Jie-Peng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3647500/publications.pdf

Version: 2024-02-01

19608 12558 17,710 132 61 132 citations h-index g-index papers 139 139 139 12442 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Metal Azolate Frameworks: From Crystal Engineering to Functional Materials. Chemical Reviews, 2012, 112, 1001-1033.	23.0	1,512
2	Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie - International Edition, 2006, 45, 1557-1559.	7.2	1,503
3	Controlling guest conformation for efficient purification of butadiene. Science, 2017, 356, 1193-1196.	6.0	559
4	Supramolecular isomerism in coordination polymers. Chemical Society Reviews, 2009, 38, 2385.	18.7	555
5	Copper(I) 1,2,4-Triazolates and Related Complexes:Â Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties. Journal of the American Chemical Society, 2005, 127, 5495-5506.	6.6	520
6	Efficient purification of ethene by an ethane-trapping metal-organic framework. Nature Communications, 2015, 6, 8697.	5.8	474
7	An Alkaline-Stable, Metal Hydroxide Mimicking Metal–Organic Framework for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society, 2016, 138, 8336-8339.	6.6	453
8	Exceptional Framework Flexibility and Sorption Behavior of a Multifunctional Porous Cuprous Triazolate Framework. Journal of the American Chemical Society, 2008, 130, 6010-6017.	6.6	447
9	Temperature- or Guest-Induced Drastic Single-Crystal-to-Single-Crystal Transformations of a Nanoporous Coordination Polymer. Journal of the American Chemical Society, 2005, 127, 14162-14163.	6.6	422
10	Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chemical Society Reviews, 2014, 43, 5789-5814.	18.7	408
11	Optimized Acetylene/Carbon Dioxide Sorption in a Dynamic Porous Crystal. Journal of the American Chemical Society, 2009, 131, 5516-5521.	6.6	399
12	Crystal engineering of binary metal imidazolate and triazolate frameworks. Chemical Communications, 2006, , 1689.	2.2	386
13	Metal–organic frameworks for electrocatalysis. Coordination Chemistry Reviews, 2018, 373, 22-48.	9.5	360
14	Modular and Stepwise Synthesis of a Hybrid Metal–Organic Framework for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society, 2017, 139, 1778-1781.	6.6	341
15	Cage-Confinement Pyrolysis Route to Ultrasmall Tungsten Carbide Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2017, 139, 5285-5288.	6.6	336
16	Supramolecular Isomerism, Framework Flexibility, Unsaturated Metal Center, and Porous Property of Ag(I)/Cu(I) 3,3â€~,5,5â€~-Tetrametyl-4,4â€~-Bipyrazolate. Journal of the American Chemical Society, 2008, 130, 907-917.	6.6	326
17	Hydroxide Ligands Cooperate with Catalytic Centers in Metal–Organic Frameworks for Efficient Photocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2018, 140, 38-41.	6.6	322
18	Two Unprecedented 3-Connected Three-Dimensional Networks of Copper(I) Triazolates: In Situ Formation of Ligands by Cycloaddition of Nitriles and Ammonia. Angewandte Chemie - International Edition, 2004, 43, 206-209.	7.2	310

#	Article	IF	CITATIONS
19	Strong and Dynamic CO ₂ Sorption in a Flexible Porous Framework Possessing Guest Chelating Claws. Journal of the American Chemical Society, 2012, 134, 17380-17383.	6.6	281
20	Electrochemical Exfoliation of Pillaredâ€Layer Metal–Organic Framework to Boost the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2018, 57, 4632-4636.	7.2	275
21	Photoluminescent Metal–Organic Frameworks for Gas Sensing. Advanced Science, 2016, 3, 1500434.	5.6	271
22	Exceptional Hydrophobicity of a Large-Pore Metal–Organic Zeolite. Journal of the American Chemical Society, 2015, 137, 7217-7223.	6.6	270
23	Pore Surface Tailored SODâ€Type Metalâ€Organic Zeolites. Advanced Materials, 2011, 23, 1268-1271.	11.1	268
