List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3644205/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of microporous polyaniline counter electrode for dye-sensitized solar cells. Electrochemistry Communications, 2008, 10, 1299-1302.	2.3	457
2	Highâ€Purity Inorganic Perovskite Films for Solar Cells with 9.72 % Efficiency. Angewandte Chemie - International Edition, 2018, 57, 3787-3791.	7.2	404
3	Lanthanide Ions Doped CsPbBr ₃ Halides for HTMâ€Free 10.14%â€Efficiency Inorganic Perovskite Solar Cell with an Ultrahigh Openâ€Circuit Voltage of 1.594 V. Advanced Energy Materials, 2018, 8, 1802346.	10.2	387
4	The Main Progress of Perovskite Solar Cells in 2020–2021. Nano-Micro Letters, 2021, 13, 152.	14.4	250
5	Transparent Metal Selenide Alloy Counter Electrodes for Highâ€Efficiency Bifacial Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 14569-14574.	7.2	231
6	Platinumâ€Free Binary Coâ€Ni Alloy Counter Electrodes for Efficient Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 10799-10803.	7.2	205
7	All-inorganic CsPbBr ₃ perovskite solar cell with 10.26% efficiency by spectra engineering. Journal of Materials Chemistry A, 2018, 6, 24324-24329.	5.2	182
8	Dissolution Engineering of Platinum Alloy Counter Electrodes in Dye ensitized Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 11448-11452.	7.2	168
9	A highly efficient TiO ₂ @ZnO n–p–n heterojunction nanorod photocatalyst. Nanoscale, 2013, 5, 588-593.	2.8	163
10	Tailored Lattice "Tape―to Confine Tensile Interface for 11.08%â€Efficiency Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cell with an Ultrahigh Voltage of 1.702ÂV. Advanced Science, 2021, 8, e2101418.	5.6	161
11	Recent advances in critical materials for quantum dot-sensitized solar cells: a review. Journal of Materials Chemistry A, 2015, 3, 17497-17510.	5.2	158
12	Rapid Conversion from Carbohydrates to Large-Scale Carbon Quantum Dots for All-Weather Solar Cells. ACS Nano, 2017, 11, 1540-1547.	7.3	155
13	Lattice Modulation of Alkali Metal Cations Doped Cs _{1â^*<i>x</i>} R <i>_x</i> PbBr ₃ Halides for Inorganic Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800164.	3.1	154
14	Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications. Journal of Materials Chemistry A, 2013, 1, 317-323.	5.2	152
15	Interfacial Strain Release from the WS ₂ /CsPbBr ₃ van der Waals Heterostructure for 1.7â€V Voltage Allâ€Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 21997-22001.	7.2	149
16	A Largeâ€Area Lightâ€Weight Dyeâ€Sensitized Solar Cell based on All Titanium Substrates with an Efficiency of 6.69% Outdoors. Advanced Materials, 2012, 24, 1884-1888.	11.1	146
17	Bifacial dye-sensitized solar cells: A strategy to enhance overall efficiency based on transparent polyaniline electrode. Scientific Reports, 2014, 4, 4028.	1.6	141
18	Inorganic perovskite solar cells: an emerging member of the photovoltaic community. Journal of Materials Chemistry A, 2019, 7, 21036-21068.	5.2	137

#	Article	IF	CITATIONS
19	Interface Engineering of Imidazolium Ionic Liquids toward Efficient and Stable CsPbBr ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 4540-4548.	4.0	132
20	Enhancement of the Photovoltaic Performance of Dye‣ensitized Solar Cells by Doping Y _{0.78} Yb _{0.20} Er _{0.02} F ₃ in the Photoanode. Advanced Energy Materials, 2012, 2, 78-81.	10.2	131
21	Review on recent progress of lead-free halide perovskites in optoelectronic applications. Nano Energy, 2021, 80, 105526.	8.2	130
22	Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure. Carbohydrate Polymers, 2008, 74, 215-219.	5.1	124
23	Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency. Nanoscale, 2014, 6, 12601-12608.	2.8	124
24	Alkylâ€Chainâ€Regulated Charge Transfer in Fluorescent Inorganic CsPbBr ₃ Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 4391-4395.	7.2	122
25	Nanotheranostics: Congo Red/Rutinâ€MNPs with Enhanced Magnetic Resonance Imaging and H ₂ O ₂ â€Responsive Therapy of Alzheimer's Disease in APPswe/PS1dE9 Transgenic Mice. Advanced Materials, 2015, 27, 5499-5505.	11.1	120
26	Precise stress control of inorganic perovskite films for carbon-based solar cells with an ultrahigh voltage of 1.622â€V. Nano Energy, 2020, 67, 104286.	8.2	119
27	Robust electrocatalysts from an alloyed Pt–Ru–M (M = Cr, Fe, Co, Ni, Mo)-decorated Ti mesh for hydrogen evolution by seawater splitting. Journal of Materials Chemistry A, 2016, 4, 6513-6520.	5.2	118
28	Holeâ€Boosted Cu(Cr,M)O ₂ Nanocrystals for Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 16147-16151.	7.2	118
29	Simplified Perovskite Solar Cell with 4.1% Efficiency Employing Inorganic CsPbBr ₃ as Light Absorber. Small, 2018, 14, e1704443.	5.2	113
30	Carbonâ€Electrodeâ€Tailored Allâ€Inorganic Perovskite Solar Cells To Harvest Solar and Waterâ€Vapor Energy. Angewandte Chemie - International Edition, 2018, 57, 5746-5749.	7.2	112
31	Nitrogen-doped carbon quantum dots from biomass via simple one-pot method and exploration of their application. Applied Surface Science, 2018, 434, 1079-1085.	3.1	112
