Stefan R Schweinberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/364647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The psychometric properties of the compassionate love scale and the validation of the English and German 7-item compassion for others scale (COS-7). Current Psychology, 2023, 42, 579-591.	2.8	7
2	The Jena Voice Learning and Memory Test (JVLMT): A standardized tool for assessing the ability to learn and recognize voices. Behavior Research Methods, 2023, 55, 1352-1371.	4.0	5
3	Vocal emotion adaptation aftereffects within and across speaker genders: Roles of timbre and fundamental frequency. Cognition, 2022, 219, 104967.	2.2	5
4	Social touch — a tool rather than a signal. Current Opinion in Behavioral Sciences, 2022, 44, 101100.	3.9	10
5	Neurocognitive effects of a training program for poor face recognizers using shape and texture caricatures: A pilot investigation. Neuropsychologia, 2022, 165, 108133.	1.6	4
6	Parameter-Specific Morphing Reveals Contributions of Timbre to the Perception of Vocal Emotions in Cochlear Implant Users. Ear and Hearing, 2022, 43, 1178-1188.	2.1	7
7	Psychosocial and Behavioral Effects of the COVID-19 Pandemic on Children and Adolescents with Autism and Their Families: Overview of the Literature and Initial Data from a Multinational Online Survey. Healthcare (Switzerland), 2022, 10, 714.	2.0	8
8	Contributions of fundamental frequency and timbre to vocal emotion perception and their electrophysiological correlates. Social Cognitive and Affective Neuroscience, 2022, 17, 1145-1154.	3.0	7
9	Why twos in human visual perception? A possible role of prediction from dynamic synchronization in interaction. Cortex, 2021, 135, 355-357.	2.4	1
10	Nonverbal auditory communication – Evidence for integrated neural systems for voice signal production and perception. Progress in Neurobiology, 2021, 199, 101948.	5.7	19
11	Facial Imitation Improves Emotion Recognition in Adults with Different Levels of Sub-Clinical Autistic Traits. Journal of Intelligence, 2021, 9, 4.	2.5	6
12	Phonetic perception but not perception of speaker gender is impaired in chronic tinnitus. Progress in Brain Research, 2021, 260, 397-422.	1.4	2
13	Links Between Musicality and Vocal Emotion Perception. Emotion Review, 2021, 13, 211-224.	3.4	13
14	Understanding and countering the spread of conspiracy theories in social networks: Evidence from epidemiological models of Twitter data. PLoS ONE, 2021, 16, e0256179.	2.5	12
15	Similar use of shape and texture cues for own- and other-race faces during face learning and recognition. Vision Research, 2021, 188, 32-41.	1.4	7
16	Deaf signers outperform hearing non-signers in recognizing happy facial expressions. Psychological Research, 2020, 84, 1485-1494.	1.7	6
17	The Jena Speaker Set (JESS)—A database of voice stimuli from unfamiliar young and old adult speakers. Behavior Research Methods, 2020, 52, 990-1007.	4.0	10
18	Autistic traits, personality, and evaluations of humanoid robots by young and older adults. Computers in Human Behavior, 2020, 106, 106256.	8.5	10

