
## Jodie L Lutkenhaus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3647187/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A practical guide to quartz crystal microbalance with dissipation monitoring of thin polymer films.<br>Journal of Polymer Science, 2022, 60, 1090-1107.                                                              | 2.0 | 76        |
| 2  | Experimental determination of the compressive piezoresistive response of a free-standing film with application to reduced graphene oxide. Journal of Applied Physics, 2022, 131, .                                   | 1.1 | 2         |
| 3  | Layer-by-Layer Nanoarchitectonics of Electrochemically Active Thin Films Comprised of<br>Radical-Containing Polymers. Journal of the Electrochemical Society, 2022, 169, 020510.                                     | 1.3 | 4         |
| 4  | Real time quantification of mixed ion and electron transfer associated with the doping of poly(3-hexylthiophene). Journal of Materials Chemistry C, 2022, 10, 7251-7262.                                             | 2.7 | 5         |
| 5  | From Biosensors to Drug Delivery and Tissue Engineering: Open Biomaterials Research. ACS Omega, 2022, 7, 6437-6438.                                                                                                  | 1.6 | 0         |
| 6  | Effect of Ethanol and Urea as Solvent Additives on PSS–PDADMA Polyelectrolyte Complexation.<br>Macromolecules, 2022, 55, 3140-3150.                                                                                  | 2.2 | 11        |
| 7  | Anion Identity and Time Scale Affect the Cation Insertion Energy Storage Mechanism in<br>Ti <sub>3</sub> C <sub>2</sub> T <sub><i>x</i></sub> MXene Multilayers. ACS Energy Letters, 2022, 7,<br>1828-1834.          | 8.8 | 4         |
| 8  | Quantification of Water–Ion Pair Interactions in Polyelectrolyte Multilayers Using a Quartz Crystal<br>Microbalance Method. ACS Polymers Au, 2022, 2, 287-298.                                                       | 1.7 | 5         |
| 9  | Conformal Layer-by-Layer Assembly of Ti <sub>3</sub> C <sub>2</sub> T <i><sub>z</sub></i> MXene-Only<br>Thin Films for Optoelectronics and Energy Storage. Chemistry of Materials, 2022, 34, 4884-4895.              | 3.2 | 14        |
| 10 | The Role of Antioxidant Structure in Mitigating Oxidation in<br>Ti <sub>3</sub> C <sub>2</sub> T <i><sub>x</sub></i> and Ti <sub>2</sub> CT <i><sub>x</sub></i> MXenes.<br>Advanced Materials Interfaces, 2022, 9, . | 1.9 | 16        |
| 11 | Critical-Point-Dried, Porous, and Safer Aramid Nanofiber Separator for High-Performance Durable<br>Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 29176-29187.                                 | 4.0 | 15        |
| 12 | Ionic Effect on Electrochemical Behavior of Water-Soluble Radical Polyelectrolytes.<br>Macromolecules, 2022, 55, 5733-5743.                                                                                          | 2.2 | 5         |
| 13 | Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.                                                                                                                                        | 3.7 | 0         |
| 14 | Building up nanostructured layer-by-layer films combining reduced graphene oxide-manganese dioxide nanocomposite in supercapacitor electrodes. Thin Solid Films, 2021, 718, 138483.                                  | 0.8 | 17        |
| 15 | Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.                                                                                                                                              | 2.3 | 0         |
| 16 | Unravelling kinetic and mass transport effects on two-electron storage in radical polymer batteries.<br>Journal of Materials Chemistry A, 2021, 9, 13071-13079.                                                      | 5.2 | 21        |
| 17 | One-step hydrothermal synthesis of porous Ti <sub>3</sub> C <sub>2</sub> T <sub><i>z</i></sub><br>MXene/rGO gels for supercapacitor applications. Nanoscale, 2021, 13, 16543-16553.                                  | 2.8 | 36        |
| 18 | Side hain Engineering for Highâ€Performance Conjugated Polymer Batteries. Advanced Functional<br>Materials, 2021, 31, 2009263.                                                                                       | 7.8 | 19        |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Flocculation of MXenes and Their Use as 2D Particle Surfactants for Capsule Formation. Langmuir, 2021, 37, 2649-2657.                                                                                                                                     | 1.6  | 17        |
| 20 | Layer-by-Layer Assembly of Reduced Graphene Oxide and MXene Nanosheets for Wire-Shaped Flexible<br>Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 14068-14076.                                                                            | 4.0  | 74        |
| 21 | Mixed electron-ion-water transfer in macromolecular radicals for metal-free aqueous batteries. Cell<br>Reports Physical Science, 2021, 2, 100414.                                                                                                         | 2.8  | 20        |
| 22 | Polypeptide organic radical batteries. Nature, 2021, 593, 61-66.                                                                                                                                                                                          | 13.7 | 195       |
| 23 | Oxidative Stability of Nb <sub><i>n</i>+1</sub> C <sub><i>n</i></sub> T <sub><i>z</i></sub> MXenes.<br>Journal of Physical Chemistry C, 2021, 125, 13990-13996.                                                                                           | 1.5  | 21        |
| 24 | Structural Lithium-Ion Battery Cathodes and Anodes Based on Branched Aramid Nanofibers. ACS<br>Applied Materials & Interfaces, 2021, 13, 34807-34817.                                                                                                     | 4.0  | 17        |
| 25 | Relaxation Times of Solid-like Polyelectrolyte Complexes of Varying pH and Water Content.<br>Macromolecules, 2021, 54, 7765-7776.                                                                                                                         | 2.2  | 14        |
| 26 | Electronic and Optical Property Control of Polycation/MXene Layer-by-Layer Assemblies with Chemically Diverse MXenes. Langmuir, 2021, 37, 11338-11350.                                                                                                    | 1.6  | 19        |
| 27 | Synthesis and Electronic Applications of Particle-Templated<br>Ti <sub>3</sub> C <sub>2</sub> T <sub><i>z</i> /sub&gt;MXene–Polymer Films via Pickering Emulsion<br/>Polymerization. ACS Applied Materials &amp; Interfaces, 2021, 13, 51556-51566.</sub> | 4.0  | 21        |
