List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3646792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A modeling study of the long-range transport of Kosa using particle trajectory methods. Tellus, Series B: Chemical and Physical Meteorology, 2022, 45, 426.	1.6	9
2	Efficient high-dimensional variational data assimilation with machine-learned reduced-order models. Geoscientific Model Development, 2022, 15, 3433-3445.	3.6	4
3	Projected U.S. drought extremes through the twenty-first century with vapor pressure deficit. Scientific Reports, 2022, 12, .	3.3	17
4	Evaluation of obstacle modelling approaches for resource assessment and small wind turbine siting: case study in the northern Netherlands. Wind Energy Science, 2022, 7, 1153-1169.	3.3	0
5	The Need for Urbanâ€Resolving Climate Modeling Across Scales. AGU Advances, 2021, 2, e2020AV000271.	5.4	17
6	Dynamical Downscaling. , 2021, , 64-81.		0
7	Uncertainty in Future Projections, and Approaches for Representing Uncertainty. , 2021, , 121-138.		Ο
8	Added Value of Downscaling. , 2021, , 102-120.		1
9	Guidance and Recommendations for Use of (Downscaled) Climate Information. , 2021, , 139-156.		Ο
10	Impacts, Adaptation, Vulnerability, and Decision-Making. , 2021, , 1-18.		0
11	Assessing Climate-Change Impacts at the Regional Scale. , 2021, , 40-63.		0
12	Global Climate Models. , 2021, , 19-39.		0
13	Empirical-Statistical Downscaling. , 2021, , 82-101.		2
14	The Future of Regional Downscaling. , 2021, , 157-165.		0
15	Effects of spatial resolution on WRF v3.8.1 simulated meteorology over the central Himalaya. Geoscientific Model Development, 2021, 14, 1427-1443.	3.6	21
16	Projected Changes to Coolâ€5eason Storm Tides in the 21st Century Along the Northeastern United States Coast. Earth's Future, 2021, 9, e2020EF001940.	6.3	2
17	Fast and accurate learned multiresolution dynamical downscaling for precipitation. Geoscientific Model Development, 2021, 14, 6355-6372.	3.6	21
18	Diagnosing added value of convection-permitting regional models using precipitation event identification and tracking. Climate Dynamics, 2020, 55, 175-192.	3.8	15

#	Article	IF	CITATIONS
19	Urban-Scale Processes in High-Spatial-Resolution Earth System Models. Bulletin of the American Meteorological Society, 2020, 101, E1555-E1561.	3.3	7
20	On Bridging A Modeling Scale Gap: Mesoscale to Microscale Coupling for Wind Energy. Bulletin of the American Meteorological Society, 2019, 100, 2533-2550.	3.3	53
21	A parallel workflow implementation for PEST version 13.6 in high-performance computing for WRF-Hydro version 5.0: a case study over the midwestern United States. Geoscientific Model Development, 2019, 12, 3523-3539.	3.6	14
22	Recovering Evapotranspiration Trends from Biased CMIP5 Simulations and Sensitivity to Changing Climate over North America. Journal of Hydrometeorology, 2019, 20, 1619-1633.	1.9	14
23	Improved Spatiotemporal Representativeness and Bias Reduction of Satelliteâ€Based Evapotranspiration Retrievals via Use of In Situ Meteorology and Constrained Canopy Surface Resistance. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 342-352.	3.0	3
24	Fast domain-aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model. Geoscientific Model Development, 2019, 12, 4261-4274.	3.6	42
25	Internal variability of a dynamically downscaled climate over North America. Climate Dynamics, 2018, 50, 4539-4559.	3.8	5
26	Evaluations of high-resolution dynamically downscaled ensembles over the contiguous United States. Climate Dynamics, 2018, 50, 863-884.	3.8	33
27	Analyses for Highâ€Resolution Projections Through the End of the 21st Century for Precipitation Extremes Over the United States. Earth's Future, 2018, 6, 1471-1490.	6.3	27
