List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/364452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cobalt substitution effect on the structure and magnetic proprieties of Fe3O4 nano-particles. Advances in Materials and Processing Technologies, 2022, 8, 401-407.	0.8	2
2	Assessment of near Pr2/3Sr1/3MnO3 oxide in magnetic cooling. International Journal of Refrigeration, 2022, 133, 302-312.	1.8	5
3	From amorphous red phosphorus to black phosphorus crystal: An optimization, controllable and highest yield synthesis process. Journal of Crystal Growth, 2022, 577, 126408.	0.7	5
4	Graphene/Phosphorene nano-heterostructure as a potential anode material for (K/Na)-ion batteries: Insights from DFT and AIMD. Computational Materials Science, 2022, 202, 110936.	1.4	23
5	Dynamic stability in phosphorene bilayer with different stacking orders: A first principle study. Materials Science in Semiconductor Processing, 2022, 140, 106341.	1.9	6
6	Structural, magnetic transition and magnetocolaric properties of La1â^'xLixMn1â^'yFeyO3 (x = 0.1, 0.2 a	and) Tj ET(1:1	QqQ 0 0 rgBT
7	Theoretical investigation of FAPbSnGeX ₃ efficiency. RSC Advances, 2022, 12, 8945-8952.	1.7	2
8	Enhanced magnetic properties of SrFe ₁₂ O ₁₉ through exchange-coupled nanocomposite. Physica Scripta, 2022, 97, 045805.	1.2	2
9	First principle calculations on pristine and Mn-doped iron fluorophosphates as sodium-ion battery cathode materials. Computational Materials Science, 2022, 206, 111292.	1.4	7
10	Design of metal-decorated beryllium carbide (Be2C) as a high-capacity hydrogen storage material with strong adsorption characteristics. Applied Surface Science, 2022, 589, 152960.	3.1	22
11	Improvement of the hydrogen storage performance of t-graphene-like two-dimensional boron nitride upon selected lithium decoration, Physical Chemistry, Chemical Physics, 2022, 24, 15048-15059. Magnetic properties, magnetocaloric effect and cooling performance of AlFe <mmi:math< td=""><td>1.3</td><td>18</td></mmi:math<>	1.3	18
12	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si56.svg"> <mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow> B <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 	1.7	9
13	altimg="si57.svg"> <mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>2A study of structural, magnetic and magnetocaloric properties of (1â°'x)La0.6Ca0.4MnO3/xMn2O3 composite materials. Journal of Alloys and Compounds, 2021, 859, 158392.</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow>	2.8	8
14	Physicochemical characterization and catalytic performance of Fe doped CuS thin films deposited by the chemical spray pyrolysis technique. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	14
15	Structural, electronic and magnetic properties of Co-substituted SrFe12O19: A DFT study. Materials Today Communications, 2021, 28, 102589.	0.9	4
16	Origin of the magnetic properties of MnFe2O4 spinel ferrite: Ab initio and Monte Carlo simulation. Journal of Magnetism and Magnetic Materials, 2021, 533, 168016.	1.0	14

17	Spin-orbit interaction in SnO2 based diluted magnetic semiconductor: Ab-initio calculations. Journal of Magnetism and Magnetic Materials, 2021, 535, 168084.	1.0	5	
----	--	-----	---	--

Influence of iron substitution on the ferromagnetic ordering and magnetic entropy variation in
La1-Na Mn1-Fe O3 (xÂ=Â0.1, 0.2 and yÂ=Â0, 0.1). Journal of Magnetism and Magnetic Materials, 2021, 537, 168194.

