Fred C Mackintosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3644475/publications.pdf

Version: 2024-02-01

195 22,240 papers citations

75 h-index 145 g-index

199 all docs

199 docs citations 199 times ranked 14103 citing authors

#	Article	IF	Citations
1	Settling dynamics of Brownian chains in viscous fluids. Physical Review Fluids, 2022, 7, .	1.0	3
2	Single-walled carbon nanotube reptation dynamics in submicron sized pores from randomly packed mono-sized colloids. Soft Matter, 2022, 18, 5509-5517.	1.2	2
3	Unique Role of Vimentin Networks in Compression Stiffening of Cells and Protection of Nuclei from Compressive Stress. Nano Letters, 2022, 22, 4725-4732.	4.5	21
4	Enhanced ordering in length-polydisperse carbon nanotube solutions at high concentrations as revealed by small angle X-ray scattering. Soft Matter, 2021, 17, 5122-5130.	1.2	4
5	Anomalous mechanics of Zn $<$ sup $>$ 2+ $<$ /sup $>$ -modified fibrin networks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	14
6	Cell-induced confinement effects in soft tissue mechanics. Journal of Applied Physics, 2021, 129, .	1.1	15
7	Shear-induced phase transition and critical exponents in three-dimensional fiber networks. Physical Review E, 2021, 104, L022402.	0.8	5
8	Effects of Vimentin Intermediate Filaments on the Structure and Dynamics of <i>InÂVitro</i> Multicomponent Interpenetrating Cytoskeletal Networks. Physical Review Letters, 2021, 127, 108101.	2.9	15
9	Nonlinear stress relaxation of transiently crosslinked biopolymer networks. Physical Review E, 2021, 104, 034418.	0.8	6
10	Multiscale Microrheology Using Fluctuating Filaments as Stealth Probes. Physical Review Letters, 2021, 127, 158001.	2.9	3
11	Compression stiffening of fibrous networks with stiff inclusions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21037-21044.	3.3	38
12	Finite size effects in critical fiber networks. Soft Matter, 2020, 16, 6784-6793.	1.2	13
13	Nonlinear Poisson Effect Governed by a Mechanical Critical Transition. Physical Review Letters, 2020, 124, 038002.	2.9	12
14	Motor-Free Contractility in Active Gels. Physical Review Letters, 2020, 125, 208101.	2.9	11
15	Stress relaxation in F-actin solutions by severing. Soft Matter, 2019, 15, 6300-6307.	1.2	1
16	Normal stress anisotropy and marginal stability in athermal elastic networks. Soft Matter, 2019, 15, 1666-1675.	1.2	14
17	Origin of Slow Stress Relaxation in the Cytoskeleton. Physical Review Letters, 2019, 122, 218102.	2.9	44
18	Cofilin drives rapid turnover and fluidization of entangled F-actin. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12629-12637.	3.3	33