24	Controlling flexibility of metal–organic frameworks. National Science Review, 2018, 5, 907-919.	4.6	240
25	Tuning Pore Size in Square‣attice Coordination Networks for Sizeâ€Selective Sieving of CO ₂ . Angewandte Chemie - International Edition, 2016, 55, 10268-10272.	7.2	237
26	Monodentate hydroxide as a super strong yet reversible active site for CO ₂ capture from high-humidity flue gas. Energy and Environmental Science, 2015, 8, 1011-1016.	15.6	233
27	Molecular chairs, zippers, zigzag and helical chains: chemical enumeration of supramolecular isomerism based on a predesigned metal–organic building-block. Chemical Communications, 2005, , 1258-1260.	2.2	222
28	Reversible Topochemical Transformation of a Soft Crystal of a Coordination Polymer. Angewandte Chemie - International Edition, 2007, 46, 7965-7968.	7.2	202
29	Putting an ultrahigh concentration of amine groups into a metal–organic framework for CO ₂ capture at low pressures. Chemical Science, 2016, 7, 6528-6533.	3.7	197
30	A porous coordination framework for highly sensitive and selective solid-phase microextraction of non-polar volatile organic compounds. Chemical Science, 2013, 4, 351-356.	3.7	183
31	A Nobleâ€Metalâ€Free Porous Coordination Framework with Exceptional Sensing Efficiency for Oxygen. Angewandte Chemie - International Edition, 2013, 52, 13429-13433.	7.2	170
32	Turning on the flexibility of isoreticular porous coordination frameworks for drastically tunable framework breathing and thermal expansion. Chemical Science, 2013, 4, 1539.	3.7	163
33	A Flexible Porous Coordination Polymer Functionalized by Unsaturated Metal Clusters. Angewandte Chemie - International Edition, 2007, 46, 889-892.	7.2	161
34	A Metal–Organic Framework with a Pore Size/Shape Suitable for Strong Binding and Close Packing of Methane. Angewandte Chemie - International Edition, 2016, 55, 4674-4678.	7.2	137
35	Intermediate-sized molecular sieving of styrene from larger and smaller analogues. Nature Materials, 2019, 18, 994-998.	13.3	133
36	Metallophilicity versus ?-? Interactions: Ligand-Unsupported Argentophilicity/Cuprophilicity in Oligomers-of-Dimers [M2L2]n (M=Cul or Agl, L=tridentate ligand). Chemistry - A European Journal, 2005, 11, 552-561.	1.7	131

#	Article	IF	Citations
37	Direct visualization of a guest-triggered crystal deformation based on a flexible ultramicroporous framework. Nature Communications, 2013, 4, 2534.	5.8	120
38	A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide. Chemical Science, 2011, 2, 2214.	3.7	117
39	Nonâ€3d Metal Modulation of a Cobalt Imidazolate Framework for Excellent Electrocatalytic Oxygen Evolution in Neutral Media. Angewandte Chemie - International Edition, 2019, 58, 139-143.	7.2	113
40	Selective Aerobic Oxidation of a Metal–Organic Framework Boosts Thermodynamic and Kinetic Propylene/Propane Selectivity. Angewandte Chemie - International Edition, 2019, 58, 7692-7696.	7.2	111
41	Adsorptive separation of carbon dioxide: From conventional porous materials to metal–organic frameworks. EnergyChem, 2019, 1, 100016.	10.1	107
42	Supramolecular-jack-like guest in ultramicroporous crystal for exceptional thermal expansion behaviour. Nature Communications, 2015, 6, 6917.	5.8	106
43	Coordination templated [2+2+2] cyclotrimerization in a porous coordination framework. Nature Communications, 2015, 6, 8348.	5.8	101
44	Encapsulating Pyrene in a Metal–Organic Zeolite for Optical Sensing of Molecular Oxygen. Chemistry of Materials, 2015, 27, 8255-8260.	3.2	97
45	Supramolecular isomerism within three-dimensional 3-connected nets: unusual synthesis and characterization of trimorphic copper(i) 3,5-dimethyl-1,2,4-triazolate. Dalton Transactions, 2005, , 3681.	1.6	95
46	Pillaring Zn-Triazolate Layers with Flexible Aliphatic Dicarboxylates into Three-Dimensional Metalâ 'Organic Frameworks. Crystal Growth and Design, 2008, 8, 3673-3679.	1.4	94