#	Article	IF	CITATIONS
19	Magnetic properties and magnetoresistance effect of SnFe2O4 spinel nanoparticles: Experimental, ab initio and Monte Carlo simulation. Ceramics International, 2021, 47, 31886-31893.	2.3	4
20	Revisiting the magnetic and magnetocaloric properties of bulk gadolinium: A combined DFT and Monte Carlo simulations. Physica Scripta, 2021, 96, 015808.	1.2	9
21	Stability, Electronic Structure and Thermodynamic Properties of Nanostructured MgH2 Thin Films. Energies, 2021, 14, 7737.	1.6	6
22	First-principles study of <i>closo</i> -dodecaborates M ₂ B ₁₂ H ₁₂ (M = Li, Na, K) as solid-state electrolyte materials. Physical Chemistry Chemical Physics, 2021, 23, 27014-27023.	1.3	5
23	Degradation mechanism of CH3NH3PbI3 and enhancing its optical absorption through variety of doping sites. Computational Condensed Matter, 2021, 29, e00611.	0.9	3
24	Improved photo-electrochemical properties of strained SnO2. International Journal of Hydrogen Energy, 2020, 45, 11035-11039.	3.8	8
25	The hydrogen storage properties of Mg-intermetallic-hydrides by ab initio calculations and kinetic Monte Carlo simulations. International Journal of Hydrogen Energy, 2020, 45, 11158-11166.	3.8	8
26	Structural, Magnetic, and Magnetocaloric Properties in Rare Earth Orthochromite (Sm, Nd, and) Tj ETQq0 0 0 ،	gBT (Overlc	ock 10 Tf 50 4
27	Influence of synthesis methods with low annealing temperature on the structural and magnetic properties of CoFe2O4 nanopowders for permanent magnet application. Journal of Magnetism and Magnetic Materials, 2020, 500, 166416.	1.0	37
28	Size effect on the magnetic properties of CoFe2O4 nanoparticles: A Monte Carlo study. Ceramics International, 2020, 46, 8092-8096.	2.3	40
29	Magnetism in d0 impurities doped CdTe: ab-initio calculations. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	9
30	Metal (boro-) hydrides for high energy density storage and relevant emerging technologies. International Journal of Hydrogen Energy, 2020, 45, 33687-33730.	3.8	53
31	Efficient production of few-layer black phosphorus by liquid-phase exfoliation. Royal Society Open Science, 2020, 7, 201210.	1.1	21
32	A study of magnetic and magnetocaloric properties of 0.95 (La0.45Nd0.25Sr0.3MnO3)/0.05CuO composites prepared by spray drying. Inorganic Chemistry Communication, 2020, 119, 108129.	1.8	3
33	M-Type SrFe ₁₂ O ₁₉ Ferrite: An Efficient Catalyst for the Synthesis of Amino Alcohols under Solvent-Free Conditions. Journal of Chemistry, 2020, 2020, 1-10.	0.9	8
34	Experimental and first-principles study of the origin of the magnetic properties of CoFe2O4 spinel ferrite. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	10
35	Engineering the magnetocaloric properties of PrVO3 epitaxial oxide thin films by strain effects. Applied Physics Letters, 2020, 117, .	1.5	10
36	Enhanced Magnetic and Magnetocaloric Properties of La0.45Nd0.25Sr0.3MnO3/CuO Composite. Journal of Superconductivity and Novel Magnetism, 2020, 33, 2543-2549.	0.8	8