| 28 | Carbon Additive-Free Crumpled Ti <sub>3</sub> C <sub>2</sub> T <i><sub>X</sub></i><br>MXene-Encapsulated Silicon Nanoparticle Anodes for Lithium-Ion Batteries. ACS Applied Energy<br>Materials, 2021, 4, 10762-10773.                                    | 2.5  | 20        |
| 29 | Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. IScience, 2021, 24, 103403.                                                                                                                                                            | 1.9  | 60        |
| 30 | Aramid nanofiber-reinforced three-dimensional graphene hydrogels for supercapacitor electrodes.<br>Journal of Colloid and Interface Science, 2020, 560, 581-588.                                                                                          | 5.0  | 38        |
| 31 | pH-Response of polycation/Ti3C2Tx MXene layer-by-layer assemblies for use as resistive sensors.<br>Molecular Systems Design and Engineering, 2020, 5, 366-375.                                                                                            | 1.7  | 24        |
| 32 | Ceramic Electrolytes Get "Tough―on Lithium Metal Batteries. Matter, 2020, 3, 14-15.                                                                                                                                                                       | 5.0  | 3         |
| 33 | Emerging trends in the dynamics of polyelectrolyte complexes. Physical Chemistry Chemical Physics, 2020, 22, 24157-24177.                                                                                                                                 | 1.3  | 41        |
| 34 | Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.                                                                                                                                                   | 2.5  | 0         |
| 35 | Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.                                                                                                                                                                              | 1.2  | 0         |
| 36 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.                                                                                                                          | 2.6  | 0         |

| #  | Article                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6,<br>589-590.                          | 5.3 | О         |
| 38 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15,<br>1282-1283.                      | 1.6 | 0         |
| 39 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience,<br>2020, 11, 1196-1197.                 | 1.7 | Ο         |
| 40 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry,<br>2020, 4, 672-673.                | 1.2 | 0         |
| 41 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5,<br>1610-1611.                         | 8.8 | 1         |
| 42 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9,<br>666-667.                            | 2.3 | 0         |
| 43 | Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.                                                |     | Ο         |
| 44 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.                                     | 7.3 | 2         |
| 45 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7,<br>1080-1081.                              | 3.2 | Ο         |
| 46 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and<br>Translational Science, 2020, 3, 455-456.   | 2.5 | 0         |
| 47 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.     | 3.2 | Ο         |
| 48 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92,<br>6187-6188.                      | 3.2 | 0         |
| 49 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32,<br>3678-3679.                    | 3.2 | 0         |
| 50 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and<br>Technology Letters, 2020, 7, 280-281. | 3.9 | 1         |
| 51 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education,<br>2020, 97, 1217-1218.             | 1.1 | 1         |
| 52 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research,<br>2020, 19, 1883-1884.              | 1.8 | 0         |
| 53 | Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.                                                              | 1.6 | 0         |
| 54 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials,<br>2020, 2, 1739-1740.              | 2.0 | 0         |

Jodie L Lutkenhaus

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.                                                                                                                      | 3.8 | Ο         |
| 56 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry<br>Letters, 2020, 11, 1060-1061.                                                                                                           | 1.3 | 0         |
| 57 | A novel and practical framework for incorporating nanopores in existing compositional simulators<br>to model the unusually high GOR observed in shale reservoirs. Journal of Petroleum Science and<br>Engineering, 2020, 195, 107887. | 2.1 | 3         |
| 58 | Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.                                                                                                                                                               |     | 0         |
| 59 | Annealed Ti <sub>3</sub> C <sub>2</sub> T <sub><i>z</i></sub> MXene Films for Oxidation-Resistant<br>Functional Coatings. ACS Applied Nano Materials, 2020, 3, 10578-10585.                                                           | 2.4 | 49        |
| 60 | Carbon Nanotube/Reduced Graphene Oxide/Aramid Nanofiber Structural Supercapacitors. ACS Applied<br>Energy Materials, 2020, 3, 11763-11771.                                                                                            | 2.5 | 23        |
| 61 | Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.                                                                                                                                 | 2.1 | 1         |
| 62 | Branched aramid nanofiber-polyaniline electrodes for structural energy storage. Nanoscale, 2020, 12, 16840-16850.                                                                                                                     | 2.8 | 21        |
| 63 | Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.                                                                                                                                           | 2.5 | Ο         |
