Mark Estelle

List of Publications by Citations

Source: https://exaly.com/author-pdf/3647303/mark-estelle-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

131 27,763 82 140 g-index

140 g-index

140 ext. papers ext. citations avg, IF

140 L-index

#	Paper	IF	Citations
131	The F-box protein TIR1 is an auxin receptor. <i>Nature</i> , 2005 , 435, 441-5	50.4	1590
130	A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. <i>Science</i> , 2006 , 312, 436-9	33.3	1461
129	The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. <i>Science</i> , 2008 , 319, 64-9	33.3	1419
128	Mechanism of auxin perception by the TIR1 ubiquitin ligase. <i>Nature</i> , 2007 , 446, 640-5	50.4	1118
127	Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. <i>Nature</i> , 2001 , 414, 271-6	50.4	1053
126	Plant development is regulated by a family of auxin receptor F box proteins. <i>Developmental Cell</i> , 2005 , 9, 109-19	10.2	770
125	Recent advances and emerging trends in plant hormone signalling. <i>Nature</i> , 2009 , 459, 1071-8	50.4	676
124	The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. <i>Science</i> , 2011 , 332, 960-3	33.3	622
123	Growth and development of the axr1 mutants of Arabidopsis. <i>Plant Cell</i> , 1990 , 2, 1071-80	11.6	610
122	Mechanism of auxin-regulated gene expression in plants. <i>Annual Review of Genetics</i> , 2009 , 43, 265-85	14.5	512
121	The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. <i>Genes and Development</i> , 1998 , 12, 198-207	12.6	502
120	Plant hormones are versatile chemical regulators of plant growth. <i>Nature Chemical Biology</i> , 2009 , 5, 30	1- 7 1.7	484
119	Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. <i>Nature</i> , 1993 , 364, 161-4	50.4	471
118	Auxin receptors and plant development: a new signaling paradigm. <i>Annual Review of Cell and Developmental Biology</i> , 2008 , 24, 55-80	12.6	455
117	High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 7197-202	11.5	455
116	The ubiquitin-proteasome pathway and plant development. Plant Cell, 2004, 16, 3181-95	11.6	418
115	Auxin and ethylene promote root hair elongation in Arabidopsis. <i>Plant Journal</i> , 1998 , 16, 553-60	6.9	416

(2015-2005)

114	Sites and regulation of auxin biosynthesis in Arabidopsis roots. <i>Plant Cell</i> , 2005 , 17, 1090-104	11.6	410
113	Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. <i>Science</i> , 2001 , 292, 1379-82	33.3	410
112	The auxin signalling network translates dynamic input into robust patterning at the shoot apex. <i>Molecular Systems Biology</i> , 2011 , 7, 508	12.2	405
111	AXR2 encodes a member of the Aux/IAA protein family. <i>Plant Physiology</i> , 2000 , 123, 563-74	6.6	385
110	Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. <i>Genes and Development</i> , 1999 , 13, 1678-91	12.6	384
109	Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. <i>Plant Cell</i> , 2008 , 20, 3258-72	11.6	377
108	A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. <i>Nature Chemical Biology</i> , 2012 , 8, 477-85	11.7	371
107	Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. <i>Plant Journal</i> , 1996 , 10, 403-13	6.9	361
106	A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. <i>Molecular Genetics and Genomics</i> , 1990 , 222, 377-83		355
105	Changes in auxin response from mutations in an AUX/IAA gene. <i>Science</i> , 1998 , 279, 1371-3	33.3	333
104	Complex regulation of the TIR1/AFB family of auxin receptors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 22540-5	11.5	324
103	Plant development: regulation by protein degradation. <i>Science</i> , 2002 , 297, 793-7	33.3	2 80
102	The ubiquitin-proteasome system regulates plant hormone signaling. <i>Plant Journal</i> , 2010 , 61, 1029-40	6.9	273
101	Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. <i>Plant Cell</i> , 1997 , 9, 745-57	11.6	273
100	The aux1 Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance. <i>Plant Physiology</i> , 1990 , 94, 1462-6	6.6	272
99	The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. <i>Plant Journal</i> , 1995 , 7, 211-20	6.9	270
98	Modification of yeast Cdc53p by the ubiquitin-related protein rub1p affects function of the SCFCdc4 complex. <i>Genes and Development</i> , 1998 , 12, 914-26	12.6	265
97	SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. <i>Plant Cell</i> , 2015 , 27, 9-19	11.6	259