#	Article	IF	CITATIONS
19	Face and Voice Perception: Understanding Commonalities and Differences. Trends in Cognitive Sciences, 2020, 24, 398-410.	7.8	81
20	Neural Correlates of Own- and Other-Face Perception in Body Dysmorphic Disorder. Frontiers in Psychiatry, 2020, 11, 302.	2.6	5
21	Parameter-Specific Morphing Reveals Contributions of Timbre and Fundamental Frequency Cues to the Perception of Voice Gender and Age in Cochlear Implant Users. Journal of Speech, Language, and Hearing Research, 2020, 63, 3155-3175.	1.6	11
22	The Role of Stimulus Type and Social Signal for Voice Perception in Cochlear Implant Users: Response to the Letter by Meister et al Journal of Speech, Language, and Hearing Research, 2020, 63, 4327-4328.	1.6	2
23	Attractiveness and distinctiveness between speakers' voices in naturalistic speech and their faces are uncorrelated. Royal Society Open Science, 2020, 7, 201244.	2.4	7
24	The P200 predominantly reflects distance-to-norm in face space whereas the N250 reflects activation of identity-specific representations of known faces. Biological Psychology, 2019, 140, 86-95.	2.2	27
25	Voices to remember: Comparing neural signatures of intentional and non-intentional voice learning and recognition. Brain Research, 2019, 1711, 214-225.	2.2	5
26	Sensor-Based Technology for Social Information Processing in Autism: A Review. Sensors, 2019, 19, 4787.	3.8	14
27	Autistic Traits are Linked to Individual Differences in Familiar Voice Identification. Journal of Autism and Developmental Disorders, 2019, 49, 2747-2767.	2.7	10
28	Inequality between biases in face memory: Event-related potentials reveal dissociable neural correlates of own-race and own-gender biases. Cortex, 2018, 101, 119-135.	2.4	29
29	Current developments and challenges for the British Journal of Psychology. British Journal of Psychology, 2018, 109, 1-5.	2.3	1
30	Integrating predictive frameworks and cognitive models of face perception. Psychonomic Bulletin and Review, 2018, 25, 2016-2023.	2.8	11
31	Familiar Face Priming: The Role of Second-Order Configuration and Individual Face Recognition Abilities. Perception, 2018, 47, 185-196.	1.2	9
32	Electrophysiological correlates of voice memory for young and old speakers in young and old listeners. Neuropsychologia, 2018, 116, 215-227.	1.6	5
33	Dissociating neural signatures of mental state retrodiction and classification based on facial expressions. Social Cognitive and Affective Neuroscience, 2018, 13, 933-943.	3.0	9
34	Enhancement of face-sensitive ERPs in older adults induced by face recognition training. Neuropsychologia, 2018, 119, 197-213.	1.6	8
35	Multisensory stimulation modulates perceptual and post perceptual face representations: Evidence from eventâ€related potentials. European Journal of Neuroscience, 2018, 48, 2259-2271.	2.6	7
36	The big nose bias, or when distinctiveness hinders face learning: Evoking an other-race effect with selectively manipulated same-race faces. Journal of Vision, 2018, 18, 1101.	0.3	2

#	Article	IF	CITATIONS
37	Event-related potentials reveal the development of stable face representations from natural variability. Quarterly Journal of Experimental Psychology, 2017, 70, 1620-1632.	1.1	50
38	Dominance of texture over shape in facial identity processing is modulated by individual abilities. British Journal of Psychology, 2017, 108, 369-396.	2.3	24
39	Audiovisual integration in familiar person recognition. Visual Cognition, 2017, 25, 589-610.	1.6	10
40	Watching the brain recalibrate: Neural correlates of renormalization during face adaptation. NeuroImage, 2017, 155, 1-9.	4.2	16
41	The occipital face area is causally involved in the formation of identity-specific face representations. Brain Structure and Function, 2017, 222, 4271-4282.	2.3	21
42	Caricature generalization benefits for faces learned with enhanced idiosyncratic shape or texture. Cognitive, Affective and Behavioral Neuroscience, 2017, 17, 185-197.	2.0	9
43	Age-related differences in face recognition: Neural correlates of repetition and semantic priming in young and older adults Journal of Experimental Psychology: Learning Memory and Cognition, 2017, 43, 1254-1273.	0.9	7
44	The Role of Familiarity for Representations in Norm-Based Face Space. PLoS ONE, 2016, 11, e0155380.	2.5	14
45	To hear or not to hear: Voice processing under visual load. Attention, Perception, and Psychophysics, 2016, 78, 1488-1495.	1.3	12
46	Repetition suppression $\hat{a} \in \hat{A}$ an integrative view. Cortex, 2016, 80, 1-4.	2.4	19
47	Repetition effects in human ERPs to faces. Cortex, 2016, 80, 141-153.	2.4	151
48	Effects of Caricaturing in Shape or Color on Familiarity Decisions for Familiar and Unfamiliar Faces. PLoS ONE, 2016, 11, e0149796.	2.5	20
49	Direct Speaker Gaze Promotes Trust in Truth-Ambiguous Statements. PLoS ONE, 2016, 11, e0162291.	2.5	15
50	Role of timbre and fundamental frequency in voice gender adaptation. Journal of the Acoustical Society of America, 2015, 138, 1180-1193.	1.1	18
51	Benefits for Voice Learning Caused by Concurrent Faces Develop over Time. PLoS ONE, 2015, 10, e0143151.	2.5	14
52	Neural correlates of cognitive aging during the perception of facial age: the role of relatively distant and local texture information. Frontiers in Psychology, 2015, 6, 1420.	2.1	9
53	Absence of Sex-Contingent Gaze Direction Aftereffects Suggests a Limit to Contingencies in Face Aftereffects. Frontiers in Psychology, 2015, 6, 1829.	2.1	3
54	Early temporal negativity is sensitive to perceived (rather than physical) facial identity. Neuropsychologia, 2015, 75, 132-142.	1.6	12