#	Article	IF	CITATIONS
19	Scaling Theory for Mechanical Critical Behavior in Fiber Networks. Physical Review Letters, 2019, 122, 188003.	2.9	30
20	Stress-stabilized subisostatic fiber networks in a ropelike limit. Physical Review E, 2019, 99, 042412.	0.8	21
21	Normal stresses in semiflexible polymer hydrogels. Physical Review E, 2018, 97, 032418.	0.8	14
22	A symmetrical method to obtain shear moduli from microrheology. Soft Matter, 2018, 14, 3716-3723.	1.2	19
23	Reply to the â€~Comment on "A symmetrical method to obtain shear moduli from microrheologyâ€â€™ by M. Tassieri, Soft Matter, 2018, 14, DOI: 10.1039/C8SM00806J. Soft Matter, 2018, 14, 8671-8672.	1.2	O
24	The Role of Network Architecture in Collagen Mechanics. Biophysical Journal, 2018, 114, 2665-2678.	0.2	153
25	Self-organized stress patterns drive state transitions in actin cortices. Science Advances, 2018, 4, eaar 2847.	4.7	46
26	Competition between Bending and Internal Pressure Governs the Mechanics of Fluid Nanovesicles. ACS Nano, 2017, 11, 2628-2636.	7.3	78
27	Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8618-E8627.	3.3	362
28	Programming the mechanics of cohesive fiber networks by compression. Soft Matter, 2017, 13, 8886-8893.	1.2	23
29	Force percolation of contractile active gels. Soft Matter, 2017, 13, 5624-5644.	1.2	51
30	Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Scientific Reports, 2016, 6, 19270.	1.6	122
31	Broken detailed balance at mesoscopic scales in active biological systems. Science, 2016, 352, 604-607.	6.0	259
32	Elasticity of fibrous networks under uniaxial prestress. Soft Matter, 2016, 12, 5050-5060.	1.2	61
33	Nonlinear Mechanics of Athermal Branched Biopolymer Networks. Journal of Physical Chemistry B, 2016, 120, 5831-5841.	1.2	32
34	Strain-driven criticality underlies nonlinear mechanics of fibrous networks. Physical Review E, 2016, 94, 042407.	0.8	40
35	On-site residence time in a driven diffusive system: Violation and recovery of a mean-field description. Physical Review E, 2016, 93, 012119.	0.8	9
36	Elastic regimes of subisostatic athermal fiber networks. Physical Review E, 2016, 93, 012407.	0.8	51

#	Article	IF	Citations
37	Sheinman, Sharma, and MacKintosh Reply:. Physical Review Letters, 2016, 116, 189802.	2.9	5
38	Broken Detailed Balance of Filament Dynamics in Active Networks. Physical Review Letters, 2016, 116, 248301.	2.9	65
39	Critical behaviour in the nonlinear elastic response of hydrogels. Soft Matter, 2016, 12, 6995-7004.	1.2	9
40	Porosity Governs Normal Stresses in Polymer Gels. Physical Review Letters, 2016, 117, 217802.	2.9	54
41	Strain-controlled criticality governs the nonlinear mechanics of fibre networks. Nature Physics, 2016, 12, 584-587.	6.5	147
42	Multi-scale strain-stiffening of semiflexible bundle networks. Soft Matter, 2016, 12, 2145-2156.	1.2	72
43	Inherently unstable networks collapse to a critical point. Physical Review E, 2015, 92, 012710.	0.8	6
44	Stability and anomalous entropic elasticity of subisostatic random-bond networks. Physical Review E, 2015, 92, 042145.	0.8	4
45	Nonthermal fluctuations of the mitotic spindle. Soft Matter, 2015, 11, 4396-4401.	1.2	5
46	Anomalous Discontinuity at the Percolation Critical Point of Active Gels. Physical Review Letters, 2015, 114, 098104.	2.9	45
47	Driven diffusive systems with mutually interactive Langmuir kinetics. Physical Review E, 2015, 91, 032143.	0.8	18
48	Stress controls the mechanics of collagen networks. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9573-9578.	3.3	284
49	Ultra-responsive soft matter from strain-stiffening hydrogels. Nature Communications, 2014, 5, 5808.	5.8	186
50	Cytoplasmic Transport: Bacteria Turn to Glass Unless Kicked. Current Biology, 2014, 24, R226-R228.	1.8	2
51	High-resolution mapping of intracellular fluctuations using carbon nanotubes. Science, 2014, 344, 1031-1035.	6.0	188
52	Modeling semiflexible polymer networks. Reviews of Modern Physics, 2014, 86, 995-1036.	16.4	576
53	Probing the Stochastic, Motor-Driven Properties of the Cytoplasm Using Force Spectrum Microscopy. Cell, 2014, 158, 822-832.	13.5	444
54	Scale-Dependent Nonaffine Elasticity of Semiflexible Polymer Networks. Physical Review Letters, 2014, 112, .	2.9	23