96	Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor. <i>Plant Journal</i> , 2012 , 70, 492-500	6.9	248	
95	Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. <i>Plant Physiology</i> , 1998 , 116, 455-62	6.6	244	
94	Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 2275-80	11.5	241	
93	Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 4668-73	11.5	240	
92	BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. <i>Genes and Development</i> , 2001 , 15, 1985-97	12.6	212	
91	Auxin signaling and regulated protein degradation. <i>Trends in Plant Science</i> , 2004 , 9, 302-8	13.1	208	
90	AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis Cullin AtCUL1 is required for auxin response. <i>Plant Cell</i> , 2002 , 14, 421-33	11.6	200	
89	The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. <i>Science</i> , 1998 , 280, 1760-3	33.3	200	
88	Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. <i>Plant Journal</i> , 2003 , 34, 753-67	6.9	191	
87	The IAA1 protein is encoded by AXR5 and is a substrate of SCF(TIR1). Plant Journal, 2004, 40, 772-82	6.9	171	
86	Mechanisms of auxin signaling. <i>Development (Cambridge)</i> , 2016 , 143, 3226-9	6.6	165	
85	Function of the ubiquitin-proteasome pathway in auxin response. <i>Trends in Biochemical Sciences</i> , 2000 , 25, 133-8	10.3	162	
84	Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway. <i>Current Opinion in Plant Biology</i> , 2014 , 21, 51-58	9.9	158	
83	AXR4 is required for localization of the auxin influx facilitator AUX1. <i>Science</i> , 2006 , 312, 1218-20	33.3	156	
82	The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. <i>Development (Cambridge)</i> , 2000 , 127, 23-32	6.6	156	
81	The Arabidopsis cullin AtCUL1 is modified by the ubiquitin-related protein RUB1. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 15342-7	11.5	152	
80	The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. <i>Plant Physiology</i> , 2009 , 151, 168-79	6.6	150	
79	The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. <i>Genetics</i> , 1994 , 138, 1239-49	4	149	

(2012-2013)

78	Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4834-9	11.5	147
77	Null mutation of AtCUL1 causes arrest in early embryogenesis in Arabidopsis. <i>Molecular Biology of the Cell</i> , 2002 , 13, 1916-28	3.5	144
76	Auxin action in a cell-free system. <i>Current Biology</i> , 2003 , 13, 1418-22	6.3	142
75	The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways. <i>Plant Journal</i> , 1995 , 8, 561-9	6.9	141
74	Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. <i>Plant Molecular Biology</i> , 1995 , 27, 1071-83	4.6	138
73	Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. <i>Plant Cell</i> , 2002 , 14, 2137-44	11.6	137
72	HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. <i>Nature Communications</i> , 2016 , 7, 10269	17.4	134
71	Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. <i>ELife</i> , 2015 , 4, e09269	8.9	132
70	The Arabidopsis SUPPRESSOR OF AUXIN RESISTANCE proteins are nucleoporins with an important role in hormone signaling and development. <i>Plant Cell</i> , 2006 , 18, 1590-603	11.6	130
69	Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. <i>EMBO Journal</i> , 2003 , 22, 3314-25	13	127
68	Auxin perceptionstructural insights. Cold Spring Harbor Perspectives in Biology, 2010, 2, a005546	10.2	122
67	The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis. <i>EMBO Journal</i> , 2003 , 22, 1762-70	13	120
66	Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. <i>Journal of Biological Chemistry</i> , 2005 , 280, 18810-21	5.4	119
65	Auxin receptors: a new role for F-box proteins. Current Opinion in Cell Biology, 2006, 18, 152-6	9	118
64	The Arabidopsis NPF3 protein is a GA transporter. <i>Nature Communications</i> , 2016 , 7, 11486	17.4	115
63	Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. <i>Current Biology</i> , 2010 , 20, 1907-12	6.3	109
62	Genetic approaches to auxin action. <i>Plant, Cell and Environment</i> , 1994 , 17, 525-40	8.4	108
61	Ubiquitin-mediated control of plant hormone signaling. <i>Plant Physiology</i> , 2012 , 160, 47-55	6.6	107