#	Article	IF	CITATIONS
55	Aging affects sex categorization of male and female faces in opposite ways. Acta Psychologica, 2015, 158, 78-86.	1.5	25
56	Arguments Against a Configural Processing Account of Familiar Face Recognition. Perspectives on Psychological Science, 2015, 10, 482-496.	9.0	112
57	Getting connected: Both associative and semantic links structure semantic memory for newly learned persons. Quarterly Journal of Experimental Psychology, 2015, 68, 2131-2148.	1.1	10
58	Reflections on impact issues. British Journal of Psychology, 2015, 106, 183-185.	2.3	1
59	The Background of Reduced Face Specificity of N170 in Congenital Prosopagnosia. PLoS ONE, 2014, 9, e101393.	2.5	21
60	Preserved fine-tuning of face perception and memory: evidence from the own-race bias in high- and low-performing older adults. Frontiers in Aging Neuroscience, 2014, 6, 60.	3.4	15
61	Altering second-order configurations reduces the adaptation effects on early face-sensitive event-related potential components. Frontiers in Human Neuroscience, 2014, 8, 426.	2.0	5
62	Influences of Fundamental Frequency, Formant Frequencies, Aperiodicity, and Spectrum Level on the Perception of Voice Gender. Journal of Speech, Language, and Hearing Research, 2014, 57, 285-296.	1.6	91
63	The Neural Signature of the Own-Race Bias: Evidence from Event-Related Potentials. Cerebral Cortex, 2014, 24, 826-835.	2.9	89
64	Speaker perception. Wiley Interdisciplinary Reviews: Cognitive Science, 2014, 5, 15-25.	2.8	64
65	Decision-dependent aftereffects for faces. Vision Research, 2014, 100, 47-55.	1.4	0
66	Effects of attractiveness on face memory separated from distinctiveness: Evidence from event-related brain potentials. Neuropsychologia, 2014, 56, 26-36.	1.6	67
67	What drives social in-group biases in face recognition memory? ERP evidence from the own-gender bias. Social Cognitive and Affective Neuroscience, 2014, 9, 580-590.	3.0	47
68	Neural correlates of facilitations in face learning by selective caricaturing of facial shape or reflectance. NeuroImage, 2014, 102, 736-747.	4.2	39
69	Fluency affects source memory for familiar names in younger and older adults: Evidence from event-related brain potentials. NeuroImage, 2014, 92, 90-105.	4.2	11
70	Spatial inattention abolishes voice adaptation. Attention, Perception, and Psychophysics, 2013, 75, 603-613.	1.3	8
71	Perceiving vocal age and gender: An adaptation approach. Acta Psychologica, 2013, 144, 583-593.	1.5	15
72	High and low performers differ in the use of shape information for face recognition. Neuropsychologia, 2013, 51, 1310-1319.	1.6	42

