
Esther Lutgens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3645253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeted Deficiency or Cytosolic Truncation of the VE-cadherin Gene in Mice Impairs VEGF-Mediated Endothelial Survival and Angiogenesis. Cell, 1999, 98, 147-157.	13.5	1,167
2	Delivery of MicroRNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection. Science Signaling, 2009, 2, ra81.	1.6	1,165
3	Differential Expression of Bone Matrix Regulatory Proteins in Human Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1998-2003.	1.1	630
4	Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis, 2012, 225, 461-468.	0.4	490
5	Requirement for CD154 in the progression of atherosclerosis. Nature Medicine, 1999, 5, 1313-1316.	15.2	404
6	Auto-Antigenic Protein-DNA Complexes Stimulate Plasmacytoid Dendritic Cells to Promote Atherosclerosis. Circulation, 2012, 125, 1673-1683.	1.6	347
7	Transforming Growth Factor-β Mediates Balance Between Inflammation and Fibrosis During Plaque Progression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 975-982.	1.1	300
8	Microanatomy of the Human Atherosclerotic Plaque by Single-Cell Transcriptomics. Circulation Research, 2020, 127, 1437-1455.	2.0	283
9	Loss of Matrix Metalloproteinase-9 or Matrix Metalloproteinase-12 Protects Apolipoprotein E–Deficient Mice Against Atherosclerotic Media Destruction but Differentially Affects Plaque Growth. Circulation, 2004, 109, 1408-1414.	1.6	273
10	Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature, 2019, 569, 236-240.	13.7	268
11	Atherosclerotic Plaque Destabilization. Circulation Research, 2014, 114, 214-226.	2.0	266
12	Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood, 2010, 116, 4317-4327.	0.6	249
13	Both early and delayed anti-CD40L antibody treatment induces a stable plaque phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7464-7469.	3.3	241
14	Inflammation and immune system interactions in atherosclerosis. Cellular and Molecular Life Sciences, 2013, 70, 3847-3869.	2.4	241
15	Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. Journal of Experimental Medicine, 2010, 207, 391-404.	4.2	232
16	Macrophage MicroRNA-155 Promotes Cardiac Hypertrophy and Failure. Circulation, 2013, 128, 1420-1432.	1.6	225
17	Myeloid Type I Interferon Signaling Promotes Atherosclerosis by Stimulating Macrophage Recruitment to Lesions. Cell Metabolism, 2010, 12, 142-153.	7.2	212
18	Disruption of the Cathepsin K Gene Reduces Atherosclerosis Progression and Induces Plaque Fibrosis but Accelerates Macrophage Foam Cell Formation. Circulation, 2006, 113, 98-107.	1.6	211

#	Article	IF	CITATIONS
19	Atherosclerosis. Current Opinion in Lipidology, 2016, 27, 209-215.	1.2	207
20	Thymic B Cells Are Licensed to Present Self Antigens for Central T Cell Tolerance Induction. Immunity, 2015, 42, 1048-1061.	6.6	201
21	Microvesicles in vascular homeostasis and diseases. Thrombosis and Haemostasis, 2017, 117, 1296-1316.	1.8	193
22	CD40 Ligand+ Microparticles From Human Atherosclerotic Plaques Stimulate Endothelial Proliferation and Angiogenesis. Journal of the American College of Cardiology, 2008, 52, 1302-1311.	1.2	176
23	Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nature Metabolism, 2019, 1, 912-926.	5.1	172
24	Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes. EMBO Molecular Medicine, 2013, 5, 471-481.	3.3	169
25	Inhibiting Inflammation with Myeloid Cell-Specific Nanobiologics Promotes Organ Transplant Acceptance. Immunity, 2018, 49, 819-828.e6.	6.6	161
26	Chronic myocardial infarction in the mouse: cardiac structural and functional change. Cardiovascular Research, 1999, 41, 586-593.	1.8	160
27	Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovascular Research, 1999, 41, 473-479.	1.8	160