32	9.13%-Efficiency and stable inorganic CsPbBr3 solar cells. Lead-free CsSnBr3-xlx quantum dots promote charge extraction. Journal of Power Sources, 2018, 399, 76-82.	4.0	105
33	Recent advances in alloy counter electrodes for dye-sensitized solar cells. A critical review. Electrochimica Acta, 2015, 178, 886-899.	2.6	104
34	Efficient dye-sensitized solar cells from polyaniline–single wall carbon nanotube complex counter electrodes. Journal of Materials Chemistry A, 2014, 2, 3119.	5.2	103
35	Using eggshell membrane as a separator in supercapacitor. Journal of Power Sources, 2012, 206, 463-468.	4.0	101
36	Robust and stable ruthenium alloy electrocatalysts for hydrogen evolution by seawater splitting. Electrochimica Acta, 2016, 208, 180-187.	2.6	99

#	Article	IF	CITATIONS
37	Highâ€Purity Inorganic Perovskite Films for Solar Cells with 9.72 % Efficiency. Angewandte Chemie, 2018, 130, 3849-3853.	1.6	99
38	Low-Cost Counter Electrodes From CoPt Alloys For Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 4812-4818.	4.0	96
39	A Solar Cell That Is Triggered by Sun and Rain. Angewandte Chemie - International Edition, 2016, 55, 5243-5246.	7.2	96
40	Divalent hard Lewis acid doped CsPbBr ₃ films for 9.63%-efficiency and ultra-stable all-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 6877-6882.	5.2	96
41	Poly(3-hexylthiophene)/zinc phthalocyanine composites for advanced interface engineering of 10.03%-efficiency CsPbBr ₃ perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 12635-12644.	5.2	94
42	Effect of Side-Group-Regulated Dipolar Passivating Molecules on CsPbBr ₃ Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 2336-2342.	8.8	91
43	Conducting Film from Graphite Oxide Nanoplatelets and Poly(acrylic acid) by Layer-by-Layer Self-Assembly. Langmuir, 2008, 24, 4800-4805.	1.6	90
44	<i>>p</i> â€Type Charge Transfer Doping of Graphene Oxide with (NiCo) _{1â~`<i>y</i>} Fe _{<i>y</i>} O _{<i>x</i>} for Airâ€Stable, Allâ€Inorganic CsPblBr ₂ Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 10608-10613.	7.2	89
45	Nodding Duck Structure Multi-track Directional Freestanding Triboelectric Nanogenerator toward Low-Frequency Ocean Wave Energy Harvesting. ACS Nano, 2021, 15, 9412-9421.	7.3	89
46	Superabsorbent conducting hydrogel from poly(acrylamide-aniline) with thermo-sensitivity and release properties. Carbohydrate Polymers, 2008, 73, 473-481.	5.1	87
47	Rapid charge-transfer in polypyrrole–single wall carbon nanotube complex counter electrodes: Improved photovoltaic performances of dye-sensitized solar cells. Journal of Power Sources, 2014, 256, 170-177.	4.0	86
48	Using SnO ₂ QDs and CsMBr ₃ (M = Sn, Bi, Cu) QDs as Chargeâ€Transporting Materials for 10.6%â€Efficiency Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells with an Ultrahigh Openâ€Circuit Voltage of 1.610 V. Solar Rrl, 2019, 3, 1800284.	3.1	84
49	Toward efficient and air-stable carbon-based all-inorganic perovskite solar cells through substituting CsPbBr3 films with transition metal ions. Chemical Engineering Journal, 2019, 375, 121930.	6.6	82
50	Mesoporous TiO2 anodes for efficient dye-sensitized solar cells: An efficiency of 9.86% under one sun illumination. Journal of Power Sources, 2014, 267, 445-451.	4.0	74
51	Shape and Size Control of Oriented Polyaniline Microstructure by a Self-Assembly Method. Langmuir, 2009, 25, 5253-5257.	1.6	73
52	The unique dielectricity of inorganic perovskites toward high-performance triboelectric nanogenerators. Nano Energy, 2020, 69, 104418.	8.2	73
53	Complexation of polyaniline and graphene for efficient counter electrodes in dye-sensitized solar cells: Enhanced charge transfer ability. Journal of Power Sources, 2014, 256, 8-13.	4.0	71
54	Electric field sensitivity of conducting hydrogels with interpenetrating polymer network structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 177-183.	2.3	69

#	Article	IF	CITATIONS
55	Cumulative charging behavior of water droplet driven freestanding triboelectric nanogenerators toward hydrodynamic energy harvesting. Journal of Materials Chemistry A, 2020, 8, 7880-7888.	5.2	69
56	Two-steps synthesis of a poly(acrylate–aniline) conducting hydrogel with an interpenetrated networks structure. Carbohydrate Polymers, 2007, 67, 332-336.	5.1	67
57	Quasi-solid-state dye-sensitized solar cell from polyaniline integrated poly(hexamethylene) Tj ETQq1 1 0.784314 5326.	f rgBT /Ov 5.2	erlock 10 Tf 5 66
58	PtRu nanofiber alloy counter electrodes for dye-sensitized solar cells. Journal of Power Sources, 2014, 258, 117-121.	4.0	66
59	Robust Polyaniline–Graphene Complex Counter Electrodes For Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 8230-8236.	4.0	66
60	Nanowrinkle-patterned flexible woven triboelectric nanogenerator toward self-powered wearable electronics. Nano Energy, 2020, 73, 104797.	8.2	66
61	Preparation and photocatalytic degradability of TiO2/polyacrylamide composite. European Polymer Journal, 2007, 43, 2214-2220.	2.6	65