STEFAN R SCHWEINBERGER

#	Article	IF	CITATIONS
73	Combined effects of inversion and feature removal on N170 responses elicited by faces and car fronts. Brain and Cognition, 2013, 81, 321-328.	1.8	34
74	Holistic face processing of own- and other-age faces in young and older adults: ERP evidence from the composite face task. NeuroImage, 2013, 74, 306-317.	4.2	36
75	Gender differences in familiar voice identification. Hearing Research, 2013, 296, 131-140.	2.0	35
76	Neural correlates of priming and adaptation in familiar face perception. Cortex, 2013, 49, 1963-1977.	2.4	39
77	Adaptation Effects to Attractiveness of Face Photographs and Art Portraits are Domain-Specific. I-Perception, 2013, 4, 303-316.	1.4	21
78	Ageing faces in ageing minds: A review on the own-age bias in face recognition. Visual Cognition, 2013, 21, 1337-1363.	1.6	72
79	Dissociating the neural bases of repetition-priming and adaptation in the human brain for faces. Journal of Neurophysiology, 2013, 110, 2727-2738.	1.8	18
80	Adaptor Identity Modulates Adaptation Effects in Familiar Face Identification and Their Neural Correlates. PLoS ONE, 2013, 8, e70525.	2.5	9
81	Audiovisual Integration in Speaker Identification. , 2013, , 119-134.		3
82	Adaptation Aftereffects in Vocal Emotion Perception Elicited by Expressive Faces and Voices. PLoS ONE, 2013, 8, e81691.	2.5	41
83	Face recognition memory across the adult life span: Event-related potential evidence from the own-age bias Psychology and Aging, 2012, 27, 1066-1081.	1.6	38
84	Face-Evoked Steady-State Visual Potentials: Effects of Presentation Rate and Face Inversion. Frontiers in Human Neuroscience, 2012, 6, 316.	2.0	35
85	Effects of anticaricaturing vs. caricaturing and their neural correlates elucidate a role of shape for face learning. Neuropsychologia, 2012, 50, 2426-2434.	1.6	44
86	Daily-life contact affects the own-age bias and neural correlates of face memory in elderly participants. Neuropsychologia, 2012, 50, 3496-3508.	1.6	57
87	Perceiving age and gender in unfamiliar faces: An fMRI study on face categorization. Brain and Cognition, 2012, 78, 163-168.	1.8	32
88	The faces you remember: Caricaturing shape facilitates brain processes reflecting the acquisition of new face representations. Biological Psychology, 2012, 89, 21-33.	2.2	55
89	Attentional spread in deaf and hearing participants: Face and object distractor processing under perceptual load. Attention, Perception, and Psychophysics, 2012, 74, 1312-1320.	1.3	18
90	Faces forming traces: Neurophysiological correlates of learning naturally distinctive and caricatured faces. Neurolmage, 2012, 63, 491-500.	4.2	52

#	Article	IF	CITATIONS
91	Face Distortion Aftereffects Evoked by Featureless First-Order Stimulus Configurations. Frontiers in Psychology, 2012, 3, 566.	2.1	5
92	Face and object encoding under perceptual load: ERP evidence. NeuroImage, 2011, 54, 3021-3027.	4.2	65
93	Accessing Semantic Person Knowledge: Temporal Dynamics of Nonstrategic Categorical and Associative Priming. Journal of Cognitive Neuroscience, 2011, 23, 447-459.	2.3	21
94	Hearing facial identities: Brain correlates of face–voice integration in person identification. Cortex, 2011, 47, 1026-1037.	2.4	61
95	You are only as old as you sound: Auditory aftereffects in vocal age perception. Hearing Research, 2011, 282, 283-288.	2.0	28
96	Mental representations of familiar faces. British Journal of Psychology, 2011, 102, 943-958.	2.3	148
97	Neural correlates of adaptation to voice identity. British Journal of Psychology, 2011, 102, 748-764.	2.3	28
98	Person perception 25 years after Bruce and Young (1986): An introduction. British Journal of Psychology, 2011, 102, 695-703.	2.3	17
99	Combined effects of attention and inversion on event-related potentials to human bodies and faces. Cognitive Neuroscience, 2011, 2, 138-146.	1.4	17
100	Learning task affects ERP-correlates of the own-race bias, but not recognition memory performance. Neuropsychologia, 2010, 48, 2027-2040.	1.6	95
101	Young without plastic surgery: Perceptual adaptation to the age of female and male faces. Vision Research, 2010, 50, 2570-2576.	1.4	72
102	Electrophysiological correlates of eye gaze adaptation. Journal of Vision, 2010, 10, 17-17.	0.3	22
103	Neural Correlates of Generic versus Gender-specific Face Adaptation. Journal of Cognitive Neuroscience, 2010, 22, 2345-2356.	2.3	63
104	The role of audiovisual asynchrony in person recognition. Quarterly Journal of Experimental Psychology, 2010, 63, 23-30.	1.1	33
105	Voice aftereffects of adaptation to speaker identity. Hearing Research, 2010, 268, 38-45.	2.0	52
106	Parallel processing in face perception Journal of Experimental Psychology: Human Perception and Performance, 2010, 36, 103-121.	0.9	22
107	Developmental phonagnosia: A selective deficit of vocal identity recognition. Neuropsychologia, 2009, 47, 123-131.	1.6	110
108	N250r ERP repetition effects from distractor faces when attending to another face under load: Evidence for a face attention resource. Brain Research, 2009, 1270, 64-77.	2.2	23

