Benjamin Z Stanton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3647046/publications.pdf Version: 2024-02-01

RENIAMIN 7 STANTON

#	Article	IF	CITATIONS
1	Succinate dehydrogenase/complex II is critical for metabolic and epigenetic regulation of T cell proliferation and inflammation. Science Immunology, 2022, 7, eabm8161.	11.9	23
2	Interaction between SNAI2 and MYOD enhances oncogenesis and suppresses differentiation in Fusion Negative Rhabdomyosarcoma. Nature Communications, 2021, 12, 192.	12.8	33
3	mSWI/SNF promotes Polycomb repression both directly and through genome-wide redistribution. Nature Structural and Molecular Biology, 2021, 28, 501-511.	8.2	50
4	The FLI portion of EWS/FLI contributes a transcriptional regulatory function that is distinct and separable from its DNA-binding function in Ewing sarcoma. Oncogene, 2021, 40, 4759-4769.	5.9	14
5	Inducible Protein Degradation to Understand Genome Architecture. Biochemistry, 2021, 60, 2387-2396.	2.5	5
6	Evidence of pioneer factor activity of an oncogenic fusion transcription factor. IScience, 2021, 24, 102867.	4.1	22
7	SNAI2-Mediated Repression of <i>BIM</i> Protects Rhabdomyosarcoma from Ionizing Radiation. Cancer Research, 2021, 81, 5451-5463.	0.9	13
8	Pioneer factors in development and cancer. IScience, 2021, 24, 103132.	4.1	15
9	Epigenetic regulation of nuclear lamina-associated heterochromatin by HAT1 and the acetylation of newly synthesized histones. Nucleic Acids Research, 2021, 49, 12136-12151.	14.5	14
10	BAF complexes drive proliferation and block myogenic differentiation in fusion-positive rhabdomyosarcoma. Nature Communications, 2021, 12, 6924.	12.8	25
11	Miswired Enhancer Logic Drives a Cancer of the Muscle Lineage. IScience, 2020, 23, 101103.	4.1	26
12	Measurement of differential chromatin interactions with absolute quantification of architecture (AQuA-HiChIP). Nature Protocols, 2020, 15, 1209-1236.	12.0	19
13	Chemical genomics reveals histone deacetylases are required for core regulatory transcription. Nature Communications, 2019, 10, 3004.	12.8	107
14	Discovery and Characterization of a Cellular Potent Positive Allosteric Modulator of the Polycomb Repressive Complex 1 Chromodomain, CBX7. Cell Chemical Biology, 2019, 26, 1365-1379.e22.	5.2	38
15	Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Science Translational Medicine, 2019, 11, .	12.4	129
16	Histone hyperacetylation disrupts core gene regulatory architecture in rhabdomyosarcoma. Nature Genetics, 2019, 51, 1714-1722.	21.4	113
17	Chemically induced proximity in biology and medicine. Science, 2018, 359, .	12.6	270
18	Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nature Structural and Molecular Biology, 2018, 25, 61-72.	8.2	140

BENJAMIN Z STANTON

#	Article	IF	CITATIONS
19	Trac-looping measures genome structure and chromatin accessibility. Nature Methods, 2018, 15, 741-747.	19.0	74
20	A General Nonâ€Radioactive ATPase Assay for Chromatin Remodeling Complexes. Current Protocols in Chemical Biology, 2017, 9, 1-10.	1.7	7
21	Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nature Genetics, 2017, 49, 282-288.	21.4	165
22	Discovery of Small-Molecule Modulators of the Sonic Hedgehog Pathway. Journal of the American Chemical Society, 2013, 135, 9675-9680.	13.7	41
23	Macrocyclic Hedgehog Pathway Inhibitors: Optimization of Cellular Activity and Mode of Action Studies. ACS Medicinal Chemistry Letters, 2012, 3, 808-813.	2.8	39
24	Small-molecule modulators of the Sonic Hedgehog signaling pathway. Molecular BioSystems, 2010, 6, 44-54.	2.9	191
25	A small molecule that binds Hedgehog and blocks its signaling in human cells. Nature Chemical Biology, 2009, 5, 154-156.	8.0	273
26	Syntheses of aminoalcohol-derived macrocycles leading to a small-molecule binder to and inhibitor of Sonic Hedgehog. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6319-6325.	2.2	71
27	Minimal Pharmacophoric Elements and Fragment Hopping, an Approach Directed at Molecular Diversity and Isozyme Selectivity. Design of Selective Neuronal Nitric Oxide Synthase Inhibitors. Journal of the American Chemical Society, 2008, 130, 3900-3914.	13.7	101
28	Discovery and Characterization of Macrocyclic Thiopeptide Proteasome Inhibitors for Hematologic Malignancies. Blood, 2008, 112, 3669-3669.	1.4	0
29	Structure-activity relationship study of antimalarial indolo [2,1-b]quinazoline-6,12-diones (tryptanthrins). Three dimensional pharmacophore modeling and identification of new antimalarial candidates. European Journal of Medicinal Chemistry, 2004, 39, 59-67.	5.5	116
30	Absolute Quantification of Architecture (AQuA-HiChIP) Enables Measurement of Differential Chromatin Interactions. Protocol Exchange, 0, , .	0.3	3
31	Defining CBX7-Dependent Chromatin Architecture with Rapid Small-Molecule Inhibition. SSRN Electronic Journal, 0, , .	0.4	0
32	Discovery and Characterization of a Cellularly Potent Positive Allosteric Modulator of the Polycomb Repressive Complex 1 Chromodomain, CBX7. SSRN Electronic Journal, 0, , .	0.4	1