60	Hypocotyl transcriptome reveals auxin regulation of growth-promoting genes through GA-dependent and -independent pathways. <i>PLoS ONE</i> , 2012 , 7, e36210	3.7	105
59	A map of cell type-specific auxin responses. <i>Molecular Systems Biology</i> , 2013 , 9, 688	12.2	98
58	F-box proteins and protein degradation: an emerging theme in cellular regulation. <i>Plant Molecular Biology</i> , 2000 , 44, 123-8	4.6	98
57	Arabidopsis AtCUL3a and AtCUL3b form complexes with members of the BTB/POZ-MATH protein family. <i>Plant Physiology</i> , 2005 , 137, 83-93	6.6	97
56	Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. <i>Plant Cell</i> , 2013 , 25, 3858-70	11.6	95
55	The Arabidopsis D-type cyclin CYCD2;1 and the inhibitor ICK2/KRP2 modulate auxin-induced lateral root formation. <i>Plant Cell</i> , 2011 , 23, 641-60	11.6	92
54	The role of regulated protein degradation in auxin response. Plant Molecular Biology, 2002, 49, 401-408	4.6	90
53	Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants. <i>Plant and Cell Physiology</i> , 2015 , 56, 1641-54	4.9	89
52	Proteases and cellular regulation in plants. Current Opinion in Plant Biology, 2001, 4, 254-60	9.9	88
51	Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases. <i>Plant Journal</i> , 2008 , 53, 705-16	6.9	87
50	MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. <i>PLoS ONE</i> , 2014 , 9, e107678	3.7	85
49	Function of the ubiquitin-proteosome pathway in auxin response. <i>Trends in Plant Science</i> , 1999 , 4, 107-1	112 3.1	82
48	Effects of the axr2 mutation of Arabidopsis on cell shape in hypocotyl and inflorescence. <i>Planta</i> , 1992 , 188, 271-8	4.7	82
47	Plant Stress Tolerance Requires Auxin-Sensitive Aux/IAA Transcriptional Repressors. <i>Current Biology</i> , 2017 , 27, 437-444	6.3	80
46	The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. <i>Development (Cambridge)</i> , 2000 , 127, 23-32	6.6	80
45	The impact of Arabidopsis on human health: diversifying our portfolio. <i>Cell</i> , 2008 , 133, 939-43	56.2	79
44	New auxin analogs with growth-promoting effects in intact plants reveal a chemical strategy to improve hormone delivery. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 15190-5	11.5	79
43	Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. <i>Nature Communications</i> , 2019 , 10, 4021	17.4	78

(2020-2015)

42	microRNA regulation of fruit growth. <i>Nature Plants</i> , 2015 , 1, 15036	11.5	78
41	Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins. <i>ELife</i> , 2016 , 5,	8.9	78
40	Point mutations in Arabidopsis Cullin1 reveal its essential role in jasmonate response. <i>Plant Journal</i> , 2005 , 42, 514-24	6.9	76
39	Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. <i>Seminars in Cell and Developmental Biology</i> , 2004 , 15, 221-9	7.5	71
38	The AFB4 auxin receptor is a negative regulator of auxin signaling in seedlings. <i>Current Biology</i> , 2011 , 21, 520-5	6.3	70
37	Flying saucer1 is a transmembrane RING E3 ubiquitin ligase that regulates the degree of pectin methylesterification in Arabidopsis seed mucilage. <i>Plant Cell</i> , 2013 , 25, 944-59	11.6	66
36	Polar auxin transport. New support for an old model. <i>Plant Cell</i> , 1998 , 10, 1775-8	11.6	66
35	A new CULLIN 1 mutant has altered responses to hormones and light in Arabidopsis. <i>Plant Physiology</i> , 2007 , 143, 684-96	6.6	65
34	The SAR1 gene of Arabidopsis acts downstream of the AXR1 gene in auxin response. <i>Development (Cambridge)</i> , 1997 , 124, 1583-1591	6.6	63
33	Molecular mechanisms of auxin action. <i>Current Opinion in Plant Biology</i> , 1998 , 1, 434-9	9.9	59
32	Untethering the TIR1 auxin receptor from the SCF complex increases its stability and inhibits auxin response. <i>Nature Plants</i> , 2015 , 1,	11.5	58
31	AXL and AXR1 have redundant functions in RUB conjugation and growth and development in Arabidopsis. <i>Plant Journal</i> , 2007 , 52, 114-23	6.9	58
30	The Arabidopsis Auxin Receptor F-Box Proteins AFB4 and AFB5 Are Required for Response to the Synthetic Auxin Picloram. <i>G3: Genes, Genomes, Genetics</i> , 2016 , 6, 1383-90	3.2	54
29	The plant hormone auxin: insight in sight. <i>BioEssays</i> , 1992 , 14, 439-44	4.1	54
28	ENTIRE and GOBLET promote leaflet development in tomato by modulating auxin response. <i>Plant Journal</i> , 2012 , 70, 903-15	6.9	53
27	The role of regulated protein degradation in auxin response. Plant Molecular Biology, 2002, 49, 401-9	4.6	46
26	Mutations in the TIR1 auxin receptor that increase affinity for auxin/indole-3-acetic acid proteins result in auxin hypersensitivity. <i>Plant Physiology</i> , 2013 , 162, 295-303	6.6	45
25	Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions. <i>ELife</i> , 2020 , 9,	8.9	45