47	Electrochemical Exfoliation of Pillared‣ayer Metal–Organic Framework to Boost the Oxygen Evolution Reaction. Angewandte Chemie, 2018, 130, 4722-4726.	1.6	86
48	Well-Resolved, New Water Morphologies Obtained by Modification of the Hydrophilic/Hydrophobic Character and Shapes of the Supporting Layers. Inorganic Chemistry, 2005, 44, 3146-3150.	1.9	83
49	Grafting alkylamine in UiO-66 by charge-assisted coordination bonds for carbon dioxide capture from high-humidity flue gas. Journal of Materials Chemistry A, 2015, 3, 21849-21855.	5.2	83
50	Zeolitic metal azolate frameworks (MAFs) from ZnO/Zn(OH)2 and monoalkyl-substituted imidazoles and 1,2,4-triazoles: Efficient syntheses and properties. Microporous and Mesoporous Materials, 2012, 157, 42-49.	2.2	82
51	Porous Cu(I) Triazolate Framework and Derived Hybrid Membrane with Exceptionally High Sensing Efficiency for Gaseous Oxygen. Advanced Functional Materials, 2014, 24, 5866-5872.	7.8	81
52	Synthesis, Structure and Photoluminescent Studies of a Novel Supramolecular [Ag(phen)(CN)]·(phen) Complex. European Journal of Inorganic Chemistry, 2004, 2004, 1024-1029.	1.0	78
53	Microwave-Assisted Solvothermal Synthesis of a Dynamic Porous Metal-Carboxylate Framework. Crystal Growth and Design, 2008, 8, 4559-4563.	1.4	76
54	New Zn-Aminotriazolate-Dicarboxylate Frameworks: Synthesis, Structures, and Adsorption Properties. Crystal Growth and Design, 2013, 13, 2118-2123.	1.4	76

#	Article	IF	CITATIONS
55	Syntheses, structures and sorption properties of two framework-isomeric porous copper-coordination polymers. CrystEngComm, 2009, 11, 183-188.	1.3	68
56	From One- to Three-Dimensional Architectures:  Supramolecular Isomerism of Copper(I) 3,5-Di(4-pyridyl)-1,2,4-triazolate Involving in Situ Ligand Synthesis. Crystal Growth and Design, 2006, 6, 519-523.	1.4	67
57	Self-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behaviours. Nature Communications, 2015, 6, 6350.	5. 8	65
58	An inorganic-MOF-inorganic approach to ultrathin CuO decorated Cu–C hybrid nanorod arrays for an efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 19176-19181.	5. 2	65
59	Interweaving isomerism and isomerization of molecular chains. Chemical Communications, 2011, 47, 4156.	2.2	64
60	Drastic Enhancement of Catalytic Activity via Postâ€oxidation of a Porous Mn ^{II} Triazolate Framework. Chemistry - A European Journal, 2014, 20, 11303-11307.	1.7	64
61	Phosphorescence doping in a flexible ultramicroporous framework for high and tunable oxygen sensing efficiency. Chemical Communications, 2013, 49, 6864.	2.2	63
62	Mixed-Lanthanide Porous Coordination Polymers Showing Range-Tunable Ratiometric Luminescence for O ₂ Sensing. Inorganic Chemistry, 2017, 56, 4238-4243.	1.9	63
63	A flexible porous Cu(ii) bis-imidazolate framework with ultrahigh concentration of active sites for efficient and recyclable CO2 capture. Chemical Communications, 2013, 49, 11728.	2.2	60
64	Flexible, Luminescent Metal–Organic Frameworks Showing Synergistic Solidâ€Solution Effects on Porosity and Sensitivity. Angewandte Chemie - International Edition, 2016, 55, 16021-16025.	7.2	60
65	Tuning the gating energy barrier of metal-organic framework for molecular sieving. CheM, 2021, 7, 1006-1019.	5.8	59
66	Tuning fluorocarbon adsorption in new isoreticular porous coordination frameworks for heat transformation applications. Chemical Science, 2015, 6, 2516-2521.	3.7	57
67	Hyperfine adjustment of flexible pore-surface pockets enables smart recognition of gas size and quadrupole moment. Chemical Science, 2017, 8, 7560-7565.	3.7	57
68	Visualizing the distinctly different crystal-to-crystal structural dynamism and sorption behavior of interpenetration-direction isomeric coordination networks. Chemical Science, 2014, 5, 4755-4762.	3.7	56