| 64 | Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.                                                                                                                                                    | 5.3 | 1         |
| 65 | Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.                                                                                                                         | 1.8 | Ο         |
| 66 | A Diverse View of Science to Catalyse Change. Journal of the American Chemical Society, 2020, 142, 14393-14396.                                                                                                                       | 6.6 | 12        |
| 67 | Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.                                                                                                                                           | 1.5 | Ο         |
| 68 | Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.                                                                                                                                       | 1.3 | 0         |
| 69 | Nitroxide Radical Polymer–Solvent Interactions and Solubility Parameter Determination.<br>Macromolecules, 2020, 53, 7997-8008.                                                                                                        | 2.2 | 17        |
| 70 | Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.                                                                                                                 | 1.2 | 1         |
| 71 | Quantifying internal charge transfer and mixed ion-electron transfer in conjugated radical polymers.<br>Chemical Science, 2020, 11, 9962-9970.                                                                                        | 3.7 | 13        |
| 72 | Minimizing two-dimensional Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> MXene nanosheet loading in carbon-free silicon anodes. Nanoscale, 2020, 12, 20699-20709.                                                                     | 2.8 | 18        |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.                                                                                                                                                            | 2.5 | Ο         |
| 74 | pH, Nanosheet Concentration, and Antioxidant Affect the Oxidation of<br>Ti <sub>3</sub> C <sub>2</sub> T <i><sub>x</sub></i> and Ti <sub>2</sub> CT <i><sub>x</sub></i> MXene<br>Dispersions. Advanced Materials Interfaces, 2020, 7, 2000845. | 1.9 | 99        |
| 75 | Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.                                                                                                                                                                     | 4.0 | Ο         |
| 76 | Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.                                                                                                                                                                       | 7.3 | 2         |
| 77 | Compositional Simulation of Cyclic Gas Injection in Liquid-Rich Shale Reservoirs Using Existing Simulators with a Framework for Incorporating Nanopores. , 2020, , .                                                                           |     | 2         |
| 78 | Structural batteries take a load off. Science Robotics, 2020, 5, .                                                                                                                                                                             | 9.9 | 15        |
| 79 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.                                                                                                                                          | 1.2 | Ο         |
| 80 | High Modulus, Thermally Stable, and Self-Extinguishing Aramid Nanofiber Separators. ACS Applied<br>Materials & Interfaces, 2020, 12, 25756-25766.                                                                                              | 4.0 | 71        |
| 81 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical &<br>Engineering Data, 2020, 65, 2253-2254.                                                                                                             | 1.0 | Ο         |
| 82 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.                                                                                                                | 1.3 | 0         |
| 83 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.                                                                                                                                              | 1.6 | Ο         |
| 84 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic<br>Materials, 2020, 2, 1184-1185.                                                                                                                    | 2.0 | 0         |
| 85 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials &<br>Interfaces, 2020, 12, 20147-20148.                                                                                                               | 4.0 | 5         |
| 86 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C,<br>2020, 124, 9629-9630.                                                                                                                   | 1.5 | 0         |
| 87 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry<br>Letters, 2020, 11, 3571-3572.                                                                                                              | 2.1 | 0         |
| 88 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9,<br>979-980.                                                                                                                                 | 1.9 | 0         |
| 89 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials,<br>2020, 3, 4091-4092.                                                                                                                        | 2.5 | 0         |
| 90 | Tannic Acid as a Small-Molecule Binder for Silicon Anodes. ACS Applied Energy Materials, 2020, 3, 6985-6994.                                                                                                                                   | 2.5 | 33        |

6

| #   | Article                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.                          | 2.3  | 0         |
| 92  | Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.                                        | 1.7  | 0         |
| 93  | Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.                                                | 3.2  | 0         |
| 94  | Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.                                       | 1.1  | 0         |