62	An all-weather solar cell that can harvest energy from sunlight and rain. Nano Energy, 2016, 30, 818-824.	8.2	65
63	Toward charge extraction in all-inorganic perovskite solar cells by interfacial engineering. Journal of Materials Chemistry A, 2018, 6, 21999-22004.	5.2	65
64	A multifunctional hydrogel with high conductivity, pH-responsive, thermo-responsive and release properties from polyacrylate/polyaniline hybrid. Carbohydrate Polymers, 2008, 73, 315-321.	5.1	64
65	Enhanced photovoltaic performances of quasi-solid-state dye-sensitized solar cells using a novel conducting gel electrolyte. Journal of Power Sources, 2014, 248, 923-930.	4.0	64
66	Toward fast charge extraction in all-inorganic CsPbBr3 perovskite solar cells by setting intermediate energy levels. Solar Energy, 2018, 171, 279-285.	2.9	64
67	Low-cost CoPt alloy counter electrodes for efficient dye-sensitized solar cells. Journal of Power Sources, 2014, 260, 180-185.	4.0	63
68	Alloyâ€Controlled Work Function for Enhanced Charge Extraction in Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells. ChemSusChem, 2018, 11, 1432-1437.	3.6	62
69	Enhanced Efficiency of Air-Stable CsPbBr ₃ Perovskite Solar Cells by Defect Dual Passivation and Grain Size Enlargement with a Multifunctional Additive. ACS Applied Materials & Interfaces, 2020, 12, 36092-36101.	4.0	62
70	Grain Enlargement and Defect Passivation with Melamine Additives for High Efficiency and Stable CsPbBr ₃ Perovskite Solar Cells. ChemSusChem, 2020, 13, 1834-1843.	3.6	62
71	Boosting power conversion efficiency by hybrid triboelectric nanogenerator/silicon tandem solar cell toward rain energy harvesting. Nano Energy, 2021, 82, 105773.	8.2	62
72	Self-assembly growth of oriented polyaniline arrays: A morphology and structure study. Polymer, 2008, 49, 5262-5267.	1.8	61

#	Article	IF	CITATIONS
73	Preparation of poly(acrylic acid)/gelatin/polyaniline gel-electrolyte and its application in quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2012, 203, 282-287.	4.0	60
74	Efficient quasi-solid-state dye-sensitized solar cells from graphene incorporated conducting gel electrolytes. Journal of Materials Chemistry A, 2014, 2, 2814.	5.2	60
75	Efficient quasi-solid-state dye-sensitized solar cells employing polyaniline and polypyrrole incorporated microporous conducting gel electrolytes. Journal of Power Sources, 2014, 254, 98-105.	4.0	59
76	Imbibition of polypyrrole into three-dimensional poly(hydroxyethyl methacrylate/glycerol) gel electrolyte for robust quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 8055.	5.2	57
77	New corrosion inhibitor acrylamide methyl ether for mild steel in 1 M HCl. Applied Surface Science, 2016, 371, 248-257.	3.1	57
78	Spray-assisted deposition of CsPbBr3 films in ambient air for large-area inorganic perovskite solar cells. Materials Today Energy, 2018, 10, 146-152.	2.5	57
79	Universal Dynamic Liquid Interface for Healing Perovskite Solar Cells. Advanced Materials, 2022, 34, e2202301.	11.1	57
80	Fabrication of a high-strength hydrogel with an interpenetrating network structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 91-98.	2.3	56
81	Multifunctional graphene incorporated conducting gel electrolytes in enhancing photovoltaic performances of quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2014, 260, 225-232.	4.0	56
82	p–n Heterojunction on Ordered ZnO Nanowires/Polyaniline Microrods Double Array. Langmuir, 2012, 28, 3972-3978.	1.6	54
83	Photoelectric conversion beyond sunny days: all-weather carbon quantum dot solar cells. Journal of Materials Chemistry A, 2017, 5, 2143-2150.	5.2	54
84	Alkali Metal Ion-Regulated Lead-free, All-Inorganic Double Perovskites for HTM-free, Carbon-Based Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 47408-47415.	4.0	54
85	Solid-state dye-sensitized solar cells from poly(ethylene oxide)/polyaniline electrolytes with catalytic and hole-transporting characteristics. Journal of Materials Chemistry A, 2015, 3, 5368-5374.	5.2	53
86	The era of water-enabled electricity generation from graphene. Journal of Materials Chemistry A, 2016, 4, 9730-9738.	5.2	53
87	Biomass converted carbon quantum dots for all-weather solar cells. Electrochimica Acta, 2017, 257, 259-266.	2.6	53
88	Phosphoric acid-imbibed three-dimensional polyacrylamide/poly(vinyl alcohol) hydrogel as a new class of high-temperature proton exchange membrane. Journal of Power Sources, 2013, 229, 36-41.	4.0	52
89	Transmission enhanced photoanodes for efficient dye-sensitized solar cells. Electrochimica Acta, 2014, 125, 646-651.	2.6	52
90	Thermalâ€Triggered Dynamic Disulfide Bond Selfâ€Heals Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	52

#	Article	IF	CITATIONS
91	A simple route to interpenetrating network hydrogel with high mechanical strength. Journal of Colloid and Interface Science, 2009, 339, 45-52.	5.0	51
92	Advanced Modification of Perovskite Surfaces for Defect Passivation and Efficient Charge Extraction in Air-Stable CsPbBr ₃ Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 19286-19294.	3.2	51