69	Porous Coordination Polymer with Flexibility Imparted by Coordinatively Changeable Lithium Ions on the Pore Surface. Inorganic Chemistry, 2010, 49, 1158-1165.	1.9	54
70	High-symmetry hydrogen-bonded organic frameworks: air separation and crystal-to-crystal structural transformation. Chemical Communications, 2016, 52, 4991-4994.	2.2	50
71	Flexible Cuprous Triazolate Frameworks as Highly Stable and Efficient Electrocatalysts for CO ₂ Reduction with Tunable C ₂ H ₄ /CH ₄ Selectivity. Angewandte Chemie - International Edition, 2022, 61, .	7.2	50
72	A Hydrogenâ€Bonded yet Hydrophobic Porous Molecular Crystal for Molecularâ€Sievingâ€like Separation of Butane and Isobutane. Angewandte Chemie - International Edition, 2020, 59, 23322-23328.	7.2	49

#	Article	IF	CITATIONS
73	Mesoporous Metal–Organic Frameworks with Exceptionally High Working Capacities for Adsorption Heat Transformation. Advanced Materials, 2018, 30, 1704350.	11.1	43
74	Coupling Ruthenium Bipyridyl and Cobalt Imidazolate Units in a Metal–Organic Framework for an Efficient Photosynthetic Overall Reaction in Diluted CO ₂ . Journal of the American Chemical Society, 2022, 144, 8676-8682.	6.6	42
75	Single-crystal X-ray diffraction and Raman spectroscopy studies of isobaric N2 adsorption in SOD-type metal–organic zeolites. Chemical Communications, 2012, 48, 11395.	2.2	39
76	Flexibility of Metal-Organic Framework Tunable by Crystal Size at the Micrometer to Submillimeter Scale for Efficient Xylene Isomer Separation. Research, 2019, 2019, 9463719.	2.8	39
77	Copper(I) and Silver(I) 2-Methylimidazolates: Extended Isomerism, Isomerization, and Host–Guest Properties. Inorganic Chemistry, 2012, 51, 4772-4778.	1.9	38
78	Ultrathin 2D Copper(I) 1,2,4â€Triazolate Coordination Polymer Nanosheets for Efficient and Selective Gene Silencing and Photodynamic Therapy. Advanced Materials, 2021, 33, e2100849.	11.1	38
79	Packing polymorphism of a two-dimensional copper(i) 3-amino-1,2,4-triazolate coordination polymer. CrystEngComm, 2011, 13, 3827.	1.3	36
80	Selective Aerobic Oxidation of a Metal–Organic Framework Boosts Thermodynamic and Kinetic Propylene/Propane Selectivity. Angewandte Chemie, 2019, 131, 7774-7778.	1.6	36
81	Designed Assembly and Structures and Photoluminescence of a New Class of Discrete ZnII Complexes of 1H-1,10-Phenanthroline-2-one. European Journal of Inorganic Chemistry, 2006, 2006, 3407-3412.	1.0	34
82	Controlling the flexibility and single-crystal to single-crystal interpenetration reconstitution of metal–organic frameworks. Chemical Communications, 2015, 51, 12665-12668.	2.2	32
83	A New Isomeric Porous Coordination Framework Showing Single-Crystal to Single-Crystal Structural Transformation and Preferential Adsorption of 1,3-Butadiene from C4 Hydrocarbons. Crystal Growth and Design, 2017, 17, 2166-2171.	1.4	31
84	A partially fluorinated ligand for two super-hydrophobic porous coordination polymers with classic structures and increased porosities. National Science Review, 2021, 8, nwaa094.	4.6	31
85	Grapheneâ€Like Hydrogenâ€Bonded Melamine–Cyanuric Acid Supramolecular Nanosheets as Pseudoâ€Porous Catalyst Support. Advanced Materials, 2021, 33, e2007368.	11.1	31
86	Multistep evolution from a metal–organic framework to ultrathin nanosheets. Science Bulletin, 2019, 64, 964-967.	4.3	30
87	Syntheses, Structures, and Porous/Luminescent Properties of Silver 3-Alkyl-1,2,4-Triazolate Frameworks with Rare 3-Connected Topologies. Crystal Growth and Design, 2011, 11, 796-802.	1.4	29
88	Structural, energetic and dynamic insights into the abnormal xylene separation behavior of hierarchical porous crystal. Scientific Reports, 2015, 5, 11537.	1.6	29