#	Article	IF	Citations
55	The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB Journal, 2014, 28, 536-547.	0.2	128
56	Force Spectrum Microscopy Reveals Active Diffusive-Like Fluctuations in Living Cells. Biophysical Journal, 2014, 106, 244a.	0.2	0
57	Molecular motors robustly drive active gels to a critically connected state. Nature Physics, 2013, 9, 591-597.	6.5	188
58	Fluctuation-Stabilized Marginal Networks and Anomalous Entropic Elasticity. Physical Review Letters, 2013, 111, 095503.	2.9	35
59	Elastic response of filamentous networks with compliant crosslinks. Physical Review E, 2013, 88, 052705.	0.8	19
60	Nonlinear Elasticity: From Single Chain to Networks and Gels. Macromolecules, 2013, 46, 3679-3692.	2,2	88
61	Stress-Enhanced Gelation: A Dynamic Nonlinearity of Elasticity. Physical Review Letters, 2013, 110, 018103.	2.9	52
62	Active diffusion: The erratic dance of chromosomal loci. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7138-7139.	3.3	16
63	Actively Stressed Marginal Networks. Physical Review Letters, 2012, 109, 238101.	2.9	44
64	Nonequilibrium fluctuations of a remodeling <i>in vitro </i> cytoskeleton. Physical Review E, 2012, 86, 020901.	0.8	71
65	Nonlinear effective-medium theory of disordered spring networks. Physical Review E, 2012, 85, 021801.	0.8	69
66	Filament-Length-Controlled Elasticity in 3D Fiber Networks. Physical Review Letters, 2012, 108, 078102.	2.9	96
67	Control of non-linear elasticity in F-actin networks with microtubules. Soft Matter, 2011, 7, 902-906.	1.2	56
68	Molecular motors stiffen non-affine semiflexible polymer networks. Soft Matter, 2011, 7, 3186.	1.2	75
69	Criticality and isostaticity in fibre networks. Nature Physics, 2011, 7, 983-988.	6.5	266
70	Active soft matter. Soft Matter, 2011, 7, 3050.	1.2	25
71	Nonlinear Viscoelasticity of Actin Transiently Cross-linked with Mutant \hat{l}_{\pm} -Actinin-4. Journal of Molecular Biology, 2011, 411, 1062-1071.	2.0	42
72	Motors keep dynamics steady. Nature Materials, 2011, 10, 414-415.	13.3	3

#	Article	IF	CITATIONS
73	Mechanics of soft composites of rods in elastic gels. Physical Review E, 2011, 84, 061906.	0.8	18
74	Active multistage coarsening of actin networks driven by myosin motors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9408-9413.	3.3	214
75	Mixed Microtubules Steer Dynein-Driven Cargo Transport into Dendrites. Current Biology, 2010, 20, 290-299.	1.8	281
76	Active cellular materials. Current Opinion in Cell Biology, 2010, 22, 29-35.	2.6	79
77	Poisson's Ratio in Composite Elastic Media with Rigid Rods. Physical Review Letters, 2010, 105, 138102.	2.9	19
78	Brownian Motion of Stiff Filaments in a Crowded Environment. Science, 2010, 330, 1804-1807.	6.0	123
79	Origins of Elasticity in Intermediate Filament Networks. Physical Review Letters, 2010, 104, 058101.	2.9	165
80	Microtubule Elasticity: Connecting All-Atom Simulations with Continuum Mechanics. Physical Review Letters, 2010, 104, 018101.	2.9	82
81	Stiff-Filament Microrheology. Biophysical Journal, 2010, 98, 557a.	0.2	0
82	Visualizing the Formation and Collapse of DNA Toroids. Biophysical Journal, 2010, 98, 1902-1910.	0.2	53
83	Structural Hierarchy Governs Fibrin Gel Mechanics. Biophysical Journal, 2010, 98, 2281-2289.	0.2	209
84	Elasticity in Ionically Cross-Linked Neurofilament Networks. Biophysical Journal, 2010, 98, 2147-2153.	0.2	52
85	Actin Filament Length Tunes Elasticity of Flexibly Cross-Linked Actin Networks. Biophysical Journal, 2010, 99, 1091-1100.	0.2	93
86	Cross-Link-Governed Dynamics of Biopolymer Networks. Physical Review Letters, 2010, 105, 238101.	2.9	124
87	Divalent Cations Crosslink Vimentin Intermediate Filament Tail Domains to Regulate Network Mechanics. Journal of Molecular Biology, 2010, 399, 637-644.	2.0	98
88	Measurement of nonlinear rheology of cross-linked biopolymer gels. Soft Matter, 2010, 6, 4120.	1.2	91
89	Effective-medium approach for stiff polymer networks with flexible cross-links. Physical Review E, 2009, 79, 061914.	0.8	35
90	Nonlinear elasticity of stiff biopolymers connected by flexible linkers. Physical Review E, 2009, 79, 041928.	0.8	75