93	Counter electrodes from conducting polymer intercalated graphene for dye-sensitized solar cells. Journal of Power Sources, 2016, 309, 231-237.	4.0	50
94	The synthesis and electrical conductivity of a polyacrylate/graphite hydrogel. Reactive and Functional Polymers, 2007, 67, 275-281.	2.0	49
95	Platinum Alloy Tailored Allâ€Weather Solar Cells for Energy Harvesting from Sun and Rain. Angewandte Chemie - International Edition, 2016, 55, 14412-14416.	7.2	49
96	Enhanced charge extraction by setting intermediate energy levels in all-inorganic CsPbBr3 perovskite solar cells. Electrochimica Acta, 2018, 279, 84-90.	2.6	49
97	Enhanced dye illumination in dye-sensitized solar cells using TiO ₂ /GeO ₂ photo-anodes. Journal of Materials Chemistry A, 2014, 2, 12459.	5.2	48
98	Synthesis of polyacrylate/polyethylene glycol interpenetrating network hydrogel and its sorption of heavy-metal ions. Science and Technology of Advanced Materials, 2009, 10, 015002.	2.8	47
99	High-temperature proton exchange membranes from microporous polyacrylamide caged phosphoric acid. Journal of Materials Chemistry A, 2013, 1, 630-636.	5.2	47
100	Cost-effective, transparent iron selenide nanoporous alloy counter electrode for bifacial dye-sensitized solar cell. Journal of Power Sources, 2015, 282, 79-86.	4.0	47
101	CdZnSe@ZnSe colloidal alloy quantum dots for high-efficiency all-inorganic perovskite solar cells. Chemical Communications, 2018, 54, 9575-9578.	2.2	47
102	Oxygen vacancies enriched Co3O4 nanoflowers with single layer porous structures for water splitting. Electrochimica Acta, 2020, 331, 135456.	2.6	47
103	Interfacial Strain Release from the WS ₂ /CsPbBr ₃ van der Waals Heterostructure for 1.7â€V Voltage Allâ€Inorganic Perovskite Solar Cells. Angewandte Chemie, 2020, 132, 22181-22185.	1.6	47
104	Self-powered seesaw structured spherical buoys based on a hybrid triboelectric–electromagnetic nanogenerator for sea surface wireless positioning. Energy and Environmental Science, 2022, 15, 621-632.	15.6	47
105	Generators to harvest ocean wave energy through electrokinetic principle. Nano Energy, 2018, 48, 128-133.	8.2	46
106	Tailoring all-inorganic cesium lead halide perovskites for robust triboelectric nanogenerators. Nano Energy, 2020, 70, 104514.	8.2	46
107	Preparation and water absorbency of a novel poly(acrylate-co-acrylamide)/vermiculite superabsorbent composite. Journal of Applied Polymer Science, 2007, 104, 735-739.	1.3	45
108	Preparation of PAA-g-CTAB/PANI polymer based gel-electrolyte and the application in quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2011, 58, 52-57.	2.6	45

#	Article	IF	CITATIONS
109	Bifacial dye-sensitized solar cells with enhanced rear efficiency and power output. Nanoscale, 2014, 6, 15127-15133.	2.8	45
110	Ternary platinum alloy counter electrodes for high-efficiency dye-sensitized solar cells. Electrochimica Acta, 2016, 190, 85-91.	2.6	45
111	The synthesis and electrical conductivity of a polyacrylamide/Cu conducting hydrogel. Reactive and Functional Polymers, 2007, 67, 489-494.	2.0	44
112	Employment of ionic liquid-imbibed polymer gel electrolyte for efficient quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2014, 248, 816-821.	4.0	44
113	Bifacial dye-sensitized solar cells with transparent cobalt selenide alloy counter electrodes. Journal of Power Sources, 2015, 284, 349-354.	4.0	44
114	Electrospinning of polyaniline microfibers for anticorrosion coatings: An avenue of enhancing anticorrosion behaviors. Synthetic Metals, 2016, 212, 84-90.	2.1	44
115	Enhanced energy level alignment and hole extraction of carbon electrode for air-stable hole-transporting material-free CsPbBr3 perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 205, 110267.	3.0	43
116	High efficient PANI/Pt nanofiber counter electrode used in dye-sensitized solar cell. RSC Advances, 2012, 2, 4062.	1.7	42
117	Enhanced photocatalytic activity from Gd, La codoped TiO2 nanotube array photocatalysts under visible-light irradiation. Applied Surface Science, 2013, 284, 837-842.	3.1	42
118	Efficient In2S3 Quantum dotâ ''sensitized Solar Cells: A Promising Power Conversion Efficiency of 1.30%. Electrochimica Acta, 2014, 139, 381-385.	2.6	42
119	Platinum-free binary Fe–Co nanofiber alloy counter electrodes for dye-sensitized solar cells. Journal of Power Sources, 2014, 268, 56-62.	4.0	42
120	Bifacial dye-sensitized solar cells from covalent-bonded polyaniline–multiwalled carbon nanotube complex counter electrodes. Journal of Power Sources, 2015, 275, 489-497.	4.0	42
121	Highly transparent metal selenide counter electrodes for bifacial dye-sensitized solar cells. Journal of Power Sources, 2016, 317, 43-48.	4.0	42
122	Improved charge extraction through interface engineering for 10.12% efficiency and stable CsPbBr ₃ perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 20987-20997.	5.2	42