| 95  | Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.                            | 1.3  | 0         |
| 96  | Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .                                     | 3.2  | 0         |
| 97  | Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.                                              | 3.2  | 0         |
| 98  | Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.                                     | 1.7  | 0         |
| 99  | Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.                                                 | 1.9  | 0         |
| 100 | Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.                                           | 2.4  | 0         |
| 101 | Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.                                        | 2.0  | 0         |
| 102 | Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.                                                | 1.6  | 0         |
| 103 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882. | 2.3  | 0         |
| 104 | Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.                                                     | 2.4  | 4         |
| 105 | Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.                                | 4.0  | 13        |
| 106 | Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.                                           | 1.4  | 1         |
| 107 | Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.                                                   | 23.0 | 2         |
| 108 | Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.                                                       | 5.5  | 1         |

| #   | Article                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.                                                                                            | 2.6 | Ο         |
| 110 | Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.                                                                               | 2.9 | 0         |
| 111 | Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.                                                                                               | 2.2 | Ο         |
| 112 | Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.                                                                                                 | 4.5 | 5         |
| 113 | Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.                                                                                              | 1.1 | Ο         |
| 114 | Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.                                                                  | 6.6 | 1         |
| 115 | Layer-by-layer assembly of polymers and anisotropic nanomaterials using spray-based approach.<br>Journal of Materials Research, 2020, 35, 1163-1172.                         | 1.2 | 7         |
| 116 | Comparison of Nanoarchitecture to Porous Media Diffusion Models in Reduced Graphene<br>Oxide/Aramid Nanofiber Electrodes for Supercapacitors. ACS Nano, 2020, 14, 5314-5323. | 7.3 | 15        |
| 117 | Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.                                                                                | 7.6 | 0         |
| 118 | Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.                                                                             | 1.1 | 0         |
| 119 | Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.                                                                                            | 8.8 | 0         |
| 120 | Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.                                                                 | 2.5 | 0         |
| 121 | Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.                                                                                 | 1.8 | 0         |
| 122 | Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.                                                                             | 1.2 | 1         |
| 123 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and<br>Food Chemistry, 2020, 68, 5019-5020.                                       | 2.4 | 0         |
| 124 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B,<br>2020, 124, 3603-3604.                                                 | 1.2 | 0         |
| 125 | Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.                                                                                       | 1.8 | 0         |
| 126 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials,<br>2020, 3, 3960-3961.                                                        | 2.4 | 0         |

| #   | Article                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.                                             | 1.5  | 0         |
| 128 | Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.                                                                             | 1.9  | 0         |
| 129 | Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.                                                           | 1.0  | 0         |
| 130 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020,<br>31, 1211-1212.                                               | 1.8  | 0         |
| 131 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.                                     | 1.1  | 0         |
| 132 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in<br>Toxicology, 2020, 33, 1509-1510.                                      | 1.7  | 0         |
| 133 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.                                                          | 2.5  | 0         |
| 134 | Structural reduced graphene oxide supercapacitors mechanically enhanced with tannic acid.<br>Sustainable Energy and Fuels, 2020, 4, 2301-2308.                   | 2.5  | 18        |
| 135 | 100th Anniversary of Macromolecular Science Viewpoint: Fundamentals for the Future of<br>Macromolecular Nitroxide Radicals. ACS Macro Letters, 2020, 9, 358-370. | 2.3  | 47        |
| 136 | Molecular design principles for polymeric binders in silicon anodes. Molecular Systems Design and<br>Engineering, 2020, 5, 709-724.                              | 1.7  | 29        |
| 137 | Solutionâ€Processable Thermally Crosslinked Organic Radical Polymer Battery Cathodes.<br>ChemSusChem, 2020, 13, 2371-2378.                                       | 3.6  | 46        |
| 138 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020,<br>3, 2873-2874.                                             | 2.3  | 0         |
| 139 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.                                            | 1.7  | 0         |