28	The Need for an Integrated Land‣akeâ€Atmosphere Modeling System, Exemplified by North America's Great Lakes Region. Earth's Future, 2018, 6, 1366-1379.	6.3	34
29	Large-eddy simulation sensitivities to variations of configuration and forcing parameters in canonical boundary-layer flows for wind energy applications. Wind Energy Science, 2018, 3, 589-613.	3.3	22
30	The combined and separate impacts of climate extremes on the current and future <scp>US</scp> rainfed maize and soybean production under elevated CO ₂ . Global Change Biology, 2017, 23, 2687-2704.	9.5	134
31	Highâ€Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States. Earth's Future, 2017, 5, 1234-1251.	6.3	42
32	Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia. Atmospheric Chemistry and Physics, 2016, 16, 247-264.	4.9	25
33	Changes in Spatiotemporal Precipitation Patterns in Changing Climate Conditions. Journal of Climate, 2016, 29, 8355-8376.	3.2	64
34	Evaluation of dynamically downscaled extreme temperature using a spatially-aggregated generalized extreme value (GEV) model. Climate Dynamics, 2016, 47, 2833-2849.	3.8	23
35	Variations in the Cloud-Base Height over the Central Himalayas during GVAX:Association with the Monsoon Rainfall. Current Science, 2016, 111, 109.	0.8	5
36	High-Frequency Vertical Profiling of Meteorological Parameters Using AMF1 Facility during RAWEX–GVAX at ARIES, Nainital. Current Science, 2016, 111, 132.	0.8	24

#	Article	IF	CITATIONS
37	Evolution of Aerosol Research in India and the RAWEX–GVAX:An Overview. Current Science, 2016, 111, 53.	0.8	26
38	Humidity Bias and Effect on Simulated Aerosol Optical Properties during the Ganges Valley Experiment. Current Science, 2016, 111, 93.	0.8	11
39	Doppler Lidar Observations over a High Altitude Mountainous Site Manora Peak in the Central Himalayan Region. Current Science, 2016, 111, 101.	0.8	1
40	Optical properties and CCN activity of aerosols in a highâ€altitude Himalayan environment: Results from RAWEXâ€GVAX. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2453-2469.	3.3	31
41	Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 133, 62-66.	1.6	2
42	Performance of WRF-Chem over Indian region: Comparison with measurements. Journal of Earth System Science, 2015, 124, 875-896.	1.3	34
43	Highâ€resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America. Earth's Future, 2015, 3, 268-288.	6.3	100
44	Modeling the impact of agricultural land use and management on US carbon budgets. Biogeosciences, 2015, 12, 2119-2129.	3.3	31
45	Model performance in spatiotemporal patterns of precipitation: New methods for identifying value added by a regional climate model. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1239-1259.	3.3	44
46	Downscaling with a nested regional climate model in nearâ€ s urface fields over the contiguous United States. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8778-8797.	3.3	40
47	A simulation study of atmospheric mercury and its deposition in the Great Lakes. Atmospheric Environment, 2014, 94, 164-172.	4.1	11
48	Increased absorption by coarse aerosol particles over the Gangetic–Himalayan region. Atmospheric Chemistry and Physics, 2014, 14, 1159-1165.	4.9	14
49	Modeling agriculture in the Community Land Model. Geoscientific Model Development, 2013, 6, 495-515.	3.6	94
50	Assessment of Dynamical Downscaling in Near-Surface Fields with Different Spectral Nudging Approaches Using the Nested Regional Climate Model (NRCM). Journal of Applied Meteorology and Climatology, 2013, 52, 1576-1591.	1.5	30
51	Brown carbon: a significant atmospheric absorber of solar radiation?. Atmospheric Chemistry and Physics, 2013, 13, 8607-8621.	4.9	592
