Katerina Artyushkova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3645951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells. Journal of Materials Chemistry, 2011, 21, 11392.	6.7	545
2	Chemistry of Multitudinous Active Sites for Oxygen Reduction Reaction in Transition Metal–Nitrogen–Carbon Electrocatalysts. Journal of Physical Chemistry C, 2015, 119, 25917-25928.	1.5	433
3	Multitechnique Characterization of a Polyaniline–Iron–Carbon Oxygen Reduction Catalyst. Journal of Physical Chemistry C, 2012, 116, 16001-16013.	1.5	378
4	Feâ€N Oxygen Reduction Fuel Cell Catalyst Derived from Carbendazim: Synthesis, Structure, and Reactivity. Advanced Energy Materials, 2014, 4, 1301735.	10.2	350
5	Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures. Chemical Communications, 2013, 49, 2539.	2.2	347
6	Practical guide for curve fitting in x-ray photoelectron spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	287
7	Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid. Nano Energy, 2016, 29, 65-82.	8.2	269
8	CO ₂ Electroreduction to Hydrocarbons on Carbon-Supported Cu Nanoparticles. ACS Catalysis, 2014, 4, 3682-3695.	5.5	267
9	Thermally Stable and Regenerable Platinum–Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria. Angewandte Chemie - International Edition, 2017, 56, 8986-8991.	7.2	262
10	Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nature Communications, 2015, 6, 8311.	5.8	260
11	Self-Supported Pd _{<i>x</i>} Bi Catalysts for the Electrooxidation of Glycerol in Alkaline Media. Journal of the American Chemical Society, 2014, 136, 3937-3945.	6.6	247
12	Reversible Control of Free Energy and Topography of Nanostructured Surfaces. Journal of the American Chemical Society, 2004, 126, 8904-8905.	6.6	215
13	Polyaniline-derived Non-Precious Catalyst for the Polymer Electrolyte Fuel Cell Cathode. ECS Transactions, 2008, 16, 159-170.	0.3	209
14	Synthesis and characterization of high performing Fe-N-C catalyst for oxygen reduction reaction (ORR) in Alkaline Exchange Membrane Fuel Cells. Journal of Power Sources, 2018, 375, 214-221.	4.0	206
15	Nano-structured non-platinum catalysts for automotive fuel cell application. Nano Energy, 2015, 16, 293-300.	8.2	190
16	Anthracene-Modified Multi-Walled Carbon Nanotubes as Direct Electron Transfer Scaffolds for Enzymatic Oxygen Reduction. ACS Catalysis, 2011, 1, 1683-1690.	5.5	175
17	Entrapment of Enzymes and Carbon Nanotubes in Biologically Synthesized Silica: Glucose Oxidaseâ€Catalyzed Direct Electron Transfer. Small, 2008, 4, 357-364.	5.2	171
18	Platinum group metal-free NiMo hydrogen oxidation catalysts: high performance and durability in alkaline exchange membrane fuel cells. Journal of Materials Chemistry A, 2017, 5, 24433-24443.	5.2	161

#	Article	IF	CITATIONS
19	XPS Structural Studies of Nano-composite Non-platinum Electrocatalysts for Polymer Electrolyte Fuel Cells. Topics in Catalysis, 2007, 46, 263-275.	1.3	159
20	Effect of pH on the Activity of Platinum Group Metal-Free Catalysts in Oxygen Reduction Reaction. ACS Catalysis, 2018, 8, 3041-3053.	5.5	158
21	Performance Durability of Polyaniline-derived Non-precious Cathode Catalysts. ECS Transactions, 2009, 25, 1299-1311.	0.3	150
22	Iron based catalysts from novel low-cost organic precursors for enhanced oxygen reduction reaction in neutral media microbial fuel cells. Energy and Environmental Science, 2016, 9, 2346-2353.	15.6	147
23	Binding energy shifts for nitrogenâ€containing grapheneâ€based electrocatalysts – experiments and DFT calculations. Surface and Interface Analysis, 2016, 48, 293-300.	0.8	147
24	Volcano Trend in Electrocatalytic CO ₂ Reduction Activity over Atomically Dispersed Metal Sites on Nitrogen-Doped Carbon. ACS Catalysis, 2019, 9, 10426-10439.	5.5	142
25	Practical guides for x-ray photoelectron spectroscopy: First steps in planning, conducting, and reporting XPS measurements. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	137
26	Oxygen Binding to Active Sites of Fe–N–C ORR Electrocatalysts Observed by Ambient-Pressure XPS. Journal of Physical Chemistry C, 2017, 121, 2836-2843.	1.5	135
27	A family of Fe-N-C oxygen reduction electrocatalysts for microbial fuel cell (MFC) application: Relationships between surface chemistry and performances. Applied Catalysis B: Environmental, 2017, 205, 24-33.	10.8	135
28	Morphological Attributes Govern Carbon Dioxide Reduction on N-Doped Carbon Electrodes. Joule, 2019, 3, 1719-1733.	11.7	132
29	Air Breathing Cathodes for Microbial Fuel Cell using Mn-, Fe-, Co- and Ni-containing Platinum Group Metal-free Catalysts. Electrochimica Acta, 2017, 231, 115-124.	2.6	131
30	Cyanamide-derived non-precious metal catalyst for oxygen reduction. Electrochemistry Communications, 2010, 12, 1792-1795.	2.3	130
31	A Hybrid DNA-Templated Gold Nanocluster For Enhanced Enzymatic Reduction of Oxygen. Journal of the American Chemical Society, 2015, 137, 11678-11687.	6.6	128
32	Core Level Shifts of Hydrogenated Pyridinic and Pyrrolic Nitrogen in the Nitrogen-Containing Graphene-Based Electrocatalysts: In-Plane vs Edge Defects. Journal of Physical Chemistry C, 2016, 120, 29225-29232.	1.5	123