#	Article	IF	CITATIONS
91	Unraveling DNA tori under tension. Physical Review E, 2009, 80, 031917.	0.8	10
92	Cross-Linked Networks of Stiff Filaments Exhibit Negative Normal Stress. Physical Review Letters, 2009, 102, 088102.	2.9	85
93	An active biopolymer network controlled by molecular motors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15192-15197.	3.3	353
94	Intracellular transport by active diffusion. Trends in Cell Biology, 2009, 19, 423-427.	3.6	209
95	The Mechanics and Fluctuation Spectrum of Active Gels. Journal of Physical Chemistry B, 2009, 113, 3820-3830.	1.2	71
96	Nonlinear Elasticity of Stiff Filament Networks: Strain Stiffening, Negative Normal Stress, and Filament Alignment in Fibrin Gels. Journal of Physical Chemistry B, 2009, 113, 3799-3805.	1.2	166
97	Round versus flat: Bone cell morphology, elasticity, and mechanosensing. Journal of Biomechanics, 2008, 41, 1590-1598.	0.9	131
98	Active and Passive Microrheology in Equilibrium and Nonequilibrium Systems. Macromolecules, 2008, 41, 7194-7202.	2.2	161
99	Cytoplasmic diffusion: molecular motors mix it up. Journal of Cell Biology, 2008, 183, 583-587.	2.3	191
100	Buckling and force propagation along intracellular microtubules. Europhysics Letters, 2008, 84, 18003.	0.7	34
101	Nonequilibrium Mechanics and Dynamics of Motor-Activated Gels. Physical Review Letters, 2008, 100, 018104.	2.9	171
102	Nonequilibrium Microtubule Fluctuations in a Model Cytoskeleton. Physical Review Letters, 2008, 100, 118104.	2.9	152
103	High-bandwidth viscoelastic properties of aging colloidal glasses and gels. Physical Review E, 2008, 78, 061402.	0.8	29
104	Nonlinear Elasticity of Composite Networks of Stiff Biopolymers with Flexible Linkers. Physical Review Letters, 2008, 101, 118103.	2.9	85
105	Short-time inertial response of viscoelastic fluids measured with Brownian motion and with active probes. Physical Review E, 2008, 77, 061508.	0.8	28
106	Effective temperatures from the fluctuation-dissipation measurements in soft glassy materials. Europhysics Letters, 2008, 84, 20006.	0.7	22
107	Laser trapping and laser interferometry for high-bandwidth micromechanical probing of biomaterials. , 2008, , .		0
108	Visualizing the Strain Field in Semiflexible Polymer Networks: Strain Fluctuations and Nonlinear Rheology of F-Actin Gels. Physical Review Letters, 2007, 98, 198304.	2.9	96