123	Interfacial electric field enhanced charge density for robust triboelectric nanogenerators by tailoring metal/perovskite Schottky junction. Nano Energy, 2020, 73, 104747.	8.2	42
124	Multifunctional graphene incorporated polyacrylamide conducting gel electrolytes for efficient quasi-solid-state quantum dot-sensitized solar cells. Journal of Power Sources, 2015, 284, 369-376.	4.0	40
125	Can dye-sensitized solar cells generate electricity in the dark?. Nano Energy, 2017, 33, 266-271.	8.2	40
126	Lead-free CH3NH3SnBr3-xlx perovskite quantum dots for mesoscopic solar cell applications. Electrochimica Acta, 2018, 282, 807-812.	2.6	40

#	Article	lF	CITATIONS
127	Two-step synthesis of polyacrylamide/polyacrylate interpenetrating network hydrogels and its swelling/deswelling properties. Journal of Materials Science, 2008, 43, 5884-5890.	1.7	39
128	Transmission booster from SiO2 incorporated TiO2 crystallites: Enhanced conversion efficiency in dye-sensitized solar cells. Electrochimica Acta, 2014, 134, 281-286.	2.6	39
129	Triboelectric charging behaviors and photoinduced enhancement of alkaline earth ions doped inorganic perovskite triboelectric nanogenerators. Nano Energy, 2020, 77, 105280.	8.2	39
130	Two-step synthesis of polyacrylamide/poly(vinyl alcohol)/polyacrylamide/graphite interpenetrating network hydrogel and its swelling, conducting and mechanical properties. Journal of Materials Science, 2008, 43, 5898-5904.	1.7	38
131	Graphene enabled all-weather solar cells for electricity harvest from sun and rain. Journal of Materials Chemistry A, 2016, 4, 13235-13241.	5.2	38
132	Organic hole-transporting materials for 9.32%-efficiency and stable CsPbBr ₃ perovskite solar cells. Materials Chemistry Frontiers, 2018, 2, 2239-2244.	3.2	38
133	Flexible and macroporous network-structured catalysts composed of conducting polymers and Pt/Ag with high electrocatalytic activity for methanol oxidation. Journal of Materials Chemistry, 2011, 21, 13354.	6.7	37
134	Hierarchical Gd–La codoped TiO2 microspheres as robust photocatalysts. International Journal of Hydrogen Energy, 2013, 38, 2634-2640.	3.8	37
135	A simple approach of enhancing photovoltaic performances of quasi-solid-state dye-sensitized solar cells by integrating conducting polyaniline into electrical insulating gel electrolyte. Journal of Power Sources, 2014, 245, 468-474.	4.0	37
136	Lattice-tailored low-temperature processed electron transporting materials boost the open-circuit voltage of planar CsPbBr ₃ perovskite solar cells up to 1.654 V. Journal of Materials Chemistry A, 2020, 8, 11859-11866.	5.2	37
137	Enhanced proton conductivity from phosphoric acid-imbibed crosslinked 3D polyacrylamide frameworks for high-temperature proton exchange membranes. International Journal of Hydrogen Energy, 2013, 38, 1016-1026.	3.8	36
138	Full-ionic liquid gel electrolytes: Enhanced photovoltaic performances in dye-sensitized solar cells. Journal of Power Sources, 2014, 264, 83-91.	4.0	36
139	Conducting gel electrolytes with microporous structures for efficient quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2015, 273, 1148-1155.	4.0	36
140	A branching NiCuPt alloy counter electrode for high-efficiency dye-sensitized solar cell. Applied Surface Science, 2016, 362, 28-34.	3.1	36
141	Carbon quantum dot tailored counter electrode for 7.01%-rear efficiency in a bifacial dye-sensitized solar cell. Chemical Communications, 2017, 53, 9894-9897.	2.2	36
142	Charge boosting and storage by tailoring rhombus all-inorganic perovskite nanoarrays for robust triboelectric nanogenerators. Nano Energy, 2020, 74, 104845.	8.2	36
143	Titanium dioxide/calcium fluoride nanocrystallite for efficient dye-sensitized solar cell. A strategy of enhancing light harvest. Journal of Power Sources, 2015, 275, 175-180.	4.0	35
144	Transparent molybdenum sulfide decorated polyaniline complex counter electrodes for efficient bifacial dye-sensitized solar cells. Solar Energy, 2017, 147, 470-478.	2.9	35

#	Article	IF	CITATIONS
145	Improved charge extraction with N-doped carbon quantum dots in dye-sensitized solar cells. Electrochimica Acta, 2018, 282, 255-262.	2.6	35
146	10.34%-efficient integrated CsPbBr3/bulk-heterojunction solar cells. Journal of Power Sources, 2019, 440, 227151.	4.0	35
147	Triboelectric sensor array for internet of things based smart traffic monitoring and management system. Nano Energy, 2022, 92, 106757.	8.2	35
148	Preparation and electrical conductivity of SiO2/polypyrrole nanocomposite. Journal of Materials Science, 2009, 44, 849-854.	1.7	34
149	A ceramic NiO/ZrO2 separator for high-temperature supercapacitor up to 140â€ ⁻ °C. Journal of Power Sources, 2018, 400, 126-134.	4.0	34
150	Co/Se and Ni/Se nanocomposite films prepared by magnetron sputtering as counter electrodes for dye-sensitized solar cells. Solar Energy, 2019, 180, 85-91.	2.9	34
151	High-temperature proton exchange membranes from ionic liquid absorbed/doped superabsorbents. Journal of Materials Chemistry, 2012, 22, 15836.	6.7	33