33	The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon, 2014, 67, 128-139.	5.4	122
34	Non-precious oxygen reduction catalysts prepared by high-pressure pyrolysis for low-temperature fuel cells. Applied Catalysis B: Environmental, 2009, 92, 209-216.	10.8	117
35	XPS guide: Charge neutralization and binding energy referencing for insulating samples. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	114
36	Insights on the extraordinary tolerance to alcohols of Fe-N-C cathode catalysts in highly performing direct alcohol fuel cells. Nano Energy, 2017, 34, 195-204.	8.2	113

#	Article	IF	CITATIONS
37	Growth of Phthalocyanine Doped and Undoped Nanotubes Using Mild Synthesis Conditions for Development of Novel Oxygen Reduction Catalysts. ACS Applied Materials & Interfaces, 2010, 2, 3295-3302.	4.0	110
38	CuCo ₂ O ₄ ORR/OER Bi-Functional Catalyst: Influence of Synthetic Approach on Performance. Journal of the Electrochemical Society, 2015, 162, F449-F454.	1.3	104
39	Fe–N–C Catalyst Graphitic Layer Structure and Fuel Cell Performance. ACS Energy Letters, 2017, 2, 1489-1493.	8.8	104
40	Role of Nitrogen Moieties in N-Doped 3D-Graphene Nanosheets for Oxygen Electroreduction in Acidic and Alkaline Media. ACS Applied Materials & Therfaces, 2018, 10, 11623-11632.	4.0	104
41	A mechanistic study of 4-aminoantipyrine and iron derived non-platinum group metal catalyst on the oxygen reduction reaction. Electrochimica Acta, 2013, 90, 656-665.	2.6	102
42	Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application. Bioresource Technology, 2014, 163, 54-63.	4.8	102
43	Nickel–copper supported on a carbon black hydrogen oxidation catalyst integrated into an an an an an an an an	2.5	102
44	High Performance and Costâ€Effective Direct Methanol Fuel Cells: Feâ€N Methanolâ€Tolerant Oxygen Reduction Reaction Catalysts. ChemSusChem, 2016, 9, 1986-1995.	3.6	100
45	Computational and experimental evidence for a new TM–N ₃ /C moiety family in non-PGM electrocatalysts. Physical Chemistry Chemical Physics, 2015, 17, 17785-17789.	1.3	98
46	Misconceptions in interpretation of nitrogen chemistry from x-ray photoelectron spectra. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	96
47	Size effects on the thermal conductivity of amorphous silicon thin films. Physical Review B, 2016, 93, .	1.1	95
48	Highly active and durable templated non-PGM cathode catalysts derived from iron and aminoantipyrine. Electrochemistry Communications, 2012, 22, 53-56.	2.3	94
49	Surface Modification of Microbial Fuel Cells Anodes: Approaches to Practical Design. Electrochimica Acta, 2014, 134, 116-126.	2.6	89
50	Influence of anode surface chemistry on microbial fuel cell operation. Bioelectrochemistry, 2015, 106, 141-149.	2.4	88
51	Understanding PGM-free catalysts by linking density functional theory calculations and structural analysis: Perspectives and challenges. Current Opinion in Electrochemistry, 2018, 9, 137-144.	2.5	85
52	Predictive Modeling of Electrocatalyst Structure Based on Structure-to-Property Correlations of X-ray Photoelectron Spectroscopic and Electrochemical Measurements. Langmuir, 2008, 24, 9082-9088.	1.6	84
53	Novel highly active and selective Fe-N-C oxygen reduction electrocatalysts derived from in-situ polymerization pyrolysis. Nano Energy, 2017, 38, 201-209.	8.2	84
54	Performance, methanol tolerance and stability of Fe-aminobenzimidazole derived catalyst for direct methanol fuel cells. Journal of Power Sources, 2016, 319, 235-246.	4.0	83

#	Article	IF	CITATIONS
55	High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application. Scientific Reports, 2015, 5, 16596.	1.6	82
56	Elevated Concentrations of U and Co-occurring Metals in Abandoned Mine Wastes in a Northeastern Arizona Native American Community. Environmental Science & Technology, 2015, 49, 8506-8514.	4.6	82
57	Templated non-PGM cathode catalysts derived from iron and poly(ethyleneimine) precursors. Applied Catalysis B: Environmental, 2012, 127, 300-306.	10.8	81
58	Graphene-Riched Co ₉ S ₈ -N-C Non-Precious Metal Catalyst for Oxygen Reduction in Alkaline Media. ECS Transactions, 2011, 41, 1709-1717.	0.3	79
59	PGM-free Fe-N-C catalysts for oxygen reduction reaction: Catalyst layer design. Journal of Power Sources, 2016, 326, 43-49.	4.0	79
60	Selective Aerobic Oxidation of Alcohols over Atomicallyâ€Ðispersed Nonâ€Precious Metal Catalysts. ChemSusChem, 2017, 10, 359-362.	3.6	79
61	Original Mechanochemical Synthesis of Non-Platinum Group Metals Oxygen Reduction Reaction Catalysts Assisted by Sacrificial Support Method. Electrochimica Acta, 2015, 179, 154-160.	2.6	78
62	Trapping of Mobile Pt Species by PdO Nanoparticles under Oxidizing Conditions. Journal of Physical Chemistry Letters, 2014, 5, 2089-2093.	2.1	77
63	Highly stable precious metal-free cathode catalyst for fuel cell application. Journal of Power Sources, 2016, 327, 557-564.	4.0	76
64	Doubleâ€Chamber Microbial Fuel Cell with a Nonâ€Platinumâ€Group Metal Fe–N–C Cathode Catalyst. ChemSusChem, 2015, 8, 828-834.	3.6	75
65	Effects of Cathode Corrosion on Through-Plane Water Transport in Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2013, 160, F980-F993.	1.3	69