#	Article	IF	CITATIONS
37	Electronic and magnetic properties of the multiferroic TbMn2O5. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	1
38	Magnetocaloric effect and electrical properties of (0.95)La0.45Nd0.25Sr0.3MnO3/(0.05)CuO composites. Materials Research Express, 2020, 7, 066102.	0.8	1
39	Synthesis and characterization of magnetic perovskites La1-xSrxMnO3: Green catalyst for oxidation of olefins in aqueous medium. Inorganic Chemistry Communication, 2020, 116, 107892.	1.8	9
40	Hydrogen storage properties of perovskite-type MgCoHâ, f under strain effect. Materials Chemistry and Physics, 2020, 254, 123417.	2.0	24
41	A combined experimental and theoretical study of the magnetic properties of bulk CoFe2O4. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	27
42	Ndâ€Ðopingâ€Induced Enhancement in the Antibacterial Activity of Synthesized ZnO Heretostructures. ChemistrySelect, 2020, 5, 11331-11339.	0.7	5
43	Study of Magnetocaloric Effect on Strontium Ferrite SrFe12O19 Ceramic. Journal of Superconductivity and Novel Magnetism, 2019, 32, 367-371.	0.8	1
44	Magnetic and Structural Properties of Novel Neodymium-Tin Spinel Ferrite Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2019, 32, 381-384.	0.8	6
45	Arsenene monolayer as an outstanding anode material for (Li/Na/Mg)-ion batteries: density functional theory. Physical Chemistry Chemical Physics, 2019, 21, 19951-19962.	1.3	66
46	Molecular dynamics study of thermal properties of nanofluids composed of one-dimensional (1-D) network of interconnected gold nanoparticles. Results in Physics, 2019, 15, 102576.	2.0	15
47	Black phosphorus-based polyvinylidene fluoride nanocomposites: Synthesis, processing and characterization. Composites Part B: Engineering, 2019, 175, 107165.	5.9	32
48	Enhancing of hydrogen storage properties of perovskite-type MgNiH3 by introducing cobalt dopant (MgCoxNi1â°'xH3) using first-principle calculations. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	9
49	Phosphorene: A promising candidate for H2 storage at room temperature. International Journal of Hydrogen Energy, 2019, 44, 24829-24838.	3.8	23
50	The effect of basic pH on the elaboration of ZnFe2O4 nanoparticles by co-precipitation method: Structural, magnetic and hyperthermia characterization. Journal of Magnetism and Magnetic Materials, 2019, 478, 239-246.	1.0	59
51	Characteristics of kesterite CZTS thin films deposited by dip-coating technique for solar cells applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 13134-13143.	1.1	23
52	Magnetic Properties and Magnetocaloric Effect in Gd100-xCox Thin Films. Crystals, 2019, 9, 278.	1.0	10
53	Improved thermodynamic properties of doped LiBH4 for hydrogen storage: First-principal calculation. International Journal of Hydrogen Energy, 2019, 44, 16793-16802.	3.8	18
54	Large Magnetic Entropy Change in Pr2/3Sr1/3MnO3-CuO Composite at Room Temperature. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3579-3585.	0.8	9

#	Article	IF	CITATIONS
55	On the origin of the giant magnetocaloric effect in HoMn2O5 single crystals: First principles study and Monte Carlo simulations. Materials Chemistry and Physics, 2019, 231, 366-371.	2.0	9
56	Electronic, magnetic properties and magnetocaloric effect in La0.67Sr0.33MnO3 compound: Ab initio calculations and Monte Carlo simulation. Solid State Communications, 2019, 295, 5-11.	0.9	10
57	Ferromagnetism in Mn and Fe doped ZrO2 by ab-initio calculations. Computational Condensed Matter, 2019, 19, e00361.	0.9	9
58	Magnetocaloric and cooling properties of the intermetallic compound AlFe2B2 in an AMR cycle system. Intermetallics, 2019, 104, 84-89.	1.8	17
59	SnO2 improved thermoelectric properties under compressive strain. Computational Condensed Matter, 2019, 18, e00356.	0.9	4
60	An easy route to synthesize high-quality black phosphorus from amorphous red phosphorus. Materials Letters, 2019, 236, 56-59.	1.3	36
61	Vibrational and thermodynamic properties of LiBH 4 polymorphs from first-principles calculations. International Journal of Hydrogen Energy, 2018, 43, 6625-6631.	3.8	11
62	Ab-initio calculations for the electronic and magnetic properties of Cr doped ZnTe. Computational Condensed Matter, 2018, 15, 15-20.	0.9	24
63	Engineered Gd-Co based multilayer stack to enhanced magneto-caloric effect and relative cooling power. Journal of Applied Physics, 2018, 123, .	1.1	8
64	Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: A first-principle study. Solar Energy Materials and Solar Cells, 2018, 180, 253-257.	3.0	103
65	Tuning the optical and electrical properties of orthorhombic hybrid perovskite CH3NH3PbI3 by first-principles simulations: Strain-engineering. Solar Energy Materials and Solar Cells, 2018, 180, 266-270.	3.0	29
66	The enhanced magnetic and magnetocaloric properties of DyNi4Si nanostructures: First principle study and Monte-Carlo simulation. Ceramics International, 2018, 44, 2453-2457.	2.3	6
67	Composite (La0.45Nd0.25)Sr0.3MnO3/5CuO materials for magnetic refrigeration applications. Journal of Magnetism and Magnetic Materials, 2018, 449, 25-32.	1.0	17
68	<i>Ab initio</i> calculations of the magnetic properties of TM (Ti, V)-doped zinc-blende ZnO. International Journal of Modern Physics B, 2018, 32, 1850025.	1.0	19
69	Adsorption and diffusion on a phosphorene monolayer: a DFT study. Journal of Solid State Electrochemistry, 2018, 22, 11-16.	1.2	28
70	Tunable maximum energy product in CoFe2O4 nanopowder for permanent magnet application. Journal of Magnetism and Magnetic Materials, 2018, 467, 129-134.	1.0	24
71	Magnetocaloric Properties of Zinc-Nickel Ferrites Around Room Temperature. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1943-1947.	0.8	29
72	Effect of Defects Disorder on the Half-Metallicity, Magnetic Properties, and Gap States of Fe3O4: a First-Principles Study. Journal of Superconductivity and Novel Magnetism, 2017, 30, 3221-3224.	0.8	7