| 140 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society<br>for Mass Spectrometry, 2020, 31, 1006-1007.                | 1.2  | 0         |
| 141 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.                                           | 7.6  | 0         |
| 142 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21,<br>1966-1967.                                                    | 2.6  | 0         |
| 143 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120,<br>3939-3940.                                                    | 23.0 | 0         |
| 144 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science &<br>Technology, 2020, 54, 5307-5308.                                   | 4.6  | 0         |

| #   | Article                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.                                                                          | 1.6 | 0         |
| 146 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020,<br>17, 1445-1446.                                                        | 2.3 | 0         |
| 147 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6,<br>891-892.                                                           | 1.8 | Ο         |
| 148 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design,<br>2020, 20, 2817-2818.                                                      | 1.4 | 1         |
| 149 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.                                                    | 2.9 | 0         |
| 150 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A,<br>2020, 124, 3501-3502.                                               | 1.1 | 0         |
| 151 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20,<br>2935-2936.                                                                   | 4.5 | 0         |
| 152 | Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.                                                                        | 4.0 | 0         |
| 153 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical<br>Information and Modeling, 2020, 60, 2651-2652.                                   | 2.5 | 0         |
| 154 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering<br>Chemistry Research, 2020, 59, 8509-8510.                                    | 1.8 | 0         |
| 155 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American<br>Chemical Society, 2020, 142, 8059-8060.                                      | 6.6 | 3         |
| 156 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59,<br>5796-5797.                                                            | 1.9 | 0         |
| 157 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39,<br>1665-1666.                                                                | 1.1 | 0         |
| 158 | Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22,<br>3307-3308.                                                                | 2.4 | 0         |
| 159 | Multifunctional efficiency metric for structural supercapacitors. Multifunctional Materials, 2020, 3, 044002.                                                              | 2.4 | 3         |
| 160 | Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.                                                                    | 2.6 | 1         |
| 161 | Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.                                                                                                 | 1.6 | 1         |
| 162 | Fourier transform infrared spectroscopy investigation of water microenvironments in polyelectrolyte multilayers at varying temperatures. Soft Matter, 2020, 16, 2291-2300. | 1.2 | 22        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.                                                                                                       | 2.0 | 0         |
| 164 | Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.                                                                                            | 2.4 | 0         |
| 165 | Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.                                                                                                            | 1.2 | 0         |
| 166 | Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.                                                                                             | 3.9 | 0         |
| 167 | Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.                                                                                                               | 3.8 | 0         |
| 168 | Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.                                                                                                                | 1.8 | 0         |
| 169 | Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.                                                                                                              | 2.3 | Ο         |
| 170 | Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.                                                                                                    | 1.5 | 0         |
| 171 | Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.                                                                                                                      | 2.3 | Ο         |
| 172 | Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.                                                                                                               | 2.3 | 1         |
| 173 | Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.                                                                                                             | 1.7 | 1         |
| 174 | Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.                                                                                                                          | 3.2 | 0         |
| 175 | Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.                                                                                                    | 4.6 | 0         |
| 176 | Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.                                                                                                   | 1.1 | 0         |
| 177 | Self-Doped Conjugated Polymeric Binders Improve the Capacity and Mechanical Properties of V2O5<br>Cathodes. Polymers, 2019, 11, 589.                                                                  | 2.0 | 7         |
| 178 | Fabrication, characterization and micromechanics modeling of the electrical conductivity of reduced graphene oxide/aramid nanofiber nanocomposites. Smart Materials and Structures, 2019, 28, 094001. | 1.8 | 9         |