152	Carbide decorated carbon nanotube electrocatalyst for high-efficiency hydrogen evolution from seawater. RSC Advances, 2016, 6, 93267-93274.	1.7	33
153	Counter electrode electrocatalysts from one-dimensional coaxial alloy nanowires for efficient dye-sensitized solar cells. Journal of Power Sources, 2016, 302, 361-368.	4.0	33
154	Sonochemistry-assisted black/red phosphorus hybrid quantum dots for dye-sensitized solar cells. Journal of Power Sources, 2019, 410-411, 53-58.	4.0	33
155	High conducting multilayer films from poly(sodium styrenesulfonate) and graphite nanoplatelets by layer-by-layer self-assembly. Polymer, 2008, 49, 5329-5335.	1.8	32
156	Counter electrodes from binary ruthenium selenide alloys for dye-sensitized solar cells. Journal of Power Sources, 2014, 271, 108-113.	4.0	32
157	Counter electrodes from polyanilineâ^carbon nanotube complex/graphene oxide multilayers for dye-sensitized solar cell application. Electrochimica Acta, 2014, 125, 510-515.	2.6	32
158	Efficient interface engineering of N, N'-Dicyclohexylcarbodiimide for stable HTMs-free CsPbBr3 perovskite solar cells with 10.16%-efficiency. Chemical Engineering Journal, 2022, 428, 131950.	6.6	32
159	Templateless self-assembly of highly oriented polyaniline arrays. Chemical Communications, 2009, , 2166.	2.2	31
160	Photoactivated transition metal dichalcogenides to boost electron extraction for all-inorganic tri-brominated planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 7784-7791.	5.2	31
161	Self-assembly of graphene oxide/polyaniline multilayer counter electrodes for efficient dye-sensitized solar cells. Electrochimica Acta, 2014, 121, 136-142.	2.6	30
162	Hypoxia-responsive drug–drug conjugated nanoparticles for breast cancer synergistic therapy. RSC Advances, 2016, 6, 30268-30276.	1.7	30

#	Article	IF	CITATIONS
163	Cost-effective platinum alloy counter electrodes for liquid-junction dye-sensitized solar cells. Journal of Power Sources, 2016, 305, 217-224.	4.0	30
164	Enhanced charge extraction in carbon-based all-inorganic CsPbBr3 perovskite solar cells by dual-function interface engineering. Electrochimica Acta, 2019, 328, 135102.	2.6	30
165	Dielectric Hole Collector toward Boosting Charge Transfer of CsPbBr ₃ Hybrid Nanogenerator by Coupling Triboelectric and Photovoltaic Effects. Advanced Functional Materials, 2021, 31, 2101348.	7.8	30
166	Alkali chloride doped SnO ₂ electron-transporting layers for boosting charge transfer and passivating defects in all-inorganic CsPbBr ₃ perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 15003-15011.	5.2	30
167	Tailoring type-II all-in-one buried interface for 1.635V-voltage, all-inorganic CsPbBr3 perovskite solar cells. Nano Energy, 2022, 96, 107138.	8.2	30
168	Preparation of porous polyacrylate/poly(ethylene glycol) interpenetrating network hydrogel and simplification of Flory theory. Journal of Materials Science, 2009, 44, 3712-3718.	1.7	29
169	Counter electrodes from polyanilineâ^'graphene complex/graphene oxide multilayers for dyeâ^'sensitized solar cells. Electrochimica Acta, 2014, 137, 175-182.	2.6	29
170	Costâ^'effective alloy counter electrodes as a new avenue for highâ^'efficiency dyeâ^'sensitized solar cells. Electrochimica Acta, 2015, 158, 397-402.	2.6	29
171	Cost-effective counter electrode electrocatalysts from iron@palladium and iron@platinum alloy nanospheres for dye-sensitized solar cells. Journal of Power Sources, 2015, 297, 1-8.	4.0	29
172	S-doped CQDs tailored transparent counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Electrochimica Acta, 2018, 261, 588-595.	2.6	29
173	Ultraviolet filtration and defect passivation for efficient and photostable CsPbBr3 perovskite solar cells by interface engineering with ultraviolet absorber. Chemical Engineering Journal, 2021, 404, 126548.	6.6	29
174	Enhanced charge extraction with all-carbon electrodes for inorganic CsPbBr ₃ perovskite solar cells. Dalton Transactions, 2018, 47, 15283-15287.	1.6	28
175	Efficiency enhancement of bifacial dye-sensitized solar cells through bi-tandem carbon quantum dots tailored transparent counter electrodes. Electrochimica Acta, 2018, 278, 204-209.	2.6	28
176	Multifunctional brominated graphene oxide boosted charge extraction for high-efficiency and stable all-inorganic CsPbBr3 perovskite solar cells. Chemical Engineering Journal, 2021, 412, 128727.	6.6	28
177	Robust conducting gel electrolytes for efficient quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2014, 137, 57-64.	2.6	27
178	7.35% Efficiency rear-irradiated flexible dye-sensitized solar cells by sealing liquid electrolyte in a groove. Chemical Communications, 2015, 51, 491-494.	2.2	27
179	Boosted hole extraction in all-inorganic CsPbBr3 perovskite solar cells by interface engineering using MoO2/N-doped carbon nanospheres composite. Solar Energy Materials and Solar Cells, 2020, 209, 110460.	3.0	27
180	Phase Control of Csâ€Pbâ€Br Derivatives to Suppress 0D Cs ₄ PbBr ₆ for Highâ€Efficiency and Stable Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells. Small, 2022, 18, e2106323.	5.2	27