66	Nitrogen-Doped Graphene Oxide Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Nano Materials, 2019, 2, 1675-1682.	2.4	69
67	Structure-to-property relationships in fuel cell catalyst supports: Correlation of surface chemistry and morphology with oxidation resistance of carbon blacks. Journal of Power Sources, 2012, 214, 303-313.	4.0	67
68	Design of Iron(II) Phthalocyanineâ€Derived Oxygen Reduction Electrocatalysts for Highâ€Powerâ€Density Microbial Fuel Cells. ChemSusChem, 2017, 10, 3243-3251.	3.6	67
69	Surface characterization and direct electrochemistry of redox copper centers of bilirubin oxidase from fungi Myrothecium verrucaria. Bioelectrochemistry, 2008, 74, 101-110.	2.4	63
70	Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance. Journal of Power Sources, 2018, 375, 11-20.	4.0	62
71	Mechanistic studies of oxygen reduction on Fe-PEI derived non-PGM electrocatalysts. Applied Catalysis B: Environmental, 2014, 150-151, 179-186.	10.8	61
72	Nano-structured Pd-Sn catalysts for alcohol electro-oxidation in alkaline medium. Electrochemistry Communications, 2015, 57, 48-51.	2.3	61

#	Article	IF	CITATIONS
73	Operando XAFS study of carbon supported Ni, NiZn, and Co catalysts for hydrazine electrooxidation for use in anion exchange membrane fuel cells. Electrochimica Acta, 2015, 163, 116-122.	2.6	61
74	Highly-active Pd–Cu electrocatalysts for oxidation of ubiquitous oxygenated fuels. Applied Catalysis B: Environmental, 2016, 191, 76-85.	10.8	61
75	Nano-structured platinum group metal-free catalysts and their integration in fuel cell electrode architectures. Applied Catalysis B: Environmental, 2018, 237, 1139-1147.	10.8	61
76	Fe-carbon nitride "Core-shell―electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2016, 222, 1778-1791.	2.6	60
77	Direct synthesis of platinum group metal-free Fe-N-C catalyst for oxygen reduction reaction in alkaline media. Electrochemistry Communications, 2016, 72, 140-143.	2.3	60
78	Platinum group metal-free electrocatalysts: Effects of synthesis on structure and performance in proton-exchange membrane fuel cell cathodes. Journal of Power Sources, 2017, 348, 30-39.	4.0	60
79	Novel dual templating approach for preparation of highly active Fe-N-C electrocatalyst for oxygen reduction. Electrochimica Acta, 2017, 224, 49-55.	2.6	60
80	Spectroscopic Investigation of Interfacial Interaction of Manganese Oxide with Triclosan, Aniline, and Phenol. Environmental Science & Technology, 2016, 50, 10978-10987.	4.6	59
81	Highly active and selective nickel molybdenum catalysts for direct hydrazine fuel cell. Electrochimica Acta, 2016, 215, 420-426.	2.6	59
82	Proliferation of Faulty Materials Data Analysis in the Literature. Microscopy and Microanalysis, 2020, 26, 1-2.	0.2	59
83	Identification of chemical components in XPS spectra and images using multivariate statistical analysis methods. Journal of Electron Spectroscopy and Related Phenomena, 2001, 121, 33-55.	0.8	58
84	Investigating the Nature of the Active Sites for the CO ₂ Reduction Reaction on Carbon-Based Electrocatalysts. ACS Catalysis, 2019, 9, 7668-7678.	5.5	58
85	Surface Modification for Enhanced Biofilm Formation and Electron Transport in Shewanella Anodes. Journal of the Electrochemical Society, 2015, 162, H597-H603.	1.3	57
86	Glycerol electrooxidation on self-supported Pd1Snx nanoparticules. Applied Catalysis B: Environmental, 2015, 176-177, 429-435.	10.8	54
87	Mechanism of Oxygen Reduction Reaction on Transition Metal–Nitrogen–Carbon Catalysts: Establishing the Role of Nitrogen-containing Active Sites. ACS Applied Energy Materials, 2018, 1, 5948-5953.	2.5	54
88	Cathode materials for ceramic based microbial fuel cells (MFCs). International Journal of Hydrogen Energy, 2015, 40, 14706-14715.	3.8	53
89	Quantification of PVC-PMMA polymer blend compositions by XPS in the presence of x-ray degradation effects. Surface and Interface Analysis, 2001, 31, 352-361.	0.8	51
90	Electrocatalytic Oxygen Reduction Activities of Thiol-Protected Nanomolecules Ranging in Size from Au ₂₈ (SR) ₂₀ to Au ₂₇₉ (SR) ₈₄ . Journal of Physical Chemistry C, 2018, 122, 24809-24817.	1.5	50

#	Article	IF	CITATIONS
91	Thermally Stable and Regenerable Platinum–Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria. Angewandte Chemie, 2017, 129, 9114-9119.	1.6	49
92	Probing the molecular structure of antimicrobial peptide-mediated silica condensation using X-ray photoelectron spectroscopy. Journal of Materials Chemistry, 2012, 22, 9875.	6.7	48
93	Nanostructured metal-N-C electrocatalysts for CO2 reduction and hydrogen evolution reactions. Applied Catalysis B: Environmental, 2018, 232, 512-520.	10.8	48
94	Oriented Monolayers Prepared from Lyotropic Chromonic Liquid Crystal. Langmuir, 2005, 21, 2300-2307.	1.6	46
95	Borohydride-tolerant oxygen electroreduction catalyst for mixed-reactant Swiss-roll direct borohydride fuel cells. Journal of Materials Chemistry A, 2013, 1, 14384.	5.2	46
96	Chemically specific identification of carbon in XPS imaging using Multivariate Auger Feature Imaging (MAFI). Carbon, 2016, 107, 190-197.	5.4	46