| 179 | A Comprehensive Study of Hydrolyzed Polyacrylamide as a Binder for Silicon Anodes. ACS Applied<br>Materials & Interfaces, 2019, 11, 44090-44100.                                                      | 4.0 | 32        |
| 180 | Heating of Ti3C2Tx MXene/polymer composites in response to Radio Frequency fields. Scientific Reports, 2019, 9, 16489.                                                                                | 1.6 | 32        |

| #   | Article                                                                                                                                                                            | IF                | CITATIONS           |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 181 | Highly Multifunctional Dopamine-Functionalized Reduced Graphene Oxide Supercapacitors. Matter, 2019, 1, 1532-1546.                                                                 | 5.0               | 66                  |
| 182 | Lightweight Kevlarâ€Reinforced Graphene Oxide Architectures with High Strength for Energy Storage.<br>Advanced Materials Interfaces, 2019, 6, 1900786.                             | 1.9               | 14                  |
| 183 | Comparing water-mediated hydrogen-bonding in different polyelectrolyte complexes. Soft Matter, 2019, 15, 7823-7831.                                                                | 1.2               | 31                  |
| 184 | Interfacial Engineering of Reduced Graphene Oxide for Aramid Nanofiberâ€Enabled Structural<br>Supercapacitors. Batteries and Supercaps, 2019, 2, 464-472.                          | 2.4               | 29                  |
| 185 | Layer-by-Layer Assembly and Electrochemical Study of Alizarin Red S-Based Thin Films. Polymers, 2019, 11, 165.                                                                     | 2.0               | 7                   |
| 186 | Antioxidants Unlock Shelf-Stable Ti3C2T (MXene) Nanosheet Dispersions. Matter, 2019, 1, 513-526.                                                                                   | 5.0               | 436                 |
| 187 | A novel pore-size-dependent equation of state for modeling fluid phase behavior in nanopores. Fluid<br>Phase Equilibria, 2019, 498, 72-85.                                         | 1.4               | 27                  |
| 188 | The effect of nanoscale architecture on ionic diffusion in rGo/aramid nanofiber structural electrodes. Journal of Applied Physics, 2019, 125, .                                    | 1.1               | 12                  |
| 189 | Poly(fluorene- <i>alt</i> -naphthalene diimide) as n-Type Polymer Electrodes for Energy Storage. ACS<br>Applied Polymer Materials, 2019, 1, 1155-1164.                             | 2.0               | 27                  |
| 190 | Time–Temperature and Time–Water Superposition Principles Applied to Poly(allylamine)/Poly(acrylic) Tj ETQ                                                                          | q0_0_0 rgB<br>2.2 | T /Overlock 1<br>61 |
| 191 | Design of multifunctional supercapacitor electrodes using an informatics approach. Molecular<br>Systems Design and Engineering, 2019, 4, 654-663.                                  | 1.7               | 17                  |
| 192 | A Framework for Incorporating Nanopores in Compositional Simulation to Model the Unusually High GOR Observed in Shale Reservoirs. , 2019, , .                                      |                   | 7                   |
| 193 | Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. Npj 2D Materials and Applications, 2019, 3, .                                                     | 3.9               | 312                 |
| 194 | Layer-by-Layer Assembly of Polyaniline Nanofibers and MXene Thin-Film Electrodes for Electrochemical<br>Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 47929-47938. | 4.0               | 38                  |
| 195 | Flexible, self-standing and patternable P(MMA-BA)/TiO2 photonic crystals with tunable and bright structural colors. Dyes and Pigments, 2019, 160, 740-746.                         | 2.0               | 14                  |
| 196 | Micromechanics modeling of the elastic moduli of rGO/ANF nanocomposites. Acta Mechanica, 2019, 230, 265-280.                                                                       | 1.1               | 10                  |
| 197 | Experimental study of pore size distribution effect on phase transitions of hydrocarbons in nanoporous media. Fluid Phase Equilibria, 2019, 487, 8-15.                             | 1.4               | 23                  |
| 198 | Real-time insight into the doping mechanism of redox-active organic radical polymers. Nature<br>Materials, 2019, 18, 69-75.                                                        | 13.3              | 140                 |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Water Sorption in MXene/Polyelectrolyte Multilayers for Ultrafast Humidity Sensing. ACS Applied<br>Nano Materials, 2019, 2, 948-955.                                                   | 2.4 | 173       |
| 200 | Process Safety Analysis for Ti <sub>3</sub> C <sub>2</sub> T <sub><i>x</i></sub> MXene Synthesis and Processing. Industrial & Engineering Chemistry Research, 2019, 58, 1570-1579.     | 1.8 | 89        |
| 201 | ACS Applied Polymer Materials: A New Journal for Applied Polymer Research. ACS Applied Polymer<br>Materials, 2019, 1, 1-2.                                                             | 2.0 | 1         |
| 202 | Bioinspired Electrodes for Structural Supercapacitors. ECS Meeting Abstracts, 2019, , .                                                                                                | 0.0 | 0         |
| 203 | Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Science Advances, 2018, 4, eaaq0118.                                                                    | 4.7 | 229       |
| 204 | Molecular Origin of the Glass Transition in Polyelectrolyte Assemblies. ACS Central Science, 2018, 4, 638-644.                                                                         | 5.3 | 100       |
| 205 | Layer-by-layer nanostructured supercapacitor electrodes consisting of ZnO nanoparticles and multi-walled carbon nanotubes. Journal of Materials Science, 2018, 53, 6719-6728.          | 1.7 | 26        |
| 206 | Porous organic/inorganic hybrid one-dimensional photonic crystals for rapid visual detection of organic solvents. Journal of Materials Chemistry C, 2018, 6, 2704-2711.                | 2.7 | 48        |
| 207 | Effect of assembly condition on the morphologies and temperature-triggered transformation of layer-by-layer microtubes. Korean Journal of Chemical Engineering, 2018, 35, 263-271.     | 1.2 | 5         |
| 208 | Diffusion-Cooperative Model for Charge Transport by Redox-Active Nonconjugated Polymers. Journal of the American Chemical Society, 2018, 140, 1049-1056.                               | 6.6 | 130       |