28	Malignant cells fuel tumor growth by educating infiltrating leukocytes to produce the mitogen Gas6. Blood, 2010, 115, 2264-2273.	0.6	157
29	CD40-CD40L Interactions in Atherosclerosis. Trends in Cardiovascular Medicine, 2002, 12, 27-32.	2.3	154
30	Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis. Journal of the American College of Cardiology, 2018, 71, 527-542.	1.2	149
31	The atherogenic effect of excess methionine intake. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15089-15094.	3.3	147
32	Atherosclerotic Plaque Rupture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 2123-2130.	1.1	146
33	Targeting macrophage Histone deacetylase 3 stabilizes atherosclerotic lesions. EMBO Molecular Medicine, 2014, 6, 1124-1132.	3.3	140
34	A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia. Cell Reports, 2018, 25, 2044-2052.e5.	2.9	140
35	Gas6 promotes inflammation by enhancing interactions between endothelial cells, platelets, and leukocytes. Blood, 2008, 111, 4096-4105.	0.6	137
36	Fibroblast growth factor 2 endocytosis in endothelial cells proceed via syndecan-4-dependent activation of Rac1 and a Cdc42-dependent macropinocytic pathway. Journal of Cell Science, 2004, 117, 3189-3199.	1.2	129

#	Article	IF	CITATIONS
37	Vascular CXCR4 Limits Atherosclerosis by Maintaining Arterial Integrity. Circulation, 2017, 136, 388-403.	1.6	128
38	Immunotherapy for cardiovascular disease. European Heart Journal, 2019, 40, 3937-3946.	1.0	127
39	Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Science Translational Medicine, 2017, 9, .	5.8	121
40	The multi-functionality of CD40L and its receptor CD40 in atherosclerosis. Thrombosis and Haemostasis, 2009, 102, 206-214.	1.8	117
41	Hypoxia Induces Aortic Hypertrophic Growth, Left Ventricular Dysfunction, and Sympathetic Hyperinnervation of Peripheral Arteries in the Chick Embryo. Circulation, 2002, 105, 2791-2796.	1.6	116
42	Plasmacytoid Dendritic Cells Protect Against Atherosclerosis by Tuning T-Cell Proliferation and Activity. Circulation Research, 2011, 109, 1387-1395.	2.0	115
43	The dynamic extracellular matrix: intervention strategies during heart failure and atherosclerosis. Journal of Pathology, 2003, 200, 516-525.	2.1	114
44	Blocking CD40-TRAF6 signaling is a therapeutic target in obesity-associated insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2686-2691.	3.3	112
45	CD40 and Its Ligand in Atherosclerosis. Trends in Cardiovascular Medicine, 2007, 17, 118-123.	2.3	104
46	Dynamics of cardiac wound healing following myocardial infarction: observations in genetically altered mice. Acta Physiologica Scandinavica, 2001, 173, 75-82.	2.3	100
47	Gene Profiling in Atherosclerosis Reveals a Key Role for Small Inducible Cytokines. Circulation, 2005, 111, 3443-3452.	1.6	100
48	Complementary roles of platelets and coagulation in thrombus formation on plaques acutely ruptured by targeted ultrasound treatment: a novel intravital model. Journal of Thrombosis and Haemostasis, 2009, 7, 152-161.	1.9	98
49	Immune Cell Crosstalk in Obesity: A Key Role for Costimulation?. Diabetes, 2014, 63, 3982-3991.	0.3	98
50	Hypercholesterolemiaâ€induced priming of hematopoietic stem and progenitor cells aggravates atherosclerosis. FASEB Journal, 2014, 28, 2202-2213.	0.2	97
51	Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. American Journal of Clinical Nutrition, 2020, 112, 413-426.	2.2	96
52	Atherosclerosis in APOE*3-Leiden Transgenic Mice. Circulation, 1999, 99, 276-283.	1.6	95
53	Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nature Biomedical Engineering, 2018, 2, 279-292.	11.6	94
54	Regulatory T cells in atherosclerosis: critical immune regulatory function and therapeutic potential. Cellular and Molecular Life Sciences, 2016, 73, 901-922.	2.4	93

#	Article	IF	CITATIONS
55	Platelet CD40 Exacerbates Atherosclerosis by Transcellular Activation of Endothelial Cells and Leukocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 482-490.	1.1	90