#	Article	IF	CITATIONS
181	The preparation and electrical conductivity of polyacrylamide/graphite conducting hydrogel. Journal of Applied Polymer Science, 2008, 108, 1490-1495.	1.3	26
182	Synthesis of polyacrylate/poly(ethylene glycol) hydrogel and its absorption properties for heavy metal ions and dye. Polymer Composites, 2009, 30, 1183-1189.	2.3	26
183	Cubic carbon quantum dots for light-harvesters in mesoscopic solar cells. Electrochimica Acta, 2018, 275, 275-280.	2.6	26
184	A porous ceramic membrane tailored high-temperature supercapacitor. Journal of Power Sources, 2018, 379, 60-67.	4.0	26
185	Compositional Engineering of Chloride Ionâ€Doped CsPbBr 3 Halides for Highly Efficient and Stable Allâ€Inorganic Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000362.	3.1	26
186	Synthesis of polyacrylate/polyethylene glycol interpenetrating network hydrogel and its sorption for Fe3+ ion. Journal of Materials Science, 2009, 44, 726-733.	1.7	25
187	Self-powered PEDOT and derivate monoelectrodes to harvest rain energy. Nano Energy, 2017, 41, 293-300.	8.2	25
188	All-inorganic bifacial CsPbBr ₃ perovskite solar cells with a 98.5%-bifacial factor. Chemical Communications, 2018, 54, 8237-8240.	2.2	25
189	Well-aligned NiPt alloy counter electrodes for high-efficiency dye-sensitized solar cell applications. Journal of Energy Chemistry, 2019, 30, 49-56.	7.1	25
190	Holeâ€Boosted Cu(Cr,M)O 2 Nanocrystals for Allâ€Inorganic CsPbBr 3 Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 16293-16297.	1.6	25
191	A "double-sided tape―modifier bridging the TiO ₂ /perovskite buried interface for efficient and stable all-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 6649-6661.	5.2	25
192	Synthesis of oriented polyaniline flake arrays. Materials Letters, 2009, 63, 540-542.	1.3	24
193	A multifunctional poly(acrylic acid)/gelatin hydrogel. Journal of Materials Research, 2009, 24, 1653-1661.	1.2	24
194	Highly conducting multilayer films from graphene nanosheets by a spin self-assembly method. Journal of Materials Chemistry, 2011, 21, 5378.	6.7	24
195	H3PO4-imbibed three-dimensional polyacrylamide/polyacrylamide hydrogel as a high-temperature proton exchange membrane with excellent acid retention. RSC Advances, 2012, 2, 10238.	1.7	24
196	Dimensionality Control of SnO ₂ Films for Hysteresis-Free, All-Inorganic CsPbBr ₃ Perovskite Solar Cells with Efficiency Exceeding 10%. ACS Applied Materials & Interfaces, 2021, 13, 11058-11066.	4.0	24
197	Multifunctional interface modifier ammonium silicofluoride for efficient and stable all-inorganic CsPbBr3 perovskite solar cells. Chemical Engineering Journal, 2022, 431, 134193.	6.6	24
198	Understanding steric-charge-dependence of conjugated passivators on π-Pb2+ bond strength for efficient all-inorganic perovskite solar cells. Chemical Engineering Journal, 2022, 431, 134230.	6.6	24

#	Article	IF	CITATIONS
199	Polyacrylamide-controlled growth of centimeter-scaled polyaniline fibers. Polymer, 2009, 50, 752-755.	1.8	23
200	Crystallization degree change of expanded graphite by milling and annealing. Journal of Alloys and Compounds, 2009, 475, 429-433.	2.8	23
201	A dye-sensitized solar cell having polyaniline species in each component with 3.1%-efficiency. Journal of Power Sources, 2015, 284, 178-185.	4.0	23
202	Cost-effective bifacial dye-sensitized solar cells with transparent iron selenide counter electrodes. An avenue of enhancing rear-side electricity generation capability. Journal of Power Sources, 2015, 275, 288-293.	4.0	23
203	Layer-by-layer self-assembly of conducting multilayer film from poly(sodium styrenesulfonate) and polyaniline. Journal of Colloid and Interface Science, 2009, 337, 155-161.	5.0	22
204	Template-free synthesis of a hierarchical flower-like platinum counter electrode and its application in dye-sensitized solar cells. RSC Advances, 2012, 2, 5034.	1.7	22
205	Insights of close contact between polyaniline and FTO substrate for enhanced photovoltaic performances of dye-sensitized solar cells. Electrochimica Acta, 2014, 125, 163-169.	2.6	22
206	One-step growth of well-aligned TiO ₂ nanorod arrays for flexible dye-sensitized solar cells. Chemical Communications, 2015, 51, 1945-1948.	2.2	22
207	A Solar Cell That Is Triggered by Sun and Rain. Angewandte Chemie, 2016, 128, 5329-5332.	1.6	22
208	Dissolution-resistant platinum alloy counter electrodes for stable dye-sensitized solar cells. Electrochimica Acta, 2016, 190, 409-418.	2.6	22
209	Harvest rain energy by polyaniline-graphene composite films. Renewable Energy, 2018, 125, 995-1002.	4.3	22
210	Transparent ternary alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Solar Energy, 2018, 170, 762-768.	2.9	22
211	Healing soft interface for stable and high-efficiency all-inorganic CsPbIBr2 perovskite solar cells enabled by S-benzylisothiourea hydrochloride. Chemical Engineering Journal, 2022, 430, 132781.	6.6	22
212	Suppressing Interfacial Shunt Loss via Functional Polymer for Performance Improvement of Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100791.	3.1	22