3

#	Article	IF	CITATIONS
73	Magnetic behavior of Mn-doped silicon carbide nanosheet. International Journal of Modern Physics B, 2017, 31, 1750163.	1.0	9
74	Electronic and Magnetic Properties of SnFe2O4 Spinel Ferrites. Journal of Superconductivity and Novel Magnetism, 2017, 30, 3035-3038.	0.8	11
75	Effect of the cations distribution on the magnetic properties of SnFe 2 O 4 : First-principles study. Journal of Magnetism and Magnetic Materials, 2017, 436, 6-10.	1.0	14
76	Magnetic properties of vanadium doped CdTe: Ab initio calculations. Journal of Magnetism and Magnetic Materials, 2017, 428, 368-371.	1.0	47
77	Calculated magnetic properties of co-doped CdTe(V, P): First-principles calculations. Computational Condensed Matter, 2017, 13, 87-90.	0.9	9
78	Experimental and theoretical investigation of Nd doped ZnO. Journal of Magnetism and Magnetic Materials, 2017, 444, 416-420.	1.0	14
79	Experimental and theoretical investigation of SrFe12O19 nanopowder for permanent magnet application. Ceramics International, 2017, 43, 15999-16006.	2.3	22
80	Exploring the magnetic and structural properties of Nd-doped Cobalt nano-ferrite for permanent magnet applications. Ceramics International, 2017, 43, 14401-14404.	2.3	45
81	First principle study of strain effect on structural and dehydrogenation properties of complex hydride LiBH4. International Journal of Hydrogen Energy, 2017, 42, 19481-19486.	3.8	26
82	Tunable magneto-caloric effect in Gd1â °xTbx heterostructures thin film. Journal of Magnetism and Magnetic Materials, 2017, 443, 1-3.	1.0	7
83	Bandgap Engineering of Black Phosphorus-Based Nano structures. , 2017, , .		0
84	Strain Effect on The Photo-Catalytic Properties of SnO <inf>2</inf> ., 2017, , .		1
85	Numerical Optimization of the Energetic Performance of a Near Room Temperature Magnetic Refrigerator. , 2017, , .		1
86	The effects of synthesis conditions on the magnetic properties of zinc ferrite spinel nanoparticles. Journal of Physics: Conference Series, 2016, 758, 012008.	0.3	11
87	Investigation of Electronic and Magnetic Properties of Iron(II)-Bromide Compound by First Principle, Mean Field, Series Expansion Calculations and Monte Carlo Simulation. Journal of Superconductivity and Novel Magnetism, 2016, 29, 2059-2063.	0.8	3
88	First-principles study of electronic, electrical and optical properties of HoMn2O5. Journal of Physics: Conference Series, 2016, 758, 012009.	0.3	3
89	Effect of biaxial strain on SnO <inf>2</inf> bandgap: First-principles calculations. , 2016, , .		1