56	Polycyclic aromatic hydrocarbons induce an inflammatory atherosclerotic plaque phenotype irrespective of their DNA binding properties. FASEB Journal, 2005, 19, 1290-1292.	0.2	89
57	Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis. Science Translational Medicine, 2020, 12, .	5.8	88
58	Regulatory T Cells Modulate Postischemic Neovascularization. Circulation, 2009, 120, 1415-1425.	1.6	82
59	The CD40-TRAF6 axis is the key regulator of the CD40/CD40L system in neointima formation and arterial remodeling. Blood, 2008, 111, 4596-4604.	0.6	80
60	CD40L Deficiency Ameliorates Adipose Tissue Inflammation and Metabolic Manifestations of Obesity in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2251-2260.	1.1	74
61	Is there more than C-reactive protein and fibrinogen?. Atherosclerosis, 2006, 187, 18-25.	0.4	73
62	Identifying the anti-inflammatory response to lipid lowering therapy: a position paper from the working group on atherosclerosis and vascular biology of the European Society of Cardiology. Cardiovascular Research, 2019, 115, 10-19.	1.8	72
63	Regulation of atherosclerotic plaque inflammation. Journal of Internal Medicine, 2015, 278, 462-482.	2.7	70
64	Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques. Nature Communications, 2020, 11, 6296.	5.8	70
65	Dietâ€induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow. FASEB Journal, 2016, 30, 1779-1788.	0.2	69
66	Immune Checkpoint Inhibitor Therapy Aggravates T Cell–Driven Plaque Inflammation in Atherosclerosis. JACC: CardioOncology, 2020, 2, 599-610.	1.7	69
67	Chronic Exposure to the Carcinogenic Compound Benzo[a]Pyrene Induces Larger and Phenotypically Different Atherosclerotic Plaques in ApoE-Knockout Mice. American Journal of Pathology, 2004, 164, 101-108.	1.9	67
68	The APO*E3-Leiden mouse as an animal model for basal laminar deposit. British Journal of Ophthalmology, 2000, 84, 1415-1419.	2.1	66
69	The immunobiology of CD154–CD40–TRAF interactions in atherosclerosis. Seminars in Immunology, 2009, 21, 308-312.	2.7	65
70	Thrombospondin-2 prevents cardiac injury and dysfunction in viral myocarditis through the activation of regulatory T-cells. Cardiovascular Research, 2012, 94, 115-124.	1.8	64
71	Exploring immune checkpoints as potential therapeutic targets in atherosclerosis. Cardiovascular Research, 2018, 114, 368-377.	1.8	64
72	Abrogated transforming growth factor beta receptor II (TGFβRII) signalling in dendritic cells promotes immune reactivity of T cells resulting in enhanced atherosclerosis. European Heart Journal, 2013, 34, 3717-3727.	1.0	62

#	Article	IF	CITATIONS
73	Discovery of Small Molecule CD40–TRAF6 Inhibitors. Journal of Chemical Information and Modeling, 2015, 55, 294-307.	2.5	58
74	Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovascular Research, 2019, 115, 1385-1392.	1.8	58
75	Liposome-enhanced MRI of neointimal lesions in the ApoE-KO mouse. Magnetic Resonance in Medicine, 2006, 55, 1170-1174.	1.9	57
76	Dual role of B7 costimulation in obesity-related nonalcoholic steatohepatitis and metabolic dysregulation. Hepatology, 2014, 60, 1196-1210.	3.6	57
77	The CD40–CD40L Dyad in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Frontiers in Immunology, 2017, 8, 1791.	2.2	56
78	Magnetic resonance imaging of atherosclerosis. European Radiology, 2005, 15, 1087-1099.	2.3	54
79	Genetic loss of <i>Gas6</i> induces plaque stability in experimental atherosclerosis. Journal of Pathology, 2008, 216, 55-63.	2.1	54
80	Germinal Center–Derived Antibodies Promote Atherosclerosis Plaque Size and Stability. Circulation, 2019, 139, 2466-2482.	1.6	51
81	Immune Modulation of Brown(ing) Adipose Tissue in Obesity. Endocrine Reviews, 2017, 38, 46-68.	8.9	50
