Omar Omar Bds

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3645497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bone without borders – Monetite-based calcium phosphate guides bone formation beyond the skeletal envelope. Bioactive Materials, 2023, 19, 103-114.	8.6	11
2	Caffeine Consumption Influences Lidocaine Action via Pain-Related Voltage-Gated Sodium Channels: An In Vivo Animal Study. Pain Research and Management, 2022, 2022, 1-8.	0.7	0
3	Monocytes and pyrophosphate promote mesenchymal stem cell viability and early osteogenic differentiation. Journal of Materials Science: Materials in Medicine, 2022, 33, 11.	1.7	2
4	Sensitivity and Specificity of Rapid SARS-CoV-2 Antigen Detection Using Different Sampling Methods: A Clinical Unicentral Study. International Journal of Environmental Research and Public Health, 2022, 19, 6836.	1.2	2
5	Early plaque formation on PTFE membranes with expanded or dense surface structures applied in the oral cavity of human volunteers. Clinical and Experimental Dental Research, 2021, 7, 137-146.	0.8	12
6	Multimodal Analysis of the Tissue Response to a Bone-Anchored Hearing Implant: Presentation of a Two-Year Case Report of a Patient With Recurrent Pain, Inflammation, and Infection, Including a Systematic Literature Review. Frontiers in Cellular and Infection Microbiology, 2021, 11, 640899.	1.8	1
7	Habitual caffeine intake affects implant osseointegration: An in vivo study. Journal of Periodontal Research, 2021, 56, 1070-1078.	1.4	1
8	Immunomodulatory effects exerted by extracellular vesicles from Staphylococcus epidermidis and Staphylococcus aureus isolated from bone-anchored prostheses. Biomaterials, 2021, 278, 121158.	5.7	17
9	The effects of controlled nanotopography, machined topography and their combination on molecular activities, bone formation and biomechanical stability during osseointegration. Acta Biomaterialia, 2021, 136, 279-290.	4.1	20
10	Molecular Response to Nanopatterned Implants in the Human Jaw Bone. ACS Biomaterials Science and Engineering, 2021, 7, 5878-5889.	2.6	4
11	Cellular and molecular reactions to dental implants. , 2020, , 183-205.		0
12	Exosomes influence the behavior of human mesenchymal stem cells on titanium surfaces. Biomaterials, 2020, 230, 119571.	5.7	53
13	In situ bone regeneration of large cranial defects using synthetic ceramic implants with a tailored composition and design. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26660-26671.	3.3	36
14	Does Smoking Impair Bone Regeneration in the Dental Alveolar Socket?. Calcified Tissue International, 2019, 105, 619-629.	1.5	2
15	Barrier membranes: More than the barrier effect?. Journal of Clinical Periodontology, 2019, 46, 103-123.	2.3	148
16	Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: Consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. Journal of Clinical Periodontology, 2019, 46, 82-91.	2.3	132
17	In Vitro and Ex Vivo Evaluation of a Novel Guided Drill System for Bone-Anchored Hearing Implants. International Journal of Oral and Maxillofacial Implants, 2019, 34, e85-e98.	0.6	6

Biomaterials for Cranio-Maxillofacial Bone Engineering. , 2019, , 7-25.

#	Article	IF	CITATIONS
19	The clinical outcome and microbiological profile of bone-anchored hearing systems (BAHS) with different abutment topographies: a prospective pilot study. European Archives of Oto-Rhino-Laryngology, 2018, 275, 1395-1408.	0.8	15
20	Bone and soft tissue outcomes, risk factors, and complications of implantâ€supported prostheses: 5â€Years RCT with different abutment types and loading protocols. Clinical Implant Dentistry and Related Research, 2018, 20, 313-321.	1.6	32
21	Cytokine expression profile in the boneâ€anchored hearing system: 12â€week results from a prospective randomized, controlled study. Clinical Implant Dentistry and Related Research, 2018, 20, 606-616.	1.6	8
22	Tissue dynamics and regenerative outcome in two resorbable nonâ€crossâ€linked collagen membranes for guided bone regeneration: A preclinical molecular and histological study inÂvivo. Clinical Oral Implants Research, 2018, 29, 7-19.	1.9	25
23	A Novel Class of Injectable Bioceramics That Glue Tissues and Biomaterials. Materials, 2018, 11, 2492.	1.3	42
24	Implantâ€associated gene expression in the jaw bone of smokers and nonsmokers: A human study using quantitative <scp>qPCR</scp> . Clinical Oral Implants Research, 2018, 29, 937-953.	1.9	14
25	Interactions between monocytes, mesenchymal stem cells, and implants evaluated using flow cytometry and gene expression. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1728-1741.	1.3	6
26	Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation. PLoS ONE, 2018, 13, e0193059.	1.1	126
27	The influence of controlled surface nanotopography on the early biological events of osseointegration. Acta Biomaterialia, 2017, 53, 559-571.	4.1	59
28	Siteâ€specific gene expression analysis of implantâ€near cells in a soft tissue infection model — Application of laser microdissection to study biomaterialâ€associated infection. Journal of Biomedical Materials Research - Part A, 2017, 105, 2210-2217.	2.1	6
29	Gene expression in periâ€implant crevicular fluid of smokers and nonsmokers. 1. The early phase of osseointegration. Clinical Implant Dentistry and Related Research, 2017, 19, 681-693.	1.6	18
30	Inflammatory cell response to ultra-thin amorphous and crystalline hydroxyapatite surfaces. Journal of Materials Science: Materials in Medicine, 2017, 28, 9.	1.7	26
31	Guided bone regeneration: materials and biological mechanisms revisited. European Journal of Oral Sciences, 2017, 125, 315-337.	0.7	468
32	Clinical, radiological, and gene expression analyses in smokers and nonâ€smokers, Part 2: RCT on the late healing phase of osseointegration. Clinical Implant Dentistry and Related Research, 2017, 19, 901-915.	1.6	19
33	The clinical, radiological, microbiological, and molecular profile of the skinâ€penetration site of transfemoral amputees treated with boneâ€anchored prostheses. Journal of Biomedical Materials Research - Part A, 2017, 105, 578-589.	2.1	41
34	A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry. Micron, 2017, 94, 1-8.	1.1	42
35	Molecular Activity and Osseointegration After Single-Dose Irradiation: An In Vivo Study. International Journal of Oral and Maxillofacial Implants, 2017, 32, 1033-1038.	0.6	3
36	The role of well-defined nanotopography of titanium implants on osseointegration: cellular and molecular events in vivo. International Journal of Nanomedicine, 2016, 11, 1367.	3.3	44