90 Phosphorene as a promising anode material for lithium-ion batteries: A first-principle study. , 2016, , .

#	Article	IF	CITATIONS
91	Compression effect on electronic properties and hydrogen desroption of LiBH4: First principal study. , 2016, , .		Ο
92	Synthesis and magnetic properties of tin spinel ferrites doped manganese. Journal of Magnetism and Magnetic Materials, 2016, 405, 181-186.	1.0	72
93	Changing the magnetic and optical properties of (Ga, Fe)N and (Ga, Co)N by alloying with oxygen. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	2
94	Band-gap engineering of SnO. Solar Energy Materials and Solar Cells, 2016, 148, 34-38.	3.0	69
95	Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method. Journal of Magnetism and Magnetic Materials, 2016, 398, 20-25.	1.0	104
96	Electronic Structure and Magnetic Properties of La0.7Ca0.3MnO3 Perovskite. Journal of Superconductivity and Novel Magnetism, 2015, 28, 2115-2119.	0.8	5
97	Density of States and magnetic features of CrTe compounds investigated by first principle, mean field and series expansions calculations. Journal of Magnetism and Magnetic Materials, 2015, 379, 213-216.	1.0	4
98	Electronic and Magnetic Properties of MnSb Compounds. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1815-1819.	0.8	5
99	Ab Initio and High-Temperature Series Expansion Study of Electronic Structure and Magnetic Properties of CoF2. Journal of Superconductivity and Novel Magnetism, 2015, 28, 2161-2164.	0.8	Ο
100	New Theoretical Investigation on the Electronic Structure and Magnetic Interaction for Fluorides MnF2. Journal of Superconductivity and Novel Magnetism, 2015, 28, 3045-3048.	0.8	0
101	Structural, electronic and magnetic properties of MnB 2. Bulletin of Materials Science, 2015, 38, 1065-1068.	0.8	2
102	Half-metallic ferromagnetism in TM-doped MgH2 hydride. Applied Physics A: Materials Science and Processing, 2015, 119, 1587-1593.	1.1	3
103	Ab Initio, Mean Field and High-Temperature Series Expansion Calculation Study of Structural Stability and Magnetism of MnHg. Journal of Superconductivity and Novel Magnetism, 2015, 28, 2501-2504.	0.8	3
104	Coexistence of blocked, metamagnetic and canted ferrimagntic phases at high temperature in Co–Nd ferrite nanorods. Superlattices and Microstructures, 2015, 84, 165-169.	1.4	18
105	Phase diagrams and magnetic properties of double perovskite Ba2CrMoO6. International Journal of Modern Physics B, 2015, 29, 1550174.	1.0	9
106	Electronic and magnetic structures of Fe 3 O 4 ferrimagnetic investigated by first principle, mean field and series expansions calculations. Journal of Magnetism and Magnetic Materials, 2015, 378, 37-40.	1.0	33
107	Magnetic properties of tin ferrites nanostructures doped with transition metal. Journal of Alloys and Compounds, 2015, 622, 761-764.	2.8	52
108	Electronic and magnetic structures of ferrimagnetic Mn2Sb compound. Journal of Magnetism and Magnetic Materials, 2015, 374, 116-119.	1.0	13