89	A Hydrogenâ€Bonded yet Hydrophobic Porous Molecular Crystal for Molecularâ€Sievingâ€like Separation of Butane and Isobutane. Angewandte Chemie, 2020, 132, 23522-23528.	1.6	29
90	New Heterometallic Carboxylate Frameworks: Synthesis, Structure, Robustness, Flexibility, and Porosity. Inorganic Chemistry, 2009, 48, 7970-7976.	1.9	28

#	Article	IF	Citations
91	A Metal–Organic Framework with a Pore Size/Shape Suitable for Strong Binding and Close Packing of Methane. Angewandte Chemie, 2016, 128, 4752-4756.	1.6	27
92	pH-Dependent formation of (6,3) and (10,3) hydrogen-bonded networks based on [Ru(H2biim)3]SO4: polymorphs and topological isomers. CrystEngComm, 2009, 11, 1114.	1.3	25
93	New porous coordination polymers based on expanded pyridyl-dicarboxylate ligands and a paddle-wheel cluster. CrystEngComm, 2014, 16, 6325-6330.	1.3	25
94	Cu(I) 3,5-Diethyl-1,2,4-Triazolate (MAF-2): From Crystal Engineering to Multifunctional Materials. Crystal Growth and Design, 2017, 17, 1441-1449.	1.4	24
95	Crystallographic studies into the role of exposed rare earth metal ion for guest sorption. CrystEngComm, 2011, 13, 5849.	1.3	22
96	Nitrogen-doped porous carbons derived from isomeric metal azolate frameworks. Journal of Materials Chemistry A, 2017, 5, 24263-24268.	5.2	22
97	Two Isostructural Flexible Porous Coordination Polymers Showing Contrasting Single-Component and Mixture Adsorption Properties for Propylene/Propane. Inorganic Chemistry, 2020, 59, 6047-6052.	1.9	22
98	Reactivity of Cationic Lanthanide(III) Monoporphyrinates towards Anionic Cyanometallates – Preparation, Crystal Structure, and Luminescence Properties of Cyanidoâ€Bridged Di―and Trinuclear d–f Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 3515-3523.	1.0	21
99	Room-temperature sintered metal-organic framework nanocrystals: A new type of optical ceramics. Science China Materials, 2018, 61, 424-428.	3. 5	18
100	Nonâ€3d Metal Modulation of a Cobalt Imidazolate Framework for Excellent Electrocatalytic Oxygen Evolution in Neutral Media. Angewandte Chemie, 2019, 131, 145-149.	1.6	18
101	Synthesis and stabilization of a hypothetical porous framework based on a classic flexible metal carboxylate cluster. Dalton Transactions, 2016, 45, 4269-4273.	1.6	17
102	Unique (3,9)-connected porous coordination polymers constructed by tripodal ligands with bent arms. CrystEngComm, 2016, 18, 4115-4120.	1.3	16
103	Tuning Connectivity and Flexibility of Two Zinc-Triazolate-Carboxylate Type Porous Coordination Polymers. Crystal Growth and Design, 2018, 18, 2694-2698.	1.4	16
104	Partially Fluorinated Cu(I) Triazolate Frameworks with High Hydrophobicity, Porosity, and Luminescence Sensitivity. Inorganic Chemistry, 2019, 58, 3944-3949.	1.9	16
105	Metal-ion controlled solid-state reactivity and photoluminescence in two isomorphous coordination polymers. Inorganic Chemistry Frontiers, 2014, 1, 172.	3.0	15
106	In Situ Enzyme Immobilization with Oxygenâ€Sensitive Luminescent Metal–Organic Frameworks to Realize "Allâ€inâ€One―Multifunctions. Chemistry - A European Journal, 2019, 25, 5463-5471.	1.7	15
107	Porous coordination polymers constructed from anisotropic metal–carboxylate–pyridyl clusters. Pure and Applied Chemistry, 2012, 85, 405-416.	0.9	14
108	A novel pillared-layer-type porous coordination polymer featuring three-dimensional pore system and high methane storage capacity. Science China Chemistry, 2016, 59, 970-974.	4.2	14

#	Article	IF	Citations
109	Direct synthesis of an aliphatic amine functionalized metal–organic framework for efficient CO ₂ removal and CH ₄ purification. CrystEngComm, 2018, 20, 5969-5975.	1.3	13
110	Tuning oxygen-sensing behaviour of a porous coordination framework by a guest fluorophore. Inorganic Chemistry Frontiers, 2015, 2, 1085-1090.	3.0	12