82	Endothelial Surface Layer Degradation by Chronic Hyaluronidase Infusion Induces Proteinuria in Apolipoprotein E-Deficient Mice. PLoS ONE, 2010, 5, e14262.	1.1	50
83	Blocking CD40-TRAF6 interactions by small-molecule inhibitor 6860766 ameliorates the complications of diet-induced obesity in mice. International Journal of Obesity, 2015, 39, 782-790.	1.6	49
84	Interplay between hypercholesterolaemia and inflammation in atherosclerosis: Translating experimental targets into clinical practice. European Journal of Preventive Cardiology, 2018, 25, 948-955.	0.8	46
85	Genome-Wide Expression Studies of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1226-1235.	1.1	45
86	Disruption of circadian rhythm by alternating lightâ€dark cycles aggravates atherosclerosis development in APOE*3â€Leiden.CETP mice. Journal of Pineal Research, 2020, 68, e12614.	3.4	45
87	Resveratrol Inhibits Aortic Root Dilatation in the Fbn1 ^{C1039G/+} Marfan Mouse Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1618-1626.	1.1	44
88	Monocyte and haematopoietic progenitor reprogramming as common mechanism underlying chronic inflammatory and cardiovascular diseases. European Heart Journal, 2018, 39, 3521-3527.	1.0	44
89	Soluble CD40 Ligand Impairs the Function of Peripheral Blood Angiogenic Outgrowth Cells and Increases Neointimal Formation After Arterial Injury. Circulation, 2010, 121, 315-324.	1.6	43
90	Antibody-Mediated Inhibition of CTLA4 Aggravates Atherosclerotic Plaque Inflammation and Progression in Hyperlipidemic Mice. Cells, 2020, 9, 1987.	1.8	43

#	Article	IF	CITATIONS
91	Cancer patients receiving immune checkpoint inhibitor therapy are at an increased risk for atherosclerotic cardiovascular disease. , 2020, 8, e000300.		42
92	Prosaposin mediates inflammation in atherosclerosis. Science Translational Medicine, 2021, 13, .	5.8	42
93	Absence of p55 TNF Receptor Reduces Atherosclerosis, but Has No Major Effect on Angiotensin II Induced Aneurysms in LDL Receptor Deficient Mice. PLoS ONE, 2009, 4, e6113.	1.1	42
94	Interactions between dyslipidemia and the immune system and their relevance as putative therapeutic targets in atherosclerosis. , 2019, 193, 50-62.		41
95	Caveolinâ€1 deficiency decreases atherosclerosis by hampering leukocyte influx into the arterial wall and generating a regulatory Tâ€cell response. FASEB Journal, 2011, 25, 3838-3848.	0.2	40
96	CD40–CD40L: Linking pancreatic, adipose tissue and vascular inflammation in type 2 diabetes and its complications. Diabetes and Vascular Disease Research, 2013, 10, 115-122.	0.9	40
97	High Fat Diet Increases Circulating Endocannabinoids Accompanied by Increased Synthesis Enzymes in Adipose Tissue. Frontiers in Physiology, 2018, 9, 1913.	1.3	40
98	Neutrophils in atherosclerosis. Hamostaseologie, 2015, 35, 121-127.	0.9	39
99	Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nature Communications, 2021, 12, 3754.	5.8	39
100	Salsalate Activates Brown Adipose Tissue in Mice. Diabetes, 2015, 64, 1544-1554.	0.3	38
101	CD40 in coronary artery disease: a matter of macrophages?. Basic Research in Cardiology, 2016, 111, 38.	2.5	37
102	CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice. Cardiovascular Research, 2018, 114, 312-323.	1.8	37
103	Deficiency of the T cell regulator <i>Casitas B-cell lymphoma-B</i> aggravates atherosclerosis by inducing CD8+ T cell-mediated macrophage death. European Heart Journal, 2019, 40, 372-382.	1.0	37
104	The structure-function relationship of activated protein C. Thrombosis and Haemostasis, 2011, 106, 1034-1045	1.8	36
105	CD27 co-stimulation increases the abundance of regulatory T cells and reduces atherosclerosis in hyperlipidaemic mice. European Heart Journal, 2017, 38, 3590-3599.	1.0	35
106	The CD40-CD40L Dyad as Immunotherapeutic Target in Cardiovascular Disease. Journal of Cardiovascular Translational Research, 2021, 14, 13-22.	1.1	34