#	Article	IF	Citations
109	Effective Medium Theory of Semiflexible Filamentous Networks. Physical Review Letters, 2007, 99, 038101.	2.9	85
110	Fluctuation-Dissipation Theorem in an Aging Colloidal Glass. Physical Review Letters, 2007, 98, 108302.	2.9	67
111	Force fluctuations and polymerization dynamics of intracellular microtubules. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16128-16133.	3.3	134
112	Nonequilibrium Mechanics of Active Cytoskeletal Networks. Science, 2007, 315, 370-373.	6.0	787
113	Viscoelastic Properties of Microtubule Networks. Macromolecules, 2007, 40, 7714-7720.	2.2	99
114	Bending Dynamics of Fluctuating Biopolymers Probed by Automated High-Resolution Filament Tracking. Biophysical Journal, 2007, 93, 346-359.	0.2	142
115	Negative normal stress in semiflexible biopolymer gels. Nature Materials, 2007, 6, 48-51.	13.3	332
116	Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. Journal of Cell Biology, 2006, 173, 733-741.	2.3	585
117	Correlated fluctuations of microparticles in viscoelastic solutions: Quantitative measurement of material properties by microrheology in the presence of optical traps. Physical Review E, 2006, 73, 061501.	0.8	66
118	Elastic Response, Buckling, and Instability of Microtubules under Radial Indentation. Biophysical Journal, 2006, 91, 1521-1531.	0.2	163
119	Lipid organization and the morphology of solid-like domains in phase-separating binary lipid membranes. Journal of Physics Condensed Matter, 2006, 18, L415-L420.	0.7	26
120	Bio Imaging of Intracellular NO Production in Single Bone Cells After Mechanical Stimulation. Journal of Bone and Mineral Research, 2006, 21, 1722-1728.	3.1	69
121	High-Frequency Stress Relaxation in Semiflexible Polymer Solutions and Networks. Physical Review Letters, 2006, 96, 138307.	2.9	129
122	Nonlinear elasticity in biological gels. Nature, 2005, 435, 191-194.	13.7	1,394
123	Inertial Effects in the Response of Viscous and Viscoelastic Fluids. Physical Review Letters, 2005, 95, 208303.	2.9	31
124	High-frequency microrheology of wormlike micelles. Physical Review E, 2005, 72, 011504.	0.8	71
125	Velocity distributions in dilute granular systems. Physical Review E, 2005, 72, 051301.	0.8	38
126	Short-Time Inertial Response of Viscoelastic Fluids: Observation of Vortex Propagation. Physical Review Letters, 2005, 95, 208302.	2.9	46

#	Article	IF	CITATIONS
127	Budding and domain shape transformations in mixed lipid films and bilayer membranes. Physical Review E, 2005, 72, 011903.	0.8	64
128	Mechanical response of semiflexible networks to localized perturbations. Physical Review E, 2005, 72, 061914.	0.8	50
129	The deformation field in semiflexible networks. Journal of Physics Condensed Matter, 2004, 16, S2079-S2088.	0.7	19
130	Deformation of crosslinked semiflexible polymer networks. AIP Conference Proceedings, 2004, , .	0.3	0
131	Collapse of a semiflexible polymer in poor solvent. Physical Review E, 2004, 69, 021916.	0.8	71
132	Velocity Distributions in Dissipative Granular Gases. Physical Review Letters, 2004, 93, 038001.	2.9	81
133	Mobility of extended bodies in viscous films and membranes. Physical Review E, 2004, 69, 021503.	0.8	58
134	Scaling of F-Actin Network Rheology to Probe Single Filament Elasticity and Dynamics. Physical Review Letters, 2004, 93, 188102.	2.9	155
135	Dynamics of Rigid and Flexible Extended Bodies in Viscous Films and Membranes. Physical Review Letters, 2004, 93, 038102.	2.9	54
136	Bacteriophage capsids: Tough nanoshells with complex elastic properties. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7600-7605.	3.3	317
137	Elastic Behavior of Cross-Linked and Bundled Actin Networks. Science, 2004, 304, 1301-1305.	6.0	1,090
138	Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Physical Review E, 2003, 68, 061907.	0.8	295
139	Deformation and Collapse of Microtubules on the Nanometer Scale. Physical Review Letters, 2003, 91, 098101.	2.9	220
140	Deformation of Cross-Linked Semiflexible Polymer Networks. Physical Review Letters, 2003, 91, 108102.	2.9	322
141	Nonuniversality of elastic exponents in random bond-bending networks. Physical Review E, 2003, 68, 025101.	0.8	53
142	Metastable intermediates in the condensation of semiflexible polymers. Physical Review E, 2002, 65, 061904.	0.8	68
143	Dynamics of viscoelastic membranes. Physical Review E, 2002, 66, 061606.	0.8	105
144	Viscoelastic properties of actin-coated membranes. Physical Review E, 2001, 63, 021904.	0.8	80