#	Article	IF	CITATIONS
37	Stem cell homing using local delivery of plerixafor and stromal derived growth factorâ€1 alpha for improved bone regeneration around Tiâ€implants. Journal of Biomedical Materials Research - Part A, 2016, 104, 2466-2475.	2.1	7
38	Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting. Acta Biomaterialia, 2016, 36, 296-309.	4.1	120
39	Clinical, Morphological, and Molecular Evaluations of Bone Regeneration With an Additive Manufactured Osteosynthesis Plate. Journal of Craniofacial Surgery, 2016, 27, 1899-1904.	0.3	10
40	Guided bone regeneration is promoted by the molecular events in the membrane compartment. Biomaterials, 2016, 84, 167-183.	5.7	122
41	Guided bone regeneration using resorbable membrane and different bone substitutes: Early histological and molecular events. Acta Biomaterialia, 2016, 29, 409-423.	4.1	98
42	Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially Pure Titanium Implants for Bone-Anchored Hearing Systems. PLoS ONE, 2016, 11, e0157504.	1.1	78
43	Oxidized Titanium Implants Enhance Osseointegration via Mechanisms Involving <scp>RANK</scp> / <scp>RANKL</scp> / <scp>OPG</scp> Regulation. Clinical Implant Dentistry and Related Research, 2015, 17, e486-500.	1.6	34
44	Bone response to a novel Ti–Ta–Nb–Zr alloy. Acta Biomaterialia, 2015, 20, 165-175.	4.1	64
45	Enhancement of CRF-PEEK osseointegration by plasma-sprayed hydroxyapatite: A rabbit model. Journal of Biomaterials Applications, 2014, 29, 234-242.	1.2	44
46	Molecular and structural patterns of bone regeneration in surgically created defects containing bone substitutes. Biomaterials, 2014, 35, 3229-3242.	5.7	28
47	The effects of a systemic single dose of zoledronic acid on post-implantation bone remodelling and inflammation in an ovariectomised rat model. Biomaterials, 2013, 34, 1546-1561.	5.7	29
48	Monocyte Exosomes Stimulate the Osteogenic Gene Expression of Mesenchymal Stem Cells. PLoS ONE, 2013, 8, e75227.	1.1	177
49	Strontium-Doped Calcium Phosphate and Hydroxyapatite Granules Promote Different Inflammatory and Bone Remodelling Responses in Normal and Ovariectomised Rats. PLoS ONE, 2013, 8, e84932.	1.1	55
50	The Influence of Bone Type on the Gene Expression in Normal Bone and at the Boneâ€Implant Interface: Experiments in Animal Model. Clinical Implant Dentistry and Related Research, 2011, 13, 146-156.	1.6	18
51	The stimulation of an osteogenic response by classical monocyte activation. Biomaterials, 2011, 32, 8190-8204.	5.7	105
52	The correlation between gene expression of proinflammatory markers and bone formation during osseointegration with titanium implants. Biomaterials, 2011, 32, 374-386.	5.7	69
53	<i>In vivo</i> gene expression in response to anodically oxidized versus machined titanium implants. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1552-1566.	2.1	50
54	Integrin and chemokine receptor gene expression in implant-adherent cells during early osseointegration. Journal of Materials Science: Materials in Medicine, 2010, 21, 969-980.	1.7	79

#	Article	IF	CITATIONS
55	Titanium oral implants: surface characteristics, interface biology and clinical outcome. Journal of the Royal Society Interface, 2010, 7, S515-27.	1.5	183