STEFAN R SCHWEINBERGER

#	Article	IF	CITATIONS
109	In the ear of the beholder: neural correlates of adaptation to voice gender. European Journal of Neuroscience, 2009, 30, 527-534.	2.6	39
110	N250 ERP Correlates of the Acquisition of Face Representations across Different Images. Journal of Cognitive Neuroscience, 2009, 21, 625-641.	2.3	153
111	Perceptual load manipulation reveals sensitivity of the face-selective N170 to attention. NeuroReport, 2009, 20, 782-787.	1.2	51
112	Brain potential correlates of face recognition: Geometric distortions and the N250r brain response to stimulus repetitions. Psychophysiology, 2008, 45, 535-544.	2.4	85
113	Perceiving age and gender in unfamiliar faces: Brain potential evidence for implicit and explicit person categorization. Psychophysiology, 2008, 45, 957-969.	2.4	54
114	Distortions in the brain? ERP effects of caricaturing familiar and unfamiliar faces. Brain Research, 2008, 1228, 177-188.	2.2	48
115	N250r and N400 ERP correlates of immediate famous face repetition are independent of perceptual load. Brain Research, 2008, 1239, 181-190.	2.2	69
116	Attention capture by faces. Cognition, 2008, 107, 330-342.	2.2	247
117	Auditory Adaptation in Voice Perception. Current Biology, 2008, 18, 684-688.	3.9	93
118	The age of the beholder: ERP evidence of an own-age bias in face memory. Neuropsychologia, 2008, 46, 2973-2985.	1.6	137
119	Position-specific and position-invariant face aftereffects reflect the adaptation of different cortical areas. Neurolmage, 2008, 43, 156-164.	4.2	65
120	The temporal decay of eye gaze adaptation effects. Journal of Vision, 2008, 8, 4-4.	0.3	35
121	Expertise and own-race bias in face processing: an event-related potential study. NeuroReport, 2008, 19, 583-587.	1.2	170
122	Are you looking at me? Neural correlates of gaze adaptation. NeuroReport, 2007, 18, 693-696.	1.2	69
123	Prosopagnosia Without Apparent Cause: Overview and Diagnosis of Six Cases. Cortex, 2007, 43, 718-733.	2.4	64
124	Hearing Facial Identities. Quarterly Journal of Experimental Psychology, 2007, 60, 1446-1456.	1.1	79
125	Brain responses to repetitions of human and animal faces, inverted faces, and objects — An MEG study. Brain Research, 2007, 1184, 226-233.	2.2	63
126	Hemispheric asymmetries in image-specific and abstractive priming of famous faces: Evidence from reaction times and event-related brain potentials. Neuropsychologia, 2007, 45, 2910-2921.	1.6	34

