brain: insights from orienting attention to mental representations. <i>Brain Research</i> , 2006 , 1105, 20-31	3.7	114
54	Selecting and ignoring the component features of a visual object: A negative priming paradigm. <i>Visual Cognition</i> , 2006 , 14, 584-618	1.8	19
53	Orienting attention to semantic categories. <i>Neurolmage</i> , 2006 , 33, 1178-87	7.9	60
52	Orienting attention based on long-term memory experience. <i>Neuron</i> , 2006 , 49, 905-16	13.9	182
51	Combining correlation and interference methods in the human brain. Focus on "Cortico-cortical interactions in spatial attention: A combined ERP/TMS study". <i>Journal of Neurophysiology</i> , 2006 , 95, 273	3 7 - 2	3
50	Other dimensions of attention. <i>Neural Networks</i> , 2006 , 19, 1450-2	9.1	3
49	Selective attention to specific features within objects: behavioral and electrophysiological evidence. <i>Journal of Cognitive Neuroscience</i> , 2006 , 18, 539-61	3.1	49
48	Directing spatial attention in mental representations: Interactions between attentional orienting and working-memory load. <i>NeuroImage</i> , 2005 , 26, 733-43	7.9	133
47	Language network specializations: an analysis with parallel task designs and functional magnetic resonance imaging. <i>NeuroImage</i> , 2005 , 26, 975-85	7.9	140
46	Time and the brain: how subjective time relates to neural time. <i>Journal of Neuroscience</i> , 2005 , 25, 10369	9 -6 7.6	127
45	Modulation of brain activity by selective task sets observed using event-related potentials. <i>Neuropsychologia</i> , 2005 , 43, 1514-28	3.2	58
44	The effects of combined caffeine and glucose drinks on attention in the human brain. <i>Nutritional Neuroscience</i> , 2005 , 8, 141-53	3.6	36
43	Synergistic effect of combined temporal and spatial expectations on visual attention. <i>Journal of Neuroscience</i> , 2005 , 25, 8259-66	6.6	251
42	Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. <i>Journal of Neuroscience</i> , 2005 , 25, 8010-6	6.6	248
41	A Heteromodal Large-Scale Network for Spatial Attention 2005 , 29-34		4

40	Temporal Orienting of Attention 2005 , 257-263		5
39	Sub-second "temporal attention" modulates alpha rhythms. A high-resolution EEG study. <i>Cognitive Brain Research</i> , 2004 , 19, 259-68		99
38	Time is of the essence. <i>Trends in Cognitive Sciences</i> , 2004 , 8, 387-9	14	42
37	Semantic priming of different affective categories. <i>Emotion</i> , 2004 , 4, 354-63	4.1	46
36	Orienting attention to locations in internal representations. <i>Journal of Cognitive Neuroscience</i> , 2003 , 15, 1176-94	3.1	424
35	Distinct neural substrates for visual search amongst spatial versus temporal distractors. <i>Cognitive Brain Research</i> , 2003 , 17, 368-79		51
34	The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. <i>NeuroImage</i> , 2003 , 18, 633-41	7.9	256
33	Brain activations during visual search: contributions of search efficiency versus feature binding. <i>NeuroImage</i> , 2003 , 18, 91-103	7.9	129
32	Watching where you look: modulation of visual processing of foveal stimuli by spatial attention. <i>Neuropsychologia</i> , 2002 , 40, 2448-60	3.2	32
31	Multiple mechanisms of selective attention: differential modulation of stimulus processing by attention to space or time. <i>Neuropsychologia</i> , 2002 , 40, 2325-40	3.2	137
30	Hunger selectively modulates corticolimbic activation to food stimuli in humans. <i>Behavioral Neuroscience</i> , 2001 , 115, 493-500	2.1	349
29	The attentive homunculus: now you see it, now you don T. <i>Neuroscience and Biobehavioral Reviews</i> , 2001 , 25, 477-96	9	123
28	Orienting attention to instants in time. <i>Neuropsychologia</i> , 2001 , 39, 1317-28	3.2	250
27	Heterogeneity of cingulate contributions to spatial attention. <i>NeuroImage</i> , 2001 , 13, 1065-72	7.9	145
26	The dynamics of shifting visuospatial attention revealed by event-related potentials. <i>Neuropsychologia</i> , 2000 , 38, 964-74	3.2	191
25	Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts. <i>Neuropsychologia</i> , 2000 , 38, 808-19	3.2	357
24	Covert visual spatial orienting and saccades: overlapping neural systems. <i>NeuroImage</i> , 2000 , 11, 210-6	7.9	380
23	Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention. <i>Nature Neuroscience</i> , 1999 , 2, 11-2	25.5	210

22	A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. <i>Brain</i> , 1999 , 122 (Pt 6), 1093-106	11.2	561
21	The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. <i>NeuroImage</i> , 1999 , 9, 269-77	7.9	296
20	Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. <i>Journal of Neuroscience</i> , 1998 , 18, 7426-35	6.6	948
19	The neural system of language: structure and development. <i>Current Opinion in Neurobiology</i> , 1997 , 7, 262-8	7.6	21
18	Cortical activation in the human brain during lateral saccades using EPISTAR functional magnetic resonance imaging. <i>NeuroImage</i> , 1996 , 3, 53-62	7.9	84
17	Language-related field potentials in the anterior-medial temporal lobe: II. Effects of word type and semantic priming. <i>Journal of Neuroscience</i> , 1995 , 15, 1090-8	6.6	326
16	Language-related field potentials in the anterior-medial temporal lobe: I. Intracranial distribution and neural generators. <i>Journal of Neuroscience</i> , 1995 , 15, 1080-9	6.6	316
15	Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. <i>Journal of Neurosurgery</i> , 1995 , 83, 262-70	3.2	244
14	Word recognition in the human inferior temporal lobe. <i>Nature</i> , 1994 , 372, 260-3	50.4	688
13	Language-Related ERPs: Scalp Distributions and Modulation by Word Type and Semantic Priming. <i>Journal of Cognitive Neuroscience</i> , 1994 , 6, 233-55	3.1	321
12	Modulation of semantic processing by spatial selective attention. <i>Electroencephalography and Clinical Neurophysiology - Evoked Potentials</i> , 1993 , 88, 210-9		142
11	Electrophysiological studies of color processing in human visual cortex. <i>Electroencephalography and Clinical Neurophysiology - Evoked Potentials</i> , 1993 , 88, 343-55		<i>75</i>
10	Decoding visual colour from scalp electroencephalography measurements		1
9	Functional but not obligatory link between microsaccades and neural modulation by covert spatial atte	ntion	1
8	Decoding the Influence of Anticipatory States on Visual Perception in the Presence of Temporal Distractors. SSRN Electronic Journal,	1	1
7	Output Planning at the Input Stage: Action Imprinting for Future Memory-Guided Behaviour. <i>SSRN Electronic Journal</i> ,	1	3
6	Temporally unconstrained decoding reveals consistent but time-varying stages of stimulus processing		2
5	Decoding the Influence of Anticipatory States on Visual Perception in the Presence of Temporal Distrac	tors	2

4	Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks	4
3	Comparing the prioritisation of items and feature-dimensions in visual working memory	1
2	Transient beta activity and connectivity during sustained motor behaviour	3
1	Within-cycle instantaneous frequency profiles report oscillatory waveform dynamics	3