52	EAKF MAQ: Introduction and evaluation of a data assimilation for CMAQ based on the ensemble adjustment Kalman filter. Journal of Geophysical Research, 2008, 113, .	3.3	11
53	Generating data ensembles over a model grid from sparse climate point measurements. Journal of Physics: Conference Series, 2008, 125, 012019.	0.4	2
54	The Characteristics of the Chicago Lake Breeze and Its Effects on Trace Particle Transport: Results from an Episodic Event Simulation. Journal of Applied Meteorology and Climatology, 2005, 44, 1637-1654.	1.7	36

#	Article	IF	CITATIONS
55	Beryllium-7 Measurements in the Houston and Phoenix Urban Areas: An Estimation of Upper Atmospheric Ozone Contributions. Journal of the Air and Waste Management Association, 2005, 55, 1228-1235.	1.9	5
56	A new approach to scenario analysis using simplified chemical transport models. Journal of Geophysical Research, 2005, 110, .	3.3	1
57	Air-surface exchange of peroxyacetyl nitrate at a grassland site. Journal of Geophysical Research, 2004, 109, .	3.3	44
58	Seasonal variability of ozone mixing ratios and budgets in the tropical southern Pacific: A GCTM perspective. Journal of Geophysical Research, 2003, 108, PEM 7-1.	3.3	13
59	Field observations of regional and urban impacts on NO2, ozone, UVB, and nitrate radical production rates in the Phoenix air basin. Atmospheric Environment, 2002, 36, 825-833.	4.1	27
60	New methodology for Ozone Depletion Potentials of short-lived compounds: n-Propyl bromide as an example. Journal of Geophysical Research, 2001, 106, 14551-14571.	3.3	61
61	Heterogeneous NOx chemistry in the polluted PBL. Atmospheric Environment, 2001, 35, 4489-4498.	4.1	32
62	Methane in the Global Environment. , 2000, , 304-341.		5
63	Effects of nonmethane hydrocarbons on lower stratospheric and upper tropospheric chemical climatology in a two-dimensional zonal average model. Journal of Geophysical Research, 1999, 104, 21537-21547.	3.3	11
64	Future atmospheric methane concentrations in the context of the stabilization of greenhouse gas concentrations. Journal of Geophysical Research, 1999, 104, 19183-19190.	3.3	23
65	Trifluoroacetic acid from degradation of HCFCs and HFCs: A three-dimensional modeling study. Journal of Geophysical Research, 1998, 103, 5747-5758.	3.3	65
66	Evidence of heterogeneous chemistry on sulfate aerosols in stratospherically influenced air masses sampled during PEM-West B. Journal of Geophysical Research, 1997, 102, 28425-28436.	3.3	14
67	Results from the Intergovernmental Panel on Climatic Change Photochemical Model Intercomparison (PhotoComp). Journal of Geophysical Research, 1997, 102, 5979-5991.	3.3	68
68	Photochemical Oxidant Processes in the Presence of Dust: An Evaluation of the Impact of Dust on Particulate Nitrate and Ozone Formation. Journal of Applied Meteorology and Climatology, 1994, 33, 813-824.	1.7	135
69	Effect of lightning on the concentration of odd nitrogen species in the lower stratosphere: An update. Journal of Geophysical Research, 1994, 99, 8167.	3.3	17
70	A modeling study of the long-range transport of Kosa using particle trajectory methods. Tellus, Series B: Chemical and Physical Meteorology, 1993, 45, 426-441.	1.6	11
71	Crossâ€tropopause transport of excess ¹⁴ C in a twoâ€dimensional model. Journal of Geophysical Research, 1993, 98, 18599-18606.	3.3	10
72	The regional distribution of tropospheric ozone in East Asia from satellite-based measurements. Journal of Atmospheric Chemistry, 1992, 14, 285-295.	3.2	8

#	Article	IF	CITATIONS
73	Electrokinetic dispersion in capillary electrophoresis. AICHE Journal, 1990, 36, 916-926.	3.6	66
74	The long range transport of pollutants in the Pacific Rim region. Atmospheric Environment Part A General Topics, 1990, 24, 1521-1534.	1.3	49