107	Mast Cells Control the Expansion and Differentiation of IL-10–Competent B Cells. Journal of Immunology, 2014, 193, 4568-4579.	0.4	33
108	Liposomal prednisolone promotes macrophage lipotoxicity in experimental atherosclerosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1463-1470.	1.7	32

#	Article	IF	CITATIONS
109	Inhibition of CD40-TRAF6 interactions by the small molecule inhibitor 6877002 reduces neuroinflammation. Journal of Neuroinflammation, 2017, 14, 105.	3.1	32
110	Leukocyte CD40L deficiency affects the CD25+ CD4 T cell population but does not affect atherosclerosis. Atherosclerosis, 2005, 183, 275-282.	0.4	31
111	Atherosclerotic Plaque Destabilization in Mice: A Comparative Study. PLoS ONE, 2015, 10, e0141019.	1.1	31
112	Platelet CD40L Modulates Thrombus Growth Via Phosphatidylinositol 3-Kinase β, and Not Via CD40 and IκB Kinase α. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1374-1381.	1.1	31
113	Genetic Deletion or Antibody Blockade of α1β1 Integrin Induces a Stable Plaque Phenotype in ApoEâ^'/â^' Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1917-1924.	1.1	30
114	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	1.8	30
115	Interferon- \hat{I}^2 promotes macrophage foam cell formation by altering both cholesterol influx and efflux mechanisms. Cytokine, 2016, 77, 220-226.	1.4	29
116	Inhibition of PFKFB3 Hampers the Progression of Atherosclerosis and Promotes Plaque Stability. Frontiers in Cell and Developmental Biology, 2020, 8, 581641.	1.8	29
117	Immune checkpoint inhibitor treatment and atherosclerotic cardiovascular disease: an emerging clinical problem. , 2021, 9, e002916.		29
118	Constitutive GITR Activation Reduces Atherosclerosis by Promoting Regulatory CD4 ⁺ T-Cell Responses—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1748-1752.	1.1	28
119	CD40/CD40L and Related Signaling Pathways in Cardiovascular Health and Disease—The Pros and Cons for Cardioprotection. International Journal of Molecular Sciences, 2020, 21, 8533.	1.8	28
120	Disruption of hedgehog signalling in ApoE â^' /â^' mice reduces plasma lipid levels, but increases atherosclerosis due to enhanced lipid uptake by macrophages. Journal of Pathology, 2007, 212, 420-428.	2.1	27
121	Platelet-derived PF4 reduces neutrophil apoptosis following arterial occlusion. Thrombosis and Haemostasis, 2014, 112, 562-564.	1.8	27
122	BCG lowers plasma cholesterol levels and delays atherosclerotic lesion progression in mice. Atherosclerosis, 2016, 251, 6-14.	0.4	27
123	Gene profiling of cathepsin K deficiency in atherogenesis: profibrotic but lipogenic. Journal of Pathology, 2006, 210, 334-343.	2.1	26
124	High Expression of C5L2 Correlates with High Proinflammatory Cytokine Expression in Advanced Human Atherosclerotic Plaques. American Journal of Pathology, 2014, 184, 2123-2133.	1.9	26
125	Inflammation, but not recruitment, of adipose tissue macrophages requires signalling through Mac-1 (CD11b/CD18) in diet-induced obesity (DIO). Thrombosis and Haemostasis, 2017, 117, 325-338.	1.8	25
126	Compensatory Enlargement and Stenosis Develop in ApoE ^{â^'/â^'} and ApoE*3-Leiden Transgenic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1359-1365.	1.1	24

#	Article	IF	CITATIONS
127	Macrophage Kdm6b controls the pro-fibrotic transcriptome signature of foam cells. Epigenomics, 2017, 9, 383-391.	1.0	24
128	Cathepsin K gene disruption does not affect murine aneurysm formation. Atherosclerosis, 2010, 209, 96-103.	0.4	23
129	Transforming Growth Factor-Î ² . Circulation Research, 2001, 89, 853-855.	2.0	23
130	The role of CD154 in haematopoietic development. Thrombosis and Haemostasis, 2010, 104, 639-701.	1.8	22
131	Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques. PLoS ONE, 2017, 12, e0187767.	1.1	22
132	Myeloid Kdm6b deficiency results in advanced atherosclerosis. Atherosclerosis, 2018, 275, 156-165.	0.4	22