97	Post Gold King Mine Spill Investigation of Metal Stability in Water and Sediments of the Animas River Watershed. Environmental Science & Technology, 2016, 50, 11539-11548.	4.6	45
98	High Performance Platinum Group Metal-Free Cathode Catalysts for Microbial Fuel Cell (MFC). Journal of the Electrochemical Society, 2017, 164, H3041-H3046.	1.3	45
99	Structure and Electrochemical Properties of Electrocatalysts for NADH Oxidation. Electroanalysis, 2010, 22, 799-806.	1.5	44
100	Nickel-based electrocatalysts for ammonia borane oxidation: enabling materials for carbon-free-fuel direct liquid alkaline fuel cell technology. Nano Energy, 2017, 37, 248-259.	8.2	44
101	Role of Surface Chemistry on Catalyst/Ionomer Interactions for Transition Metal–Nitrogen–Carbon Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 68-77.	2.5	44
102	Correlations between Synthesis and Performance of Fe-Based PGM-Free Catalysts in Acidic and Alkaline Media: Evolution of Surface Chemistry and Morphology. ACS Applied Energy Materials, 2019, 2, 5406-5418.	2.5	44
103	Platinum Supported on NbRu _{<i>y</i>} O _{<i>z</i>} as Electrocatalyst for Ethanol Oxidation in Acid and Alkaline Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 3043-3056.	1.5	43
104	Nitrogen-Doped Three-Dimensional Graphene-Supported Palladium Nanocomposites: High-Performance Cathode Catalysts for Oxygen Reduction Reactions. ACS Catalysis, 2017, 7, 6609-6618.	5.5	43
105	Relationship between surface chemistry, biofilm structure, and electron transfer in <i>Shewanella</i> anodes. Biointerphases, 2015, 10, 019013.	0.6	42
106	Experimental and Theoretical Trends of PGM-Free Electrocatalysts for the Oxygen Reduction Reaction with Different Transition Metals. Journal of the Electrochemical Society, 2019, 166, F3136-F3142.	1.3	42
107	Multivariate image analysis methods applied to XPS imaging data sets. Surface and Interface Analysis, 2002, 33, 185-195.	0.8	40
108	Design of Novel Graphene Materials as a Support for Palladium Nanoparticles: Highly Active Catalysts towards Ethanol Electrooxidation. Electrochimica Acta, 2016, 203, 144-153.	2.6	40

#	Article	IF	CITATIONS
109	Uranium mobility and accumulation along the Rio Paguate, Jackpile Mine in Laguna Pueblo, NM. Environmental Sciences: Processes and Impacts, 2017, 19, 605-621.	1.7	39
110	Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems. Science Advances, 2016, 2, e1501178.	4.7	36
111	Hierarchically Structured Non-PGM Oxygen Reduction Electrocatalyst Based on Microemulsion-Templated Silica and Pyrolyzed Iron and Cyanamide Precursors. Electrocatalysis, 2014, 5, 241-247.	1.5	35
112	Modeling of Low-Temperature Fuel Cell Electrodes Using Non-Precious Metal Catalysts. Journal of the Electrochemical Society, 2015, 162, F1253-F1261.	1.3	35
113	Introduction to topical collection: Reproducibility challenges and solutions with a focus on guides to XPS analysis. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	35
114	Mechanism Study of Hydrazine Electrooxidation Reaction on Nickel Oxide Surface in Alkaline Electrolyte by In Situ XAFS. Journal of the Electrochemical Society, 2016, 163, H951-H957.	1.3	34
115	Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants. Journal of Power Sources, 2016, 324, 556-571.	4.0	34
116	Nanoscale graphite-supported Pt catalysts for oxygen reduction reactions in fuel cells. Electrochimica Acta, 2011, 56, 2566-2573.	2.6	33
117	Effect of preparation method on the performance of the Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol: Part II-characterization. International Journal of Hydrogen Energy, 2012, 37, 18815-18826.	3.8	33
118	Evidence of High Electrocatalytic Activity of Molybdenum Carbide Supported Platinum Nanorafts. Journal of the Electrochemical Society, 2015, 162, H681-H685.	1.3	32
119	Redox Transformations of As and Se at the Surfaces of Natural and Synthetic Ferric Nontronites: Role of Structural and Adsorbed Fe(II). Environmental Science & amp; Technology, 2017, 51, 11105-11114.	4.6	30
120	PGM-Free ORR Catalysts Designed by Templating PANI-Type Polymers Containing Functional Groups with High Affinity to Iron. Journal of the Electrochemical Society, 2019, 166, F3240-F3245.	1.3	30
121	Synthesis of Nickelâ€Doped Ceria Catalysts for Selective Acetylene Hydrogenation. ChemCatChem, 2019, 11, 1526-1533.	1.8	30
122	Non-PGM membrane electrode assemblies: Optimization for performance. International Journal of Hydrogen Energy, 2015, 40, 14676-14682.	3.8	29
123	Selective CO 2 electroreduction to C 2 H 4 on porous Cu films synthesized by sacrificial support method. Journal of CO2 Utilization, 2017, 19, 137-145.	3.3	29
124	Oxygen Reduction Reaction Electrocatalysts Derived from Iron Salt and Benzimidazole and Aminobenzimidazole Precursors and Their Application in Microbial Fuel Cell Cathodes. ACS Applied Energy Materials, 2018, 1, 5755-5765.	2.5	29
125	Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine. Journal of Power Sources, 2019, 425, 50-59.	4.0	29
126	The effects of wastewater types on power generation and phosphorus removal of microbial fuel cells (MFCs) with activated carbon (AC) cathodes. International Journal of Hydrogen Energy, 2014, 39, 21796-21802.	3.8	28