| 209 | Chemiresistive and Chemicapacitive Devices Formed via Morphology Control of Electroconductive<br>Bioâ€nanocomposites. Advanced Electronic Materials, 2018, 4, 1700495.                 | 2.6 | 11        |
| 210 | Corrosion behaviour of eco-friendly airbrushed reduced graphene oxide-poly(vinyl alcohol) coatings.<br>Green Chemistry, 2018, 20, 506-514.                                             | 4.6 | 46        |
| 211 | A radical advance for conducting polymers. Science, 2018, 359, 1334-1335.                                                                                                              | 6.0 | 47        |
| 212 | Use of differential scanning calorimetry to study phase behavior of hydrocarbon mixtures in nano-scale porous media. Journal of Petroleum Science and Engineering, 2018, 163, 731-738. | 2.1 | 61        |
| 213 | Metal–polymer interface influences apparent electrical properties of nano-structured polyaniline<br>films. Nanoscale, 2018, 10, 672-682.                                               | 2.8 | 17        |
| 214 | QCM-D Investigation of Swelling Behavior of Layer-by-Layer Thin Films upon Exposure to Monovalent<br>Ions. Langmuir, 2018, 34, 999-1009.                                               | 1.6 | 60        |
| 215 | Polymer-clay nanocomposite coatings as efficient, environment-friendly surface pretreatments for aluminum alloy 2024-T3. Electrochimica Acta, 2018, 260, 73-81.                        | 2.6 | 27        |
| 216 | Multiscale Fluid-Phase-Behavior Simulation in Shale Reservoirs Using a Pore-Size-Dependent Equation of State. SPE Reservoir Evaluation and Engineering, 2018, 21, 806-820.             | 1.1 | 19        |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | High-Performance and Multifunctional Colorimetric Humidity Sensors Based on Mesoporous<br>Photonic Crystals and Nanogels. ACS Applied Materials & Interfaces, 2018, 10, 41645-41654.               | 4.0 | 68        |
| 218 | Hydration and Temperature Response of Water Mobility in<br>Poly(diallyldimethylammonium)–Poly(sodium 4-styrenesulfonate) Complexes. Macromolecules, 2018,<br>51, 8268-8277.                        | 2.2 | 49        |
| 219 | Sprayâ€On Reduced Graphene Oxideâ€Poly(vinyl alcohol) Supercapacitors for Flexible Energy and Power.<br>Advanced Materials Interfaces, 2018, 5, 1801237.                                           | 1.9 | 11        |
| 220 | Regioregularity and Molecular Weight Effects in Redox-Active<br>Poly(3-hexylthiophene)- <i>block</i> -poly(ethylene oxide) Electrode Binders. ACS Applied Energy<br>Materials, 2018, 1, 5919-5927. | 2.5 | 7         |
| 221 | Effect of Nanorod Aspect Ratio on Shear Thickening Electrolytes for Safety-Enhanced Batteries. ACS<br>Applied Nano Materials, 2018, 1, 2774-2784.                                                  | 2.4 | 24        |
| 222 | Electrochemical Energy Storage in Poly(dithieno[3,2-b:2′,3′-d]pyrrole) Bearing Pendant Nitroxide<br>Radicals. Chemistry of Materials, 2018, 30, 5169-5174.                                         | 3.2 | 40        |
| 223 | Tailored Network Formation in Graphene Oxide Gels. Langmuir, 2018, 34, 8550-8559.                                                                                                                  | 1.6 | 12        |
| 224 | Comparison of KBr and NaCl effects on the glass transition temperature of hydrated layer-by-layer assemblies. Journal of Chemical Physics, 2018, 149, 163317.                                      | 1.2 | 9         |
| 225 | Aramid Nanofiber/Graphene/Carbon Nanotube Composite Electrodes for Structural Energy and Power.<br>ECS Meeting Abstracts, 2018, , .                                                                | 0.0 | 0         |
| 226 | Fabrication and Electrochemical Performance of Structured Mesoscale Open Shell<br>V <sub>2</sub> O <sub>5</sub> Networks. Langmuir, 2017, 33, 5975-5981.                                           | 1.6 | 11        |
| 227 | Robust and Flexible Aramid Nanofiber/Graphene Layer-by-Layer Electrodes. ACS Applied Materials &<br>Interfaces, 2017, 9, 17125-17135.                                                              | 4.0 | 94        |
| 228 | Unusual Internal Electron Transfer in Conjugated Radical Polymers. Angewandte Chemie -<br>International Edition, 2017, 56, 9856-9859.                                                              | 7.2 | 45        |
| 229 | Spray-On Polymer-Clay Multilayers as a Superior Anticorrosion Metal Pretreatment. Macromolecular<br>Materials and Engineering, 2017, 302, 1600552.                                                 | 1.7 | 11        |
| 230 | Role of Salt and Water in the Plasticization of PDAC/PSS Polyelectrolyte Assemblies. Journal of Physical Chemistry B, 2017, 121, 322-333.                                                          | 1.2 | 72        |
| 231 | Harnessing the Power of Plastics: Nanostructured Polymer Systems in Lithium-Ion Batteries. ACS<br>Energy Letters, 2017, 2, 1919-1936.                                                              | 8.8 | 77        |
| 232 | All nanoparticle-based P(MMA–AA)/TiO <sub>2</sub> one-dimensional photonic crystal films with tunable structural colors. Journal of Materials Chemistry C, 2017, 5, 8266-8272.                     | 2.7 | 30        |
| 233 | Unusual Internal Electron Transfer in Conjugated Radical Polymers. Angewandte Chemie, 2017, 129, 9988-9991.                                                                                        | 1.6 | 15        |
| 234 | Mechanically Strong Graphene/Aramid Nanofiber Composite Electrodes for Structural Energy and Power. ACS Nano, 2017, 11, 6682-6690.                                                                 | 7.3 | 190       |

| #   | Article                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Hydrogen-bonded polymer nanocomposites containing discrete layers of gold nanoparticles. Journal of Colloid and Interface Science, 2017, 485, 260-268. | 5.0 | 18        |

## 

| 237 | Conducting Block Copolymer Binders for Carbon-Free Hybrid Vanadium Pentoxide Cathodes with<br>Enhanced Performance. ACS Applied Materials & Interfaces, 2016, 8, 28585-28591.      | 4.0 | 26 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 238 | Swelling and Thermal Transitions of Polyelectrolyte Multilayers in the Presence of Divalent Ions.<br>Macromolecules, 2016, 49, 5921-5930.                                          | 2.2 | 25 |
| 239 | Confinement-Induced Supercriticality and Phase Equilibria of Hydrocarbons in Nanopores. Langmuir, 2016, 32, 11506-11513.                                                           | 1.6 | 85 |