133	Glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and is associated with an unstable plaque phenotype and cerebrovascular events in humans. European Heart Journal, 2020, 41, 2938-2948.	1.0	22
134	CD70 limits atherosclerosis and promotes macrophage function. Thrombosis and Haemostasis, 2017, 117, 164-175.	1.8	21
135	Macrophage CD40 signaling drives experimental autoimmune encephalomyelitis. Journal of Pathology, 2019, 247, 471-480.	2.1	21
136	Anti-oxLDL antibody isotype levels, as potential markers for progressive atherosclerosis in APOEâ^'/â^' and APOEâ^'/â^'CD40Lâ^'/â^' mice. Clinical and Experimental Immunology, 2008, 154, 264-269.	1.1	19
137	Pleiotropic role of growth arrest-specific gene 6 in atherosclerosis. Current Opinion in Lipidology, 2009, 20, 386-392.	1.2	19
138	Ablation of CD8α+ dendritic cell mediated cross-presentation does not impact atherosclerosis in hyperlipidemic mice. Scientific Reports, 2015, 5, 15414.	1.6	19
139	Future directions for therapeutic strategies in post-ischaemic vascularization: a position paper from European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology. Cardiovascular Research, 2018, 114, 1411-1421.	1.8	19
140	Unique properties of thymic antigen-presenting cells promote epigenetic imprinting of alloantigen-specific regulatory T cells. Oncotarget, 2017, 8, 35542-35557.	0.8	19
141	CD40L Deficiency Protects Against Aneurysm Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1076-1085.	1.1	18
142	Depletion of CD40 on CD11c+ cells worsens the metabolic syndrome and ameliorates hepatic inflammation during NASH. Scientific Reports, 2019, 9, 14702.	1.6	18
143	Are we underestimating the potential for cardiotoxicity related to immune checkpoint inhibitors?. European Heart Journal, 2021, 42, 1632-1635.	1.0	18
144	Myeloid CD40 deficiency reduces atherosclerosis by impairing macrophages' transition into a pro-inflammatory state. Cardiovascular Research, 2023, 119, 1146-1160.	1.8	18

#	Article	IF	CITATIONS
145	Lymphocytic tumor necrosis factor receptor superfamily co-stimulatory molecules in the pathogenesis of atherosclerosis. Current Opinion in Lipidology, 2013, 24, 518-524.	1.2	17
146	Cytokines and Immune Responses in Murine Atherosclerosis. Methods in Molecular Biology, 2015, 1339, 17-40.	0.4	17
147	Helminth antigens counteract a rapid high-fat diet-induced decrease in adipose tissue eosinophils. Journal of Molecular Endocrinology, 2017, 59, 245-255.	1.1	17
148	Control of atherosclerotic plaque vulnerability: Insights from transgenic mice. Frontiers in Bioscience - Landmark, 2008, Volume, 6289.	3.0	16
149	MiR-92a. Circulation Research, 2014, 114, 399-401.	2.0	16
150	Small molecule-mediated inhibition of CD40-TRAF6 reduces adverse cardiac remodelling in pressure overload induced heart failure. International Journal of Cardiology, 2019, 279, 141-144.	0.8	14
151	Deficiency of Endothelial CD40 Induces a Stable Plaque Phenotype and Limits Inflammatory Cell Recruitment to Atherosclerotic Lesions in Mice. Thrombosis and Haemostasis, 2021, 121, 1530-1540.	1.8	14
152	Targeting the adaptive immune system: new strategies in the treatment of atherosclerosis. Expert Review of Clinical Pharmacology, 2015, 8, 297-313.	1.3	13
153	The Link between Hematopoiesis and Atherosclerosis. New England Journal of Medicine, 2019, 380, 1869-1871.	13.9	13
154	Short-term regulation of hematopoiesis by lipoprotein(a) results in the production of pro-inflammatory monocytes. International Journal of Cardiology, 2020, 315, 81-85.	0.8	13
155	An inflammatory link in atherosclerosis and obesity. Hamostaseologie, 2015, 35, 272-278.	0.9	12
156	2016 Jeffrey M. Hoeg Award Lecture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1678-1688.	1.1	12