#	Article	IF	CITATIONS
109	Ab Initio, Mean Field and Series Expansions Calculations Study of Structural, Electronic and Magnetic Properties of MnAs. Journal of Superconductivity and Novel Magnetism, 2014, 27, 2747-2750.	0.8	1
110	Band gap engineering of (InGaN) for photovoltaic application. , 2014, , .		0
111	First principle calculations for improving desorption temperature in Mg16H32 doped with Ca, Sr and Ba elements. Bulletin of Materials Science, 2014, 37, 1731-1736.	0.8	25
112	Accurate band gaps for earth-abundant photovoltaic absorber from density functional theory. , 2014, , \cdot		0
113	Electronic and Magnetic Theoretical Investigation of Antiferromagnetically ErRh Layers. Journal of Superconductivity and Novel Magnetism, 2014, 27, 235-238.	0.8	Ο
114	Electronic and Magnetic Structures of PrAg bcc Investigated by First Principle and Series Expansions Calculations. Journal of Superconductivity and Novel Magnetism, 2014, 27, 171-175.	0.8	0
115	Understanding ferromagnetism and optical absorption in 3d transition metal-doped cubic ZrO2 with the modified Becke-Johnson exchange-correlation functional. Journal of Applied Physics, 2014, 115, 123909.	1.1	10
116	Ab initio, mean field theory and series expansions calculations study of electronic and magnetic properties of antiferromagnetic MnSe alloys. Journal of Magnetism and Magnetic Materials, 2014, 361, 197-200.	1.0	23
117	High freezing temperature in SnO2 based diluted magnetic semiconductor. Materials Letters, 2014, 126, 193-196.	1.3	17
118	Magnetic Properties of Mg x Cu1â^'x Cr2O4 Spinels are Studied by Different Theoretical Methods. Journal of Superconductivity and Novel Magnetism, 2014, 27, 2073-2082.	0.8	1
119	Calculation of Exchange Constants in Spinels Chromites Zn _{<i>x</i>} Co _{1â^ <i>x</i>} Cr ₂ O ₄ . Chinese Physics Letters, 2014, 31, 037501.	1.3	1
120	Synthesis and Magnetic Properties of Bulk Ferrites Spinels Ni0.5Zn0.5Fe2O4: Experimental an Ab-Initio Study. Journal of Superconductivity and Novel Magnetism, 2014, 27, 177-181.	0.8	9
121	Electronic and magnetic properties of MnAu nanoparticles. Journal of Magnetism and Magnetic Materials, 2014, 354, 159-162.	1.0	15
122	Electronic and magnetic structures of FeSn compound investigated by first principle, mean field and series expansions calculations. Physica A: Statistical Mechanics and Its Applications, 2014, 414, 249-253.	1.2	18
123	Chemical control of superparamagnetic properties of SnO 2 diluted magnetic semiconductor. Materials Letters, 2014, 134, 272-275.	1.3	6
124	High temperature magnetic properties of nanocrystalline Sn0â^™95Co0â^™05O2. Bulletin of Materials Science, 2014, 37, 563-569.	0.8	3
125	Study of Electronic and Magnetic Properties of MnAu Nanowire. Journal of Superconductivity and Novel Magnetism, 2014, 27, 2581-2584.	0.8	6
126	Study of electronic and magnetic properties of MnAg layers. Physica A: Statistical Mechanics and Its Applications, 2014, 395, 128-134.	1.2	6

4	#	Article	IF	CITATIONS
]	127	High blocking temperature in SnO2 based super-paramagnetic diluted magnetic semiconductor. Journal of Alloys and Compounds, 2014, 614, 401-407.	2.8	19
1	128	Antiferromagnetically Spin Polarized Oxygen and Manganese in MnO Layers Investigated by First Principle and Series Expansions Calculations. Journal of Superconductivity and Novel Magnetism, 2013, 26, 3325-3329.	0.8	3
]	129	Effective field theory and Ab-initio calculation of p-type (Ga, Fe)N within LDA and SIC approximation. Journal of Magnetism and Magnetic Materials, 2013, 330, 141-146.	1.0	4
1	130	Physical Proprieties of Ferrites Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2013, 26, 3443-3447.	0.8	7
]	131	Physical properties of Co(Mn)Fe ₂ O ₄ nanomaterials. Physica Scripta, 2013, 88, 015704.	1.2	9
]	132	Coupling between magnetic and optical properties of GaN:TM (TM: V, Cr, Mn, Fe, Co, Ni): First-principle study with LDA-SIC approximation. Chemical Physics Letters, 2013, 588, 242-246.	1.2	14
]	133	Theoretical investigation of electronic and magnetic properties of HoRh layers. Journal of Magnetism and Magnetic Materials, 2013, 344, 220-223.	1.0	9
1	134	Synthesis and super-paramagnetic properties of neodymium ferrites nanorods. Journal of Alloys and Compounds, 2013, 581, 776-781.	2.8	43
]	135	Ferromagnetism from Acceptors of Native Point Defects in (Zn, Mn)O Doped Systems. Journal of Superconductivity and Novel Magnetism, 2013, 26, 151-156.	0.8	4
1	136	Optical and Magnetic Properties of Half-metallic (Zn, Mn)O Behaviors with LDA and LDA-SIC Approximations. Journal of Superconductivity and Novel Magnetism, 2013, 26, 229-236.	0.8	4
]	137	Kinetic Monte Carlo and density functional study ofÂhydrogenÂdiffusion in magnesium hydride MgH2. International Journal of Hydrogen Energy, 2013, 38, 8350-8356.	3.8	32
1	138	Theoretical investigation of electronic, magnetic and optical properties of Fe doped GaN thin films. Journal of Alloys and Compounds, 2013, 578, 77-81.	2.8	6
]	139	Theoretical investigation of electronic and magnetic properties of MnAu layers. Journal of Magnetism and Magnetic Materials, 2013, 326, 166-170.	1.0	38
1	140	Magnetic properties of ferromagnetic diluted Zn _{<i>x</i>} Cd _{1–<i>x</i>} Cr ₂ Se ₄ spinels are studied by Green's functions, mean field theory and high temperature series expansions theories. Phase Transitions, 2013, 86, 1186-1203.	0.6	5
]	141	Cation Distribution and Magnetic Interactions in Zn-Substituted Fe(Cu)Fe2O4 Ferrites. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2473-2480.	0.8	15
1	142	First-principles study and electronic structures of Mn-doped ultrathin ZnO nanofilms. Chinese Physics B, 2012, 21, 106601.	0.7	15
]	143	Study of electronic and magnetic properties of MnS layers. Chinese Physics B, 2012, 21, 127101.	0.7	7