24	The cyclophilin DIAGEOTROPICA has a conserved role in auxin signaling. <i>Development (Cambridge)</i> , 2012 , 139, 1115-24	6.6	41
23	Lysine Residues Are Not Required for Proteasome-Mediated Proteolysis of the Auxin/Indole Acidic Acid Protein IAA1. <i>Plant Physiology</i> , 2015 , 168, 708-20	6.6	32
22	Auxin perception: in the IAA of the beholder. <i>Physiologia Plantarum</i> , 2014 , 151, 52-61	4.6	30
21	The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop. <i>PLoS Genetics</i> , 2017 , 13, e1007089	6	28
20	Embryonic lethality of is caused by deletion of the adjacent gene. <i>Nature Plants</i> , 2015 , 1,	11.5	28
19	The ALF4 protein is a regulator of SCF E3 ligases. <i>EMBO Journal</i> , 2018 , 37, 255-268	13	24
18	Regulation of SCF E3 ligase assembly by S-nitrosylation of Arabidopsis SKP1-like1 impacts on auxin signaling. <i>Redox Biology</i> , 2018 , 18, 200-210	11.3	22
17	Mutational studies of the Aux/IAA proteins in Physcomitrella reveal novel insights into their function. <i>New Phytologist</i> , 2018 , 218, 1534-1542	9.8	20
16	Dual Role of Auxin in Regulating Plant Defense and Bacterial Virulence Gene Expression During PtoDC3000 Pathogenesis. <i>Molecular Plant-Microbe Interactions</i> , 2020 , 33, 1059-1071	3.6	18
15	Auxin Signaling Involves Regulated Protein Degradation by the Ubiquitin-Proteasome Pathway. Journal of Plant Growth Regulation, 2001 , 20, 265-273	4.7	18
14	A novel Ca2+-binding protein that can rapidly transduce auxin responses during root growth. <i>PLoS Biology</i> , 2019 , 17, e3000085	9.7	16
13	Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 6463-6472	11.5	12
12	Diverse Allyl Glucosinolate Catabolites Independently Influence Root Growth and Development. <i>Plant Physiology</i> , 2020 , 183, 1376-1390	6.6	10
11	Quantitative Early Auxin Root Proteomics Identifies GAUT10, a Galacturonosyltransferase, as a Novel Regulator of Root Meristem Maintenance. <i>Molecular and Cellular Proteomics</i> , 2019 , 18, 1157-1170	o ^{7.6}	8
10	Ethylene prunes translation. <i>Cell</i> , 2015 , 163, 543-4	56.2	8
9	CUL3 E3 ligases in plant development and environmental response. <i>Nature Plants</i> , 2021 , 7, 6-16	11.5	6
8	Author response: Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate 2015 ,		2
7	Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels		2

LIST OF PUBLICATIONS

6	The PLOS Biology XV Collection: 15 Years of Exceptional Science Highlighted across 12 Months. <i>PLoS Biology</i> , 2019 , 17, e3000180	9.7	1
5	Moss tasiRNAs Make the Auxin Network Robust. <i>Developmental Cell</i> , 2016 , 36, 241-2	10.2	1
4	Journal club: growth versus development. Nature Reviews Molecular Cell Biology, 2009, 10, 813	48.7	1
3	Polar Auxin Transport: New Support for an Old Model. <i>Plant Cell</i> , 1998 , 10, 1775	11.6	1
2	S-Nitrosation of E3 Ubiquitin Ligase Complex Components Regulates Hormonal Signalings in Arabidopsis <i>Frontiers in Plant Science</i> , 2021 , 12, 794582	6.2	О
1	Barebones of auxin signalling. <i>Nature Plants</i> , 2020 , 6, 440-441	11.5	