157	Rational modulator design by exploitation of protein–protein complex structures. Future Medicinal Chemistry, 2019, 11, 1015-1033.	1.1	12
158	Regulatory T Cell Metabolism in Atherosclerosis. Metabolites, 2020, 10, 279.	1.3	12
159	Immunology of atherosclerosis. Thrombosis and Haemostasis, 2011, 106, 755-756.	1.8	11
160	Constitutive CD40 Signaling in Dendritic Cells Limits Atherosclerosis by Provoking Inflammatory Bowel Disease and Ensuing Cholesterol Malabsorption. American Journal of Pathology, 2017, 187, 2912-2919.	1.9	11
161	Myeloid Ezh2 Deficiency Limits Atherosclerosis Development. Frontiers in Immunology, 2020, 11, 594603.	2.2	11
162	Effects of Exogenous Recombinant APC in Mouse Models of Ischemia Reperfusion Injury and of Atherosclerosis. PLoS ONE, 2014, 9, e101446.	1.1	10

#	Article	IF	CITATIONS
163	Alterations in systemic levels of Th1, Th2, and Th17 cytokines in overweight adolescents and obese mice. Pediatric Diabetes, 2017, 18, 714-721.	1.2	10
164	Commonly available hematological biomarkers are associated with the extent of coronary calcifications. Atherosclerosis, 2018, 275, 166-173.	0.4	10
165	Deletion of hematopoietic Dectin-2 or CARD9 does not protect against atherosclerotic plaque formation in hyperlipidemic mice. Scientific Reports, 2019, 9, 4337.	1.6	10
166	Peritoneal macrophages have an impaired immune response in obesity which can be reversed by subsequent weight loss. BMJ Open Diabetes Research and Care, 2019, 7, e000751.	1.2	10
167	Soluble CD40 Levels in Plasma Are Associated with Cardiovascular Disease and in Carotid Plaques with a Vulnerable Phenotype. Journal of Stroke, 2021, 23, 367-376.	1.4	9
168	Cardiovascular oncology: exploring the effects of targeted cancer therapies on atherosclerosis. Current Opinion in Lipidology, 2018, 29, 381-388.	1.2	8
169	Targeting cytokines and immune checkpoints in atherosclerosis with monoclonal antibodies. Atherosclerosis, 2021, 335, 98-109.	0.4	8
170	Diverse ultrastructural landscape of atherosclerotic endothelium. Atherosclerosis, 2021, 339, 35-45.	0.4	8
171	Stabilin-1 mediated monocyte adhesion protects against adverse cardiac inflammation during viral myocarditis. European Heart Journal, 2013, 34, 2788-2788.	1.0	7
172	Stabilin-1 mediates beneficial monocyte recruitment and tolerogenic macrophage programming during CVB3-induced viral myocarditis. Journal of Molecular and Cellular Cardiology, 2022, 165, 31-39.	0.9	7
173	CD40L-CD40 fuel ignites obesity. Thrombosis and Haemostasis, 2010, 103, 694-695.	1.8	6
174	Macrophage CD40 plays a minor role in obesity-induced metabolic dysfunction. PLoS ONE, 2018, 13, e0202150.	1.1	6
175	Deficiency of T cell CD40L has minor beneficial effects on obesity-induced metabolic dysfunction. BMJ Open Diabetes Research and Care, 2019, 7, e000829.	1.2	6
176	Deletion of haematopoietic Dectin-2 or CARD9 does not protect from atherosclerosis development under hyperglycaemic conditions. Diabetes and Vascular Disease Research, 2020, 17, 147916411989214.	0.9	6
177	Autophagy unleashes noncanonical microRNA functions. Autophagy, 2020, 16, 2294-2296.	4.3	6
178	E3 Ubiquitin Ligases as Immunotherapeutic Target in Atherosclerotic Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 2020, 7, 106.	1.1	5
179	Immunotherapy and cardiovascular diseases: novel avenues for immunotherapeutic approaches. QJM - Monthly Journal of the Association of Physicians, 2023, 116, 271-278.	0.2	5
180	HMG-coA reductase inhibitors: lipid-lowering and beyond. Drug Discovery Today: Therapeutic Strategies, 2004, 1, 189-194.	0.5	4

#	Article	IF	CITATIONS
181	Models and Analysis of Atherosclerosis, Restenosis, and Aneurysm Formation in the Mouse. Current Protocols in Mouse Biology, 2012, 2, 317-345.	1.2	4
182	rs1883832: a CD40 single-nucleotide polymorphism for predicting coronary heart disease in humans. Cardiovascular Research, 2020, 116, 1095-1096.	1.8	4