144 Hydrogen storage of Mg _{1â[^] <i>x</i>} <i>M</i> _{<i>x</i>} H ₂ () Tj ETQq0 0.0 rgBT /Qverlock 10

#	Article	IF	CITATIONS
145	Origin of Magnetism from Native Point Defects in ZnO. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1145-1150.	0.8	13
146	Magnetic Properties of Zn0.8(Fe0.1,Co0.1)O Diluted Magnetic Semiconductors: Experimental and Theoretical Investigation. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1515-1521.	0.8	6
147	New results on Magnetic Properties of Tin-Ferrite Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1995-2002.	0.8	32
148	Stability Study of Mg and Al Doped and Co Doped ZnO Hydrides by Ab Initio Calculations. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2025-2031.	0.8	3
149	Ab-initio Calculation of Half-Metal Ferrimagnetic Sn0.9Mn0.05Co0.05O2. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2069-2074.	0.8	5
150	Synthesis and magnetic properties of ferrites spinels MgxCu1â^'xFe2O4. Physica B: Condensed Matter, 2012, 407, 27-32.	1.3	23
151	Magnetic properties of Zn0.9(Mn0.05,Ni0.05)O nanoparticle: Experimental and theoretical investigation. Journal of Magnetism and Magnetic Materials, 2012, 324, 1945-1947.	1.0	10
152	Critical behaviour and magnetic properties of A–B spinel ZnxCu1â^'xFe2O4. Solid State Communications, 2011, 151, 938-942.	0.9	6
153	Electronic structure of C co-doped (Ga, Fe)N-based diluted magnetic semiconductors. European Physical Journal B, 2010, 74, 463-466.	0.6	10
154	High- ferromagnetism in p-type ZnO diluted magnetic semiconductors. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 3433-3441.	1.2	24
155	Electronic structure of p-type (Ga,Fe)N diluted magnetic semiconductors. Journal of Magnetism and Magnetic Materials, 2009, 321, 2402-2406.	1.0	6
156	Electronic structure of acceptor defects in (Zn,Mn)O and (Zn,Mn)(O,N). Journal of Applied Physics, 2009, 106, .	1.1	41
157	Ab initio calculation of Zn0.8Mn0.2O1â^'yNy. Journal of Magnetism and Magnetic Materials, 2008, 320, 2760-2765.	1.0	15
158	Magnetic phase transitions of phosphorene-like nano-structure: Monte Carlo study. Philosophical Magazine, 0, , 1-13.	0.7	3
159	Arsenic 2D a New Anode Material for Rechargeable Batteries: First Principal Calculation. , 0, , .		0