| 240 | Effect of confinement on the bubble points of hydrocarbons in nanoporous media. AICHE Journal, 2016, 62, 1772-1780.                                                                | 1.8 | 89 |
| 241 | Electropolymerized Polythiophenes Bearing Pendant Nitroxide Radicals. ACS Macro Letters, 2016, 5, 337-341.                                                                         | 2.3 | 46 |
| 242 | Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers. Scientific Reports, 2015, 5, 14166.                                                         | 1.6 | 31 |
| 243 | Experimental Study of Confinement Effect on Hydrocarbon Phase Behavior in Nano-Scale Porous<br>Media Using Differential Scanning Calorimetry. , 2015, , .                          |     | 21 |
| 244 | Sprayable, paintable layer-by-layer polyaniline nanofiber/graphene electrodes. RSC Advances, 2015, 5,<br>14994-15001.                                                              | 1.7 | 29 |
| 245 | Reversibly pH-Responsive Nanoporous Layer-by-Layer Microtubes. ACS Macro Letters, 2015, 4, 353-356.                                                                                | 2.3 | 9  |
| 246 | The influence of ionic strength and mixing ratio on the colloidal stability of PDAC/PSS polyelectrolyte complexes. Soft Matter, 2015, 11, 7392-7401.                               | 1.2 | 79 |
| 247 | Spray-On Polyaniline/Poly(acrylic acid) Electrodes with Enhanced Electrochemical Stability. ACS<br>Applied Materials & Interfaces, 2015, 7, 24150-24158.                           | 4.0 | 29 |
| 248 | Thermal Transitions in Polyelectrolyte Assemblies Occur via a Dehydration Mechanism. ACS Macro<br>Letters, 2015, 4, 1017-1021.                                                     | 2.3 | 46 |
| 249 | Polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 3757-3767. | 5.2 | 72 |
| 250 | Charge Storage in Decyl- and 3,6,9-Trioxadecyl-Substituted<br>Poly(dithieno[3,2- <i>b</i> :2,3- <i>d</i> ]pyrrole) Electrodes. Macromolecules, 2014, 47, 79-88.                    | 2.2 | 26 |
| 251 | Thermal transitions in hydrated layer-by-layer assemblies observed using electrochemical impedance spectroscopy. Soft Matter, 2014, 10, 6467-6476.                                 | 1.2 | 16 |
| 252 | Temperature-triggered shape-transformations in layer-by-layer microtubes. Journal of Materials<br>Chemistry B, 2014, 2, 2088-2092.                                                 | 2.9 | 14 |

| #   | Article                                                                                                                                                                                    | IF               | CITATIONS                   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------|
| 253 | Polyaniline nanofiber/vanadium pentoxide sprayed layer-by-layer electrodes for energy storage.<br>Journal of Materials Chemistry A, 2014, 2, 14421-14428.                                  | 5.2              | 30                          |
| 254 | Charge Storage in Polymer Acid-Doped Polyaniline-Based Layer-by-Layer Electrodes. ACS Applied<br>Materials & Interfaces, 2013, 5, 10127-10136.                                             | 4.0              | 63                          |
| 255 | Electrochemically Active Polymers for Electrochemical Energy Storage: Opportunities and Challenges. ACS Macro Letters, 2013, 2, 839-844.                                                   | 2.3              | 86                          |
| 256 | Porous polyaniline nanofiber/vanadium pentoxide layer-by-layer electrodes for energy storage.<br>Journal of Materials Chemistry A, 2013, 1, 7648.                                          | 5.2              | 46                          |
| 257 | Recent advances in conjugated polymer energy storage. Journal of Polymer Science, Part B: Polymer<br>Physics, 2013, 51, 468-480.                                                           | 2.4              | 175                         |
| 258 | Oxidatively stable polyaniline:polyacid electrodes for electrochemical energy storage. Physical Chemistry Chemical Physics, 2013, 15, 9654.                                                | 1.3              | 82                          |
| 259 | A Comparison of Thermal Transitions in Dip- and Spray-Assisted Layer-by-Layer Assemblies. Langmuir, 2013, 29, 8907-8913.                                                                   | 1.6              | 16                          |
| 260 | Thermal Transitions in Dry and Hydrated Layer-by-Layer Assemblies Exhibiting Linear and Exponential<br>Growth. ACS Nano, 2012, 6, 6174-6184.                                               | 7.3              | 77                          |
| 261 | pH-Dependent Thermal Transitions in Hydrated Layer-by-Layer Assemblies Containing Weak<br>Polyelectrolytes. Macromolecules, 2012, 45, 9169-9176.                                           | 2.2              | 44                          |
| 262 | Polyaniline/Vanadium Pentoxide Layer-by-Layer Electrodes for Energy Storage. Chemistry of Materials,<br>2012, 24, 181-189.                                                                 | 3.2              | 97                          |
| 263 | Confinement Effects on Cross-Linking within Electrostatic Layer-by-Layer Assemblies Containing Poly(allylamine hydrochloride) and Poly(acrylic acid). Macromolecules, 2010, 43, 9473-9479. | 2.2              | 33                          |
| 264 | Confinement Effects on Crystallization and Curie Transitions of Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10                                                                            | Tf <u>50</u> 302 | Td <sub>1</sub> (fluoride-< |
| 265 | Thermochemical properties of free-standing electrostatic layer-by-layer assemblies containing poly(allylamine hydrochloride) and poly(acrylic acid). Soft Matter, 2010, 6, 3363.           | 1.2              | 74                          |
| 266 | Effect of the Layer-by-Layer (LbL) Deposition Method on the Surface Morphology and Wetting Behavior                                                                                        | 16               | 05                          |

| 266 | Effect of the Layer-by-Layer (LbL) Deposition Method on the Surface Morphology and Wetting Behavior of Hydrophobically Modified PEO and PAA LbL Films. Langmuir, 2008, 24, 7995-8000. | 1.6 | 95  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 267 | Anisotropic Structure and Transport in Self-Assembled Layered Polymerâ^'Clay Nanocomposites.<br>Langmuir, 2007, 23, 8515-8521.                                                        | 1.6 | 70  |
| 268 | Elastomeric Flexible Free-Standing Hydrogen-Bonded Nanoscale Assemblies. Journal of the American<br>Chemical Society, 2005, 127, 17228-17234                                          | 6.6 | 214 |