#	Article	IF	CITATIONS
127	Design of experiments and principal component analysis asÂapproaches for enhancing performance of gas-diffusional air-breathing bilirubin oxidase cathode. Journal of Power Sources, 2014, 245, 389-397.	4.0	28
128	Surface-modified three-dimensional graphene nanosheets as a stationary phase for chromatographic separation of chiral drugs. Scientific Reports, 2018, 8, 14747.	1.6	28
129	Structural correlations: Design levers for performance and durability of catalyst layers. Journal of Power Sources, 2015, 284, 631-641.	4.0	27
130	Bio-inspired design of electrocatalysts for oxalate oxidation: a combined experimental and computational study of Mn–N–C catalysts. Physical Chemistry Chemical Physics, 2015, 17, 13235-13244.	1.3	26
131	Highly durable direct hydrazine hydrate anion exchange membrane fuel cell. Journal of Power Sources, 2018, 375, 291-299.	4.0	26
132	Study of degradation and spatial performance of low Pt-loaded proton exchange membrane fuel cells under exposure to sulfur dioxide in an oxidant stream. Journal of Power Sources, 2020, 458, 228032.	4.0	26
133	Data fusion of XPS and AFM images for chemical phase identification in polymer blends. Surface and Interface Analysis, 2009, 41, 119-126.	0.8	25
134	Effect of bicarbonate and phosphate on arsenic release from mining-impacted sediments in the Cheyenne River watershed, South Dakota, USA. Environmental Sciences: Processes and Impacts, 2019, 21, 456-468.	1.7	25
135	Correlative Spectroscopic Imaging: XPS and FT-IR Studies of PVC/PMMA Polymer Blends. Applied Spectroscopy, 2000, 54, 1549-1558.	1.2	24
136	Application of XPS spectral subtraction and multivariate analysis for the characterization of Ar+ ion beam modified polyimide surfaces. Applied Surface Science, 2010, 256, 3204-3210.	3.1	24
137	Implementing PGM-free electrocatalysts in high-temperature polymer electrolyte membrane fuel cells. Electrochemistry Communications, 2018, 93, 91-94.	2.3	24
138	Impact of Corrosion Conditions on Carbon Paper Electrode Morphology and the Performance of a Vanadium Redox Flow Battery. Journal of the Electrochemical Society, 2019, 166, A353-A363.	1.3	24
139	Platinum group metal-free oxygen reduction electrocatalysts used in neutral electrolytes for bioelectrochemical reactor applications. Current Opinion in Electrochemistry, 2020, 23, 106-113.	2.5	24
140	Multianalytical Study of the PTFE Content Local Variation of the PEMFC Gas Diffusion Layer. Journal of the Electrochemical Society, 2013, 160, F1305-F1315.	1.3	23
141	Enhancement of Electrocatalytic Oxidation of Glycerol by Plasmonics. ChemElectroChem, 2019, 6, 241-245.	1.7	23
142	Catalysts by pyrolysis: Direct observation of transformations during re-pyrolysis of transition metal-nitrogen-carbon materials leading to state-of-the-art platinum group metal-free electrocatalyst. Materials Today, 2022, 53, 58-70.	8.3	23
143	Xâ€Ray Photoelectron Spectroscopy for Characterization of Bionanocomposite Functional Materials for Energyâ€Harvesting Technologies. ChemPhysChem, 2013, 14, 2071-2080.	1.0	22
144	Investigating phosphonate monolayer stability on ALD oxide surfaces. Applied Surface Science, 2014, 288, 98-108.	3.1	22

#	Article	IF	CITATIONS
145	Poisoning effects of sulfur dioxide in an air stream on spatial proton exchange membrane fuel cell performance. Journal of Power Sources, 2019, 438, 226949.	4.0	22
146	Wildfires and water chemistry: effect of metals associated with wood ash. Environmental Sciences: Processes and Impacts, 2016, 18, 1078-1089.	1.7	21
147	Application of X-ray photoelectron spectroscopy to studies of electrodes in fuel cells and electrolyzers. Journal of Electron Spectroscopy and Related Phenomena, 2019, 231, 127-139.	0.8	21
148	Versailles Project on Advanced Materials and Standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 063208.	0.9	21
149	Direct correlation of x-ray photoelectron spectroscopy and Fourier transform infrared spectra and images from poly(vinyl chloride)/poly(methyl methacrylate) polymer blends. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 2791.	0.9	20
150	Mathematical topographical correction of XPS images using multivariate statistical methods. Surface and Interface Analysis, 2004, 36, 1304-1313.	0.8	20
151	Use of digital image processing of microscopic images and multivariate analysis for quantitative correlation of morphology, activity and durability of electrocatalysts. RSC Advances, 2012, 2, 4304.	1.7	20
152	Organic Functional Group Chemistry in Mineralized Deposits Containing U(IV) and U(VI) from the Jackpile Mine in New Mexico. Environmental Science & Technology, 2019, 53, 5758-5767.	4.6	20
153	Characterizing Complex Gas–Solid Interfaces with in Situ Spectroscopy: Oxygen Adsorption Behavior on Fe–N–C Catalysts. Journal of Physical Chemistry C, 2020, 124, 16529-16543.	1.5	20
154	Chemical polymerization and electrochemical characterization of thiazines for NADH electrocatalysis applications. Electrochimica Acta, 2010, 55, 6659-6664.	2.6	19
155	Sources of Potential Lead Exposure Among Pregnant Women in New Mexico. Maternal and Child Health Journal, 2013, 17, 172-179.	0.7	19