8

STEFAN R SCHWEINBERGER

#	Article	IF	CITATIONS
127	Effects of personal familiarity on early neuromagnetic correlates of face perception. European Journal of Neuroscience, 2006, 24, 3317-3321.	2.6	68
128	Masked and unmasked electrophysiological repetition effects of famous faces. Brain Research, 2006, 1109, 146-157.	2.2	25
129	Hemispheric asymmetries in font-specific and abstractive priming of written personal names: Evidence from event-related brain potentials. Brain Research, 2006, 1117, 195-205.	2.2	12
130	What's special about personally familiar faces? A multimodal approach. Psychophysiology, 2004, 41, 688-701.	2.4	174
131	Face repetition effects in direct and indirect tasks: an event-related brain potentials study. Cognitive Brain Research, 2004, 21, 388-400.	3.0	41
132	N250r: a face-selective brain response to stimulus repetitions. NeuroReport, 2004, 15, 1501-1505.	1.2	239
133	Expression Influences the Recognition of Familiar Faces. Perception, 2004, 33, 399-408.	1.2	113
134	Matching faces for semantic information and names: an event-related brain potentials study. Cognitive Brain Research, 2003, 17, 314-326.	3.0	32
135	Interhemispheric cooperation for face recognition but not for affective facial expressions. Neuropsychologia, 2003, 41, 407-414.	1.6	83
136	Covert Recognition and the Neural System for Face Processing. Cortex, 2003, 39, 9-30.	2.4	203
137	N200, N250r, and N400 Event-Related Brain Potentials Reveal Three Loci of Repetition Priming for Familiar Names Journal of Experimental Psychology: Learning Memory and Cognition, 2003, 29, 1298-1311.	0.9	70
138	A principled method for determining the functionality of brain responses. NeuroReport, 2003, 14, 1665-1669.	1.2	87
139	Brain-potential evidence for the time course of access to biographical facts and names of familiar persons Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 366-373.	0.9	22
140	Personal Names and the Human Right Hemisphere: An Illusory Link?. Brain and Language, 2002, 80, 111-120.	1.6	16
141	Age-related slowing in face and name recognition: Evidence from event-related brain potentials Psychology and Aging, 2002, 17, 140-160.	1.6	180
142	Famous personal names and the right hemisphere: the link keeps missing. Brain and Language, 2002, 82, 95-110.	1.6	9
143	Interhemispheric cooperation for familiar but not unfamiliar face processing. Neuropsychologia, 2002, 40, 1841-1848.	1.6	63
144	Human brain potential correlates of repetition priming in face and name recognition. Neuropsychologia, 2002, 40, 2057-2073.	1.6	188

#	Article	IF	CITATIONS
145	Event-related brain potential evidence for a response of inferior temporal cortex to familiar face repetitions. Cognitive Brain Research, 2002, 14, 398-409.	3.0	430
146	Brain-potential evidence for the time course of access to biographical facts and names of familiar persons. Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 366-73.	0.9	7
147	Human brain potential correlates of voice priming and voice recognition. Neuropsychologia, 2001, 39, 921-936.	1.6	40
148	Neuropsychological Impairments in the Recognition of Faces, Voices, and Personal Names. Brain and Cognition, 2000, 44, 342-366.	1.8	103
149	Asymmetric dependencies in perceiving identity and emotion: Experiments with morphed faces. Perception & Psychophysics, 1999, 61, 1102-1115.	2.3	126
150	Asymmetric relationships among perceptions of facial identity, emotion, and facial speech Journal of Experimental Psychology: Human Perception and Performance, 1998, 24, 1748-1765.	0.9	173
151	Auditory Long term Memory: Repetition Priming of Voice Recognition. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1997, 50, 498-517.	2.3	43
152	Recognizing Famous Voices. Journal of Speech, Language, and Hearing Research, 1997, 40, 453-463.	1.6	82
153	Auditory Long term Memory: Repetition Priming of Voice Recognition. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1997, 50, 498-517.	2.3	17
154	How Gorbachev primed Yeltsin: Analyses of associative priming in person recognition by means of reaction times and event-related brain potentials Journal of Experimental Psychology: Learning Memory and Cognition, 1996, 22, 1383-1407.	0.9	74
155	Repetition priming and associative priming of face recognition: Evidence from event-related potentials Journal of Experimental Psychology: Learning Memory and Cognition, 1995, 21, 722-736.	0.9	226
156	Event-related potentials and models of performance asymmetries in face and word recognition. Neuropsychologia, 1994, 32, 175-191.	1.6	36
157	Human brain potential correlates of face encoding into memory. Electroencephalography and Clinical Neurophysiology, 1991, 79, 457-463.	0.3	59
158	Contributions of stimulus encoding and memory search to right hemisphere superiority in face recognition: Behavioural and electrophysiological evidence. Neuropsychologia, 1991, 29, 389-413.	1.6	41