183	Apolipoprotein A1 deficiency in mice primes bone marrow stem cells for T cell lymphopoiesis. Journal of Cell Science, 2022, 135, .	1.2	4
184	Glucocorticoid induced TNF receptor family-related protein (GITR) – A novel driver of atherosclerosis. Vascular Pharmacology, 2021, 139, 106884.	1.0	3
185	Immuno-PET Imaging of Atherosclerotic Plaques with [89Zr]Zr-Anti-CD40 mAb—Proof of Concept. Biology, 2022, 11, 408.	1.3	3
186	Deficient CD40–TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response towards an anti-inflammatory profile. Vascular Pharmacology, 2012, 56, 337.	1.0	2
187	Atherosclerosis. Current Opinion in Lipidology, 2015, 26, 245-246.	1.2	2
188	Atherosclerosis. Current Opinion in Lipidology, 2017, 28, 220-221.	1.2	2
189	Epigenetic Quenching of VSMC Inflammation in CVD. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2199-2200.	1.1	2
190	SPARCing the clot. Blood, 2021, 137, 1441-1442.	0.6	2
191	Dual role of B7 costimulation in obesity-related non-alcoholic steatohepatitis (NASH) and metabolic dysregulation. Experimental and Clinical Endocrinology and Diabetes, 2014, 122, .	0.6	2
192	RANK(L)-ing biomarkers as surrogates for coronary calcium score. Thrombosis and Haemostasis, 2012, 107, 3-3.	1.8	1
193	CD40-CD40L: a Janus-faced interaction. Thrombosis and Haemostasis, 2014, 112, 223.	1.8	1
194	FP526VASCULAR CXCR4 LIMITS ATHEROSCLEROSIS BY MAINTAINING ARTERIAL INTEGRITY. Nephrology Dialysis Transplantation, 2018, 33, i216-i216.	0.4	1
195	Atherosclerosis of the Carotid Artery. , 2020, , 69-91.		1
196	Structural anomalies in a published NMR-derived structure of IRAK-M. Journal of Molecular Graphics and Modelling, 2022, 111, 108061.	1.3	1
197	Low Density Lipoprotein Exposure of Plasmacytoid Dendritic Cells Blunts Toll-like Receptor 7/9 Signaling via NUR77. Biomedicines, 2022, 10, 1152.	1.4	1
198	W7 DEFICIENT CD40-TRAF6 SIGNALING IN LEUKOCYTES PREVENTS ATHEROSCLEROSIS BY SKEWING THE IMMUNE RESPONSE TOWARDS AN ANTI-INFLAMMATORY PROFILE. Atherosclerosis Supplements, 2010, 11, 2.	1.2	0

#	Article	IF	CITATIONS
199	Inactivation of the immune receptor CD40 attenuates the development of cardiac hypertrophy in angiotensin-II induced hypertensive heart disease. European Heart Journal, 2013, 34, P5701-P5701.	1.0	0
200	P478Ablation of CD8+ dendritic cell mediated cross presentation does not impact atherosclerosis in LDLR deficient mice. Cardiovascular Research, 2014, 103, S87.3-S87.	1.8	0
201	Atherosclerosis. Current Opinion in Lipidology, 2014, 25, 408-409.	1.2	0
202	Targeting Hdac3 limits foam cell formation and improves atherosclerotic plaque stability. Atherosclerosis, 2014, 235, e16-e17.	0.4	0
203	Atherosclerosis. Current Opinion in Lipidology, 2016, 27, 308-309.	1.2	0
204	Scientists on the Spot: Esther Lutgens on the immune system and atherosclerosis. Cardiovascular Research, 2018, 114, e113-e113.	1.8	0
205	OP0221â€OLIGOMERIC S100A4 INDUCES MONOCYTE INNATE IMMUNE MEMORY. , 2019, , .		0
206	Lose the helpers… get â€~remote' regulators!. Cardiovascular Research, 2021, 117, 635-636.	1.8	0
207	Abstract 32: Hypercholesterolemia-induced Priming of Hematopoietic Stem and Progenitor Cells Aggravates Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	1.1	0
208	Proliferation in Different Stages of Development of Atherosclerotic Lesions in APOE*3-Leiden Mice. Journal of the American College of Cardiology, 1998, 31, 420A-421A.	1.2	0
209	Modification of histone 3 lysine 27 (H3K27) trimethylation in EZH2 and JMJD3 deficient T cells attenuates atherosclerosis through polarization towards anti-inflammatory phenotypes. European Heart Journal, 2020, 41, .	1.0	0
210	Abstract 14: Small Molecule Inhibitors of the CD40-TRAF6 Interaction Reduce Atherosclerosis by Inducing Hypo-inflammatory Myeloid Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	1.1	0