#	Article	IF	CITATIONS
145	Buckling of Actin-Coated Membranes under Application of a Local Force. Physical Review Letters, 2001, 87, 088103.	2.9	61
146	Instability of myelin tubes under dehydration: Deswelling of layered cylindrical structures. Physical Review E, 2001, 64, 050903.	0.8	6
147	Dynamical intermediates in the collapse of semiflexible polymers in poor solvents. Europhysics Letters, 2000, 51, 279-285.	0.7	68
148	Microrheology of Biopolymer-Membrane Complexes. Physical Review Letters, 2000, 85, 457-460.	2.9	121
149	Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells. Physical Review Letters, 2000, 85, 880-883.	2.9	443
150	Microrheology. Current Opinion in Colloid and Interface Science, 1999, 4, 300-307.	3.4	301
151	Tuning bilayer twist using chiral counterions. Nature, 1999, 399, 566-569.	13.7	603
152	Tuning bilayer twist using chiral counterious. Biology of the Cell, 1999, 91, 276-276.	0.7	1
153	Dynamic shear modulus of a semiflexible polymer network. Physical Review E, 1998, 58, R1241-R1244.	0.8	321
154	Theoretical Models of Viscoelasticity of Actin Solutions and the Actin Cortex. Biological Bulletin, 1998, 194, 351-353.	0.7	17
155	Theory of Fission for Two-Component Lipid Vesicles. Physical Review Letters, 1997, 79, 1579-1582.	2.9	53
156	Microscopic Viscoelasticity: Shear Moduli of Soft Materials Determined from Thermal Fluctuations. Physical Review Letters, 1997, 79, 3286-3289.	2.9	476
157	Viscoelasticity and its Microscopic Characterization in Semiflexible Biopolymer Solutions. Materials Research Society Symposia Proceedings, 1997, 489, 39.	0.1	1
158	Model for Dynamic Shear Modulus of Semiflexible Polymer Solutions. Materials Research Society Symposia Proceedings, 1997, 489, 49.	0.1	0
159	Determining Microscopic Viscoelasticity in Flexible and Semiflexible Polymer Networks from Thermal Fluctuations. Macromolecules, 1997, 30, 7781-7792.	2.2	328
160	Actin gels. Current Opinion in Solid State and Materials Science, 1997, 2, 350-357.	5.6	54
161	Instability and Front Propagation in Laser-Tweezed Lipid Bilayer Tubules. Journal De Physique II, 1997, 7, 139-156.	0.9	9
162	Internal structures in membranes: Ripples, hats, saddles, and egg cartons. Current Opinion in Colloid and Interface Science, 1997, 2, 382-387.	3.4	10

