Sooruban Shanmugaratnam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3647656/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	De novo designed peptides for cellular delivery and subcellular localisation. Nature Chemical Biology, 2022, 18, 999-1004.	8.0	16
2	Extension of a <i>de novo</i> TIM barrel with a rationally designed secondary structure element. Protein Science, 2021, 30, 982-989.	7.6	9
3	A biosensor for the direct visualization of auxin. Nature, 2021, 592, 768-772.	27.8	88
4	A comprehensive binding study illustrates ligand recognition in the periplasmic binding protein PotF. Structure, 2021, 29, 433-443.e4.	3.3	9
5	The Stability Landscape of de novo TIM Barrels Explored by a Modular Design Approach. Journal of Molecular Biology, 2021, 433, 167153.	4.2	15
6	Fine-tuning spermidine binding modes in the putrescine binding protein PotF. Journal of Biological Chemistry, 2021, 297, 101419.	3.4	2
7	Redesign of LAOBP to bind novel <scp>l</scp> â€amino acid ligands. Protein Science, 2018, 27, 957-968.	7.6	19
8	Change in protein-ligand specificity through binding pocket grafting. Journal of Structural Biology, 2014, 185, 186-192.	2.8	20
9	A highly stable protein chimera built from fragments of different folds. Protein Engineering, Design and Selection, 2012, 25, 699-703.	2.1	26
10	Potential of Fragment Recombination for Rational Design of Proteins. Journal of the American Chemical Society, 2012, 134, 4019-4022.	13.7	40