111	Real-Time Sensing of TET2-Mediated DNA Demethylation In Vitro by Metal–Organic Framework-Based Oxygen Sensor for Mechanism Analysis and Stem-Cell Behavior Prediction. Analytical Chemistry, 2018, 90, 9330-9337.	3.2	12
112	Thermal and Gas Dualâ€Responsive Behaviors of an Expanded UiOâ€66â€Type Porous Coordination Polymer. ChemPlusChem, 2016, 81, 817-821.	1.3	11
113	Flexible, Luminescent Metal–Organic Frameworks Showing Synergistic Solidâ€6olution Effects on Porosity and Sensitivity. Angewandte Chemie, 2016, 128, 16255-16259.	1.6	9
114	Optimizing luminescence sensitivity and moisture stability of porous coordination frameworks by varying ligand side groups. Science China Chemistry, 2019, 62, 341-346.	4.2	9
115	Guest-containing supramolecular isomers of silver(<scp>i</scp>) 3,5-dialkyl-1,2,4-triazolates: syntheses, structures, and structural transformation behaviours. CrystEngComm, 2015, 17, 8843-8849.	1.3	8
116	Syntheses, structures and gas sorption properties of two coordination polymers with a unique type of supramolecular isomerism. Inorganic Chemistry Frontiers, 2015, 2, 136-140.	3.0	8
117	An Au(I)-based coordination/hydrogen-bond hybrid open framework for luminescence sensing of temperature and benzene. Science Bulletin, 2022, 67, 1229-1232.	4.3	8
118	A flexible, porous, cluster-based Zn-pyrazolate-dicarboxylate framework showing selective adsorption properties. New Journal of Chemistry, 2014, 38, 2002-2007.	1.4	7
119	A flexible metal–organic framework with adaptive pores for high column-capacity gas chromatographic separation. Inorganic Chemistry Frontiers, 2018, 5, 2777-2783.	3.0	7
120	Diverse coordination polymers from a new bent dipyridyl-type ligand 3,6-di(pyridin-4-yl)-9H-carbazole. CrystEngComm, 2017, 19, 6164-6169.	1.3	5
121	A Porous Coordination Polymer Showing Guest-Amplified Positive and Negative Thermal Expansion. Inorganic Chemistry, 2021, 60, 11893-11896.	1.9	5
122	Partial Order–Disorder Transformation of Interpenetrated Porous Coordination Polymers. CCS Chemistry, 0, , 1532-1541.	4.6	4
123	Flexible Cuprous Triazolate Frameworks as Highly Stable and Efficient Electrocatalysts for CO ₂ Reduction with Tunable C ₂ H ₄ /CH ₄ Selectivity. Angewandte Chemie, 2022, 134, .	1.6	4
124	Porous Metal Azolate Frameworks. , 2016, , 309-343.		3
125	Controlling Thermal Expansion Behaviors of Fence-Like Metal-Organic Frameworks by Varying/Mixing Metal lons. Frontiers in Chemistry, 2018, 6, 306.	1.8	3
126	Tuning the packing, interpenetration, and porosity of two-dimensional networks by metal ions and ligand side groups. Inorganic Chemistry Frontiers, 2020, 7, 3424-3430.	3.0	3

#	Article	IF	CITATIONS
127	On-surface isostructural transformation from a hydrogen-bonded network to a coordination network for tuning the pore size and guest recognition. Chemical Science, 2021, 12, 1272-1277.	3.7	3
128	Photoluminescence: Porous Cu(I) Triazolate Framework and Derived Hybrid Membrane with Exceptionally High Sensing Efficiency for Gaseous Oxygen (Adv. Funct. Mater. 37/2014). Advanced Functional Materials, 2014, 24, 5928-5928.	7.8	2
129	From discrete complex to 1-D coordination polymer by subtle variation of ligand donor: structures and electrical conductivities. Journal of Coordination Chemistry, 2016, 69, 1837-1843.	0.8	2
130	<scp>Solventâ€Controlled</scp> Construction of Molecular Chains and Bowls/Sieves from a Bent Dipyridyl Ligand ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2523-2528.	2.6	2
131	A Metal–Ligand Layer Compatible with Various Types of Pillars for New Porous Coordination Polymers. Crystal Growth and Design, 2020, 20, 7021-7026.	1.4	1
132	Single-side and double-side swing behaviours of a flexible porous coordination polymer with a rhombic-lattice structure. CrystEngComm, 2019, 21, 1872-1875.	1.3	O