#	Article	IF	CITATIONS
163	Driven granular media in one dimension: Correlations and equation of state. Physical Review E, 1996, 54, R9-R12.	0.8	181
164	Theory of cylindrical tubules and helical ribbons of chiral lipid membranes. Physical Review E, 1996, 53, 3804-3818.	0.8	163
165	Local Viscoelasticity of Biopolymer Solutions. Materials Research Society Symposia Proceedings, 1996, 463, 15.	0.1	2
166	Front propagation in laser-tweezed lipid bilayer tubules. Materials Research Society Symposia Proceedings, 1996, 463, 173.	0.1	0
167	Theory of modulated phases in lipid bilayers and liquid crystal films. Physical Review E, 1996, 53, 4933-4943.	0.8	21
168	Phase transitions and modulated phases in lipid bilayers. Physical Review E, 1995, 51, 504-513.	0.8	59
169	Structural Phase Transitions in Liquid-Crystal Films Induced by an Applied Electric Field. Europhysics Letters, 1995, 30, 215-220.	0.7	9
170	Swelling Kinetics of Layered Structures: Triblock Copolymer Mesogels. Langmuir, 1995, 11, 2471-2475.	1.6	3
171	Elasticity of Semiflexible Biopolymer Networks. Physical Review Letters, 1995, 75, 4425-4428.	2.9	935
172	Polymer Mushrooms Compressed Under Curved Surfaces. Journal De Physique II, 1995, 5, 1407-1417.	0.9	9
173	Shape Transformations of Domains in Mixed-Fluid Films and Bilayer Membranes. Europhysics Letters, 1994, 28, 495-500.	0.7	34
174	Mixed fluid bilayers: Effects of confinement. Physical Review E, 1994, 50, 2891-2897.	0.8	17
175	Shear of Diblock Copolymer Lamellae: Width Changes and Undulational Instabilities. Macromolecules, 1994, 27, 7677-7680.	2.2	39
176	Id Excited Granular Media: Clustering and Equation of State. Materials Research Society Symposia Proceedings, 1994, 367, 501.	0.1	0
177	Theory of "Ripple―Phases of Lipid Bilayers. Physical Review Letters, 1993, 71, 1565-1568.	2.9	129
178	Phase separation and curvature of bilayer membranes. Physical Review E, 1993, 47, 1180-1183.	0.8	41
179	<i>n</i> -Atic Order and Continuous Shape Changes of Deformable Surfaces of Genus Zero. Europhysics Letters, 1992, 20, 279-284.	0.7	37
180	Reply to â€~â€~Comment on â€~Polarization memory of multiply scattered light' ''. Physical Review B, 8165-8165.	1992, 45, 1.1	7

#	Article	IF	Citations
181	Orientational order, topology, and vesicle shapes. Physical Review Letters, 1991, 67, 1169-1172.	2.9	103
182	Stability and Phase Behavior of Mixed-Surfactant Vesicles. Materials Research Society Symposia Proceedings, 1991, 248, 11.	0.1	1
183	Spontaneous vesicle formation by mixed surfactants. , 1991, , 3-7.		17
184	Stability and phase behavior of mixed surfactant vesicles. Physical Review A, 1991, 43, 1071-1078.	1.0	186
185	Stability and Phase Behavior of Mixed Surfactant Vesicles. , 1991, , 197-205.		1
186	Growth of charged micelles. Journal De Physique, 1990, 51, 503-510.	1.8	90
187	Equilibrium size distribution of charged 'living' polymers. Journal of Physics Condensed Matter, 1990, 2, SA359-SA364.	0.7	12
188	Self-Assembly of Linear Aggregates: the Effect of Electrostatics on Growth. Europhysics Letters, 1990, 12, 697-702.	0.7	140
189	Polarization memory of multiply scattered light. Physical Review B, 1989, 40, 9342-9345.	1.1	296
190	Diffusing-wave spectroscopy and multiple scattering of light in correlated random media. Physical Review B, 1989, 40, 2383-2406.	1.1	197
191	Coherent Backscattering and Anderson Localization of Light. Springer Proceedings in Physics, 1989, , 117-126.	0.1	0
192	Coherent backscattering of light in the presence of time-reversal-noninvariant and parity-nonconserving media. Physical Review B, 1988, 37, 1884-1897.	1.1	175
193	Weak localization of photons: Termination of coherent random walks by absorption and confined geometry. Physical Review Letters, 1987, 59, 1420-1423.	2.9	101
194	A measurement of the spin-rotation coupling in NaXe molecules. Physics Letters, Section A: General, Atomic and Solid State Physics, 1985, 112, 435-439.	0.9	3
195	Cylindrical Penning traps with orthogonalized anharmonicity compensation. International Journal of Mass Spectrometry and Ion Processes, 1984, 57, 1-17.	1.9	140