156	Mechanistic Study of Electrooxidation of Ethanol on PtSn Nanoparticles in Alkaline and Acid Media. Journal of the Electrochemical Society, 2015, 162, H345-H351.	1.3	19
157	In Situ XAFS and HAXPES Analysis and Theoretical Study of Cobalt Polypyrrole Incorporated on Carbon (CoPPyC) Oxygen Reduction Reaction Catalysts for Anion-Exchange Membrane Fuel Cells. Journal of Physical Chemistry C, 2014, 118, 25480-25486.	1.5	18
158	Facile synthesis of high surface area molybdenum nitride and carbide. Journal of Solid State Chemistry, 2015, 228, 232-238.	1.4	18
159	Synthesis and characterization of redox-active ferric nontronite. Chemical Geology, 2017, 470, 1-12.	1.4	18
160	Inhibition of Surface Chemical Moieties by Tris(hydroxymethyl)aminomethane: A Key to Understanding Oxygen Reduction on Iron–Nitrogen–Carbon Catalysts. ACS Applied Energy Materials, 2018, 1, 1942-1949.	2.5	18
161	Graphite Intercalation Compounds Derived by Green Chemistry as Oxygen Reduction Reaction Catalysts. ACS Applied Materials & amp; Interfaces, 2020, 12, 42678-42685.	4.0	18
162	Electrooxidation of ethanol on PtSn nanoparticles in alkaline solution: Correlation between structure and catalytic properties. Electrochimica Acta, 2012, 80, 377-382.	2.6	17

#	Article	IF	CITATIONS
163	NAD ⁺ /NADH Tethering on MWNTs-Bucky Papers for Glucose Dehydrogenase-Based Anodes. Journal of the Electrochemical Society, 2014, 161, H3020-H3028.	1.3	17
164	Characterization of Complex Interactions at the Gas–Solid Interface with in Situ Spectroscopy: The Case of Nitrogen-Functionalized Carbon. Journal of Physical Chemistry C, 2019, 123, 9074-9086.	1.5	17
165	Angle resolved imaging of polymer blend systems: From images to a 3D volume of material morphology. Journal of Electron Spectroscopy and Related Phenomena, 2005, 149, 51-60.	0.8	16
166	Degradation of Gas Diffusion Layers in PEM Fuel Cells during Drive Cycle Operation. ECS Transactions, 2013, 58, 919-926.	0.3	16
167	Surface modifications for enhanced enzyme immobilization and improved electron transfer of PQQ-dependent glucose dehydrogenase anodes. Bioelectrochemistry, 2015, 105, 78-87.	2.4	16
168	Anodic biofilms as the interphase for electroactive bacterial growth on carbon veil. Biointerphases, 2016, 11, 031013.	0.6	16
169	Palladium Nanoparticles Supported on Threeâ€Dimensional Graphene Nanosheets: Superior Cathode Electrocatalysts. ChemElectroChem, 2016, 3, 1655-1666.	1.7	16
170	Structure determination of nanocomposites through 3D imaging using laboratory XPS and multivariate analysis. Journal of Electron Spectroscopy and Related Phenomena, 2010, 178-179, 292-302.	0.8	15
171	Optimization of ink composition based on a non-platinum cathode for single membrane electrode assembly proton exchange membrane fuel cells. Journal of Power Sources, 2013, 226, 112-121.	4.0	15
172	Application of the Discrete Wavelet Transform to SEM and AFM Micrographs for Quantitative Analysis of Complex Surfaces. Langmuir, 2015, 31, 4924-4933.	1.6	15
173	Reactivity of As and U co-occurring in Mine Wastes in northeastern Arizona. Chemical Geology, 2019, 522, 26-37.	1.4	14
174	Study of Ion Beam Alignment of Liquid Crystals on Polymer Substrates. Molecular Crystals and Liquid Crystals, 2004, 412, 361-368.	0.4	13
175	Innovative statistical interpretation of Shewanella oneidensis microbial fuel cells data. Physical Chemistry Chemical Physics, 2014, 16, 8956-8969.	1.3	13
176	NiO/Nb ₂ O ₅ /C Hydrazine Electrooxidation Catalysts for Anion Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F229-F234.	1.3	13
177	Spatial proton exchange membrane fuel cell performance under bromomethane poisoning. Journal of Power Sources, 2017, 342, 135-147.	4.0	13
178	Structure of Active Sites of Fe-N-C Nano-Catalysts for Alkaline Exchange Membrane Fuel Cells. Nanomaterials, 2018, 8, 965.	1.9	13
179	Chemical controls on the propagation rate of fracture in calcite. Scientific Reports, 2018, 8, 16465.	1.6	13
180	How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Cross‣aboratory Study. ChemSusChem, 2021, 14, 2313-2330.	3.6	13

#	Article	IF	CITATIONS
181	Ni-La Electrocatalysts for Direct Hydrazine Alkaline Anion-Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2014, 161, H3106-H3112.	1.3	12
182	Kinetic Isotopic Effect Studies of Iron–Nitrogen–Carbon Electrocatalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2019, 123, 11476-11483.	1.5	12
183	Orientation of 5CB Molecules on Aligning Substrates Studied by Angle Resolved X-ray Photoelectron Spectroscopy. Molecular Crystals and Liquid Crystals, 2005, 438, 205/[1769]-213/[1777].	0.4	10
184	Spectroâ€Electrochemical Microfluidic Platform for Monitoring Multiâ€Step Cascade Reactions. ChemElectroChem, 2019, 6, 246-251.	1.7	10
185	Interaction of Heat Generation, MPL, and Water Retention in Corroded PEMFCs. ECS Transactions, 2011, 41, 337-348.	0.3	9
186	Hydrazine Sensor for Quantitative Determination of High Hydrazine Concentrations for Direct Hydrazine Fuel Cell Vehicle Applications. Journal of the Electrochemical Society, 2014, 161, H79-H85.	1.3	9
187	Fully Synthetic Approach toward Transition Metal–Nitrogen–Carbon Oxygen Reduction Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 3802-3806.	2.5	9
188	Crystallization of electrically conductive visibly transparent ITO thin films by wavelength-range-specific pulsed Xe arc lamp annealing. Journal of Materials Science, 2018, 53, 12949-12960.	1.7	9
189	Ni(OH)2-free NiCu as a hydrogen evolution and oxidation electrocatalyst. Electrochemistry Communications, 2021, 125, 106999.	2.3	9
190	38.1: Study of Ion Beam Alignment of Liquid Crystals on Polymer Substrates. Digest of Technical Papers SID International Symposium, 2002, 33, 1102.	0.1	8
191	Integration of Platinum Group Metalâ€Free Catalysts and Bilirubin Oxidase into a Hybrid Material for Oxygen Reduction: Interplay of Chemistry and Morphology. ChemSusChem, 2017, 10, 1534-1542.	3.6	8
192	Hydrothermal Synthesis of Platinumâ€Groupâ€Metalâ€Free Catalysts: Structural Elucidation and Oxygen Reduction Catalysis. ChemElectroChem, 2018, 5, 1848-1853.	1.7	8
193	Metal Reactivity in Laboratory Burned Wood from a Watershed Affected by Wildfires. Environmental Science & Technology, 2018, 52, 8115-8123.	4.6	8
194	Effect of bicarbonate and oxidizing conditions on U(IV) and U(VI) reactivity in mineralized deposits of New Mexico. Chemical Geology, 2019, 524, 345-355.	1.4	8
195	Modular Microfluidic Paperâ€Based Devices for Multiâ€Modal Cascade Catalysis. ChemElectroChem, 2019, 6, 2448-2455.	1.7	8
196	New directions in the analysis of buried interfaces for device technology by hard X-ray photoemission. Faraday Discussions, 2022, 236, 288-310.	1.6	8
197	Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	6
198	Non-platinum Carbon-Supported Oxygen Reduction Catalyst Ink Evaluation Based on Poly(sulfone) and Poly(phenylene)-Derived lonomers in Alkaline Media. Electrocatalysis, 2014, 5, 148-158.	1.5	6

#	Article	IF	CITATIONS
199	Morphological Characterization of ALD and Doping Effects on Mesoporous SnO ₂ Aerogels by XPS and Quantitative SEM Image Analysis. ACS Applied Materials & Interfaces, 2016, 8, 9849-9854.	4.0	6
200	Reaction of bisphenol A with synthetic and commercial MnO _{x(s)} : spectroscopic and kinetic study. Environmental Sciences: Processes and Impacts, 2018, 20, 1046-1055.	1.7	6
201	Functional interfaces for biomimetic energy harvesting: CNTs-DNA matrix for enzyme assembly. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 612-620.	0.5	5
202	Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mnâ€Nâ€3Dâ€Graphene Nanosheets. ChemElectroChem, 2017, 4, 2336-2344.	1.7	5
203	XPS Investigation of the Source of GPS Arc Contamination. IEEE Transactions on Plasma Science, 2019, 47, 3848-3851.	0.6	5
204	Intrinsically fluorescent gold nanoclusters stabilized within a copper storage protein that follow the Irving–Williams trend in metal ion sensing. Analyst, The, 2019, 144, 3949-3958.	1.7	5
205	Pt ₇ Sn ₃ Catalysts for Ethanol Electro-Oxidation: Correlation between Surface Structure and Catalytic Activity. ECS Transactions, 2011, 41, 1691-1700.	0.3	4
206	PEM Fuel Cell Catalyst Layer Structure Degradation during Carbon Corrosion. ECS Transactions, 2013, 58, 945-952.	0.3	4
207	Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study. Journal of the Electrochemical Society, 2016, 163, H787-H795.	1.3	4
208	Gold nanocluster formation using morpholino oligomer as template and assembly agent within hybrid bio-nanomaterials. RSC Advances, 2016, 6, 90624-90630.	1.7	4
209	Kinetic Isotope Effect as a Tool To Investigate the Oxygen Reduction Reaction on Ptâ€based Electrocatalysts – Part II: Effect of Platinum Dispersion. ChemPhysChem, 2020, 21, 1331-1339.	1.0	4
210	High-energy x-ray photoelectron spectroscopy spectra of SiO2 measured by Cr Kα. Surface Science Spectra, 2022, 29, .	0.3	4
211	Ion Beam Alignment of Nematic Liquid Crystal on MEH-PPV-Layers. Molecular Crystals and Liquid Crystals, 2006, 454, 167/[569]-177/[579].	0.4	3
212	Plasma Beam Alignment of Liquid Crystals on the Bare Glass: Modification of Surface Chemical Composition. Molecular Crystals and Liquid Crystals, 2011, 546, 79/[1549]-86/[1556].	0.4	3
213	Top-down, in-plane GaAs nanowire MOSFETs on an Al ₂ O ₃ buffer with a trigate oxide from focused ion-beam milling and chemical oxidation. Nanotechnology, 2016, 27, 375707.	1.3	3
214	Synthesis, characterization, and photoluminescence of Er ₂ O ₃ –Er ₂ SO ₂ nanoparticles on reduced graphene oxide. Nanotechnology, 2017, 28, 195603.	1.3	3
215	Understanding Surface Reactivity of Amorphous Transition-Metal-Incorporated Aluminum Oxide Thin Films. Journal of Physical Chemistry C, 2019, 123, 27048-27054.	1.5	3
216	Hard x-ray photoelectron spectroscopy of Al2O3 with Cr KÎ \pm excitation. Surface Science Spectra, 2022, 29, .	0.3	3

#	Article	IF	CITATIONS
217	High-energy photoelectron spectroscopy of Si3N4 thin film on Si with Cr Kα excitation. Surface Science Spectra, 2022, 29, 014007.	0.3	3
218	Detecting molecular separation in nano-fluidic channels through velocity analysis of temporal image sequences by multivariate curve resolution. Microfluidics and Nanofluidics, 2010, 9, 447-459.	1.0	2
219	Structural and Morphological Properties of Carbon Supports: Effect on Catalyst Degradation. ECS Transactions, 2010, 33, 425-431.	0.3	2
220	3D Capacitive Sensor Array for Detection of Neural Responses. ECS Journal of Solid State Science and Technology, 2014, 3, N15-N21.	0.9	2
221	Post-etching mesa surface composition investigation of InAs/GaSb type-II strained layer superlattices using XPS characterization. Infrared Physics and Technology, 2015, 70, 66-69.	1.3	2
222	Vertical Charge Transfer and Lateral Transport in Graphene/Germanium Heterostructures. ACS Applied Materials & Interfaces, 2017, 9, 15830-15840.	4.0	2
223	Application of surface analysis methods to study alignment mechanism and orientation of liquid crystals. Journal of Molecular Liquids, 2018, 267, 542-549.	2.3	2
224	Acetaminophen and caffeine removal by MnO _{x(s)} and GAC media in column experiments. Environmental Science: Water Research and Technology, 2021, 7, 134-143.	1.2	2
225	Emerging investigator series: entrapment of uranium–phosphorus nanocrystals inside root cells of <i>Tamarix</i> plants from a mine waste site. Environmental Sciences: Processes and Impacts, 2021, 23, 73-85.	1.7	2
226	How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Cross‣aboratory Study. ChemSusChem, 2021, 14, 2267.	3.6	2
227	Understanding methanol dissociative adsorption and oxidation on amorphous oxide films. Faraday Discussions, 2022, 236, 58-70.	1.6	2
228	High-energy photoelectron spectroscopy of AlN with Cr Kα excitation. Surface Science Spectra, 2022, 29, 014004.	0.3	2
229	High-energy photoelectron spectroscopy of Al with Cr K <i>\hat{l}±</i> excitation. Surface Science Spectra, 2022, 29, .	0.3	2
230	High-energy photoelectron spectroscopy of 6H-SiC wafer with Cr Kl \pm excitation. Surface Science Spectra, 2022, 29, 014006.	0.3	2
231	High-energy x-ray photoelectron spectroscopy spectra of TiO2 measured by Cr Kα. Surface Science Spectra, 2022, 29, 014017.	0.3	2
232	Multi-technique, Multivariate Analysis Methods for Enhanced Sample Characterization. Microscopy and Microanalysis, 2006, 12, 1402-1403.	0.2	1
233	Effect of Graphitic Content on Carbon Supported Catalyst Performance. ECS Transactions, 2011, 41, 845-852.	0.3	1
234	Foreword to special section on "Near Ambient and Synchrotron Surface Analysis (NAXPS)― Surface and Interface Analysis, 2018, 50, 911-912.	0.8	1

#	Article	IF	CITATIONS
235	Novel Fe-N-C Catalysts from Organic Precursors for Neutral Media and Microbial Fuel Cell Application. ECS Meeting Abstracts, 2016, , .	0.0	1
236	High-energy photoelectron spectroscopy of Si(100) with Cr Kα excitation. Surface Science Spectra, 2022, 29, 014005.	0.3	1
237	High-energy x-ray photoelectron spectroscopy spectra of InP measured by Cr Kα. Surface Science Spectra, 2022, 29, 014018.	0.3	1
238	High-energy x-ray photoelectron spectroscopy spectra of Al2O3 measured by Cr Kα. Surface Science Spectra, 2022, 29, 014021.	0.3	1
239	High-energy x-ray photoelectron spectroscopy spectra of HfO2 measured by Cr Kα. Surface Science Spectra, 2022, 29, 014019.	0.3	1
240	High energy x-ray photoelectron spectroscopy spectra of Si3N4 measured by Cr Kα. Surface Science Spectra, 2022, 29, 014013.	0.3	1
241	High-energy x-ray photoelectron spectroscopy spectra of TiN measured by Cr Kα. Surface Science Spectra, 2022, 29, 014016.	0.3	1
242	HAXPES spectra of NaCl measured by Cr Kα. Surface Science Spectra, 2022, 29, 014022.	0.3	1
243	HAXPES spectra of GaAs measured by Cr Kα. Surface Science Spectra, 2022, 29, 014023.	0.3	1
244	45.2: XPS Characterization of Photo-Alignment Using Adsorbed Dichroic Materials. Digest of Technical Papers SID International Symposium, 2001, 32, 1166.	0.1	0
245	New Approaches in Accelerating Material Development Through Structure-to-Property Relationships built from XPS and Microscopic Data. Microscopy and Microanalysis, 2008, 14, 472-473.	0.2	0
246	Correlative Microscopic and Spectroscopic Characterization of Carboxylated Single-Walled Carbon Nanotubes. Microscopy and Microanalysis, 2008, 14, 474-475.	0.2	0
247	Preparation and Characterization of Graphitic Particles as Alternative Support for Oxygen Reduction Reaction Catalysts in Fuel Cells. ECS Transactions, 2010, 33, 533-544.	0.3	0
248	Mechanistic Studies On Fe-PEI Derived Non-PGM Catalysts for Oxygen Reduction. ECS Meeting Abstracts, 2013, , .	0.0	0
249	Carbon and Composite Nanostructured Materials for Energy Applications. ECS Meeting Abstracts, 2013, , .	0.0	0
250	Thin-Film Non-Precious Metal Model Catalysts for Oxygen Reduction Reaction. ECS Transactions, 2014, 64, 293-301.	0.3	0
251	Congratulations John Grant!. Surface and Interface Analysis, 2016, 48, 245-247.	0.8	0
252	Statistical structure-to-property relationships for fuel cell materials. WIT Transactions on Engineering Sciences, 2013, , .	0.0	0

#	Article	IF	CITATIONS
253	Investigating the Nature of the Active Sites for the CO ₂ Reduction Reaction on Carbon-Based Electrocatalysts. SSRN Electronic Journal, 0, , .	0.4	0
254	(Invited) Application of a Laboratory-Based Scanning XPS/Haxpes Instrument for the Characterization of Buried Interfaces. ECS Meeting Abstracts, 2020, MA2020-02, 1771-1771.	0.0	0