213	The morphology dependence of cuprous oxide and its photocatalytic properties. CrystEngComm, 2013, 15, 10049.	1.3	21
214	Incorporation of H3PO4 into three-dimensional polyacrylamide-graft-starch hydrogel frameworks for robust high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2014, 39, 4447-4458.	3.8	21
215	Counter electrodes from polymorphic platinum-nickel hollow alloys for high-efficiency dye-sensitized solar cells. Journal of Power Sources, 2016, 328, 185-194.	4.0	21
216	Bifacial quasi-solid-state dye-sensitized solar cells with metal selenide counter electrodes. Electrochimica Acta, 2016, 188, 560-565.	2.6	21

#	Article	IF	CITATIONS
217	Halogen regulation of inorganic perovskites toward robust triboelectric nanogenerators and charging polarity series. Journal of Materials Chemistry A, 2020, 8, 14299-14307.	5.2	21
218	Crystal-Plane Controlled Spontaneous Polarization of Inorganic Perovskite toward Boosting Triboelectric Surface Charge Density. ACS Applied Materials & Interfaces, 2021, 13, 26196-26203.	4.0	21
219	H3PO4 imbibed polyacrylamide-graft-chitosan frameworks for high-temperature proton exchange membranes. Journal of Power Sources, 2014, 249, 277-284.	4.0	20
220	Bulk Pt/CsPbBr ₃ Schottky junctions for charge boosting in robust triboelectric nanogenerators. Journal of Materials Chemistry A, 2020, 8, 11966-11975.	5.2	20
221	Tri-functionalized TiO Cl4-2 accessory layer to boost efficiency of hole-free, all-inorganic perovskite solar cells. Journal of Energy Chemistry, 2020, 50, 1-8.	7.1	20
222	p–n Heterojunction on dye-sensitized ZnO nanorod arrays and macroporous polyaniline network. RSC Advances, 2012, 2, 1863.	1.7	19
223	Surface evaluation and electrochemical behavior of cerium conversion coating modified with silane on magnesium alloy. Surface and Interface Analysis, 2015, 47, 466-473.	0.8	19
224	Bifacial quantum dot-sensitized solar cells with transparent cobalt selenide counter electrodes. Journal of Power Sources, 2015, 278, 183-189.	4.0	19
225	Long persistence phosphor assisted all-weather solar cells. Electricity generation beyond sunny days. Chemical Communications, 2017, 53, 3209-3212.	2.2	19
226	Robust electrocatalysts from metal doped W ₁₈ O ₄₉ nanofibers for hydrogen evolution. Chemical Communications, 2017, 53, 4323-4326.	2.2	19
227	Carbonâ€Electrodeâ€Tailored Allâ€Inorganic Perovskite Solar Cells To Harvest Solar and Waterâ€Vapor Energy. Angewandte Chemie, 2018, 130, 5848-5851.	1.6	19
228	Quaternary quantum dots with gradient valence band for all-inorganic perovskite solar cells. Journal of Colloid and Interface Science, 2019, 549, 33-41.	5.0	19
229	Anhydrous proton exchange membrane operated at 200 ŰC and a well-aligned anode catalyst. Journal of Materials Chemistry, 2011, 21, 16010.	6.7	18
230	Hydrophobic hydrogel caged H3PO4 as a new class of high-temperature proton exchange membranes with enhanced acid retention. RSC Advances, 2013, 3, 3520.	1.7	18
231	Quasi-solid-state dye-sensitized solar cells from hydrophobic poly(hydroxyethyl) Tj ETQq1 1 0.784314 rgBT /Ov	erlock 10 7 2.0	Րf 50 ₁₈ 182 Td
232	Solid-state electrolytes from polysulfide integrated polyvinylpyrrolidone for quantum dot-sensitized solar cells. RSC Advances, 2014, 4, 60478-60483.	1.7	18
233	Efficient dye-sensitized solar cells from curved silicate microsheet caged TiO 2 photoanodes. An avenue of enhancing light harvesting. Electrochimica Acta, 2015, 178, 18-24.	2.6	18
234	An avenue of sealing liquid electrolyte in flexible dye-sensitized solar cells. Journal of Power Sources, 2015, 274, 304-309.	4.0	18

#	Article	IF	CITATIONS
235	Platinum alloy decorated polyaniline counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2016, 190, 76-84.	2.6	18
236	Multistep electrochemical deposition of hierarchical platinum alloy counter electrodes for dye-sensitized solar cells. Journal of Power Sources, 2016, 303, 243-249.	4.0	18
237	Controllable synthesis of organic-inorganic hybrid halide perovskite quantum dots for quasi-solid-state solar cells. Electrochimica Acta, 2018, 282, 263-269.	2.6	18
238	Surface characterization of growth process for cerium conversion coating on magnesium alloy and its anticorrosion mechanism. Surface and Interface Analysis, 2014, 46, 556-563.	0.8	17
239	Efficient photocatalysts from polymorphic cuprous oxide/zinc oxide microstructures. RSC Advances, 2015, 5, 11917-11924.	1.7	17
240	All-solid-state quantum dot-sensitized solar cell from plastic crystal electrolyte. RSC Advances, 2015, 5, 33463-33467.	1.7	17
241	Unveiling the interfacial charge extraction kinetics in inorganic perovskite solar cells with formamidinium lead halide (FAPbX3) nanocrystals. Solar Energy, 2020, 195, 644-650.	2.9	17
242	Tailoring organic bulk-heterojunction for charge extraction and spectral absorption in CsPbBr3 perovskite solar cells. Science China Materials, 2021, 64, 798-807.	3.5	17
243	In-situ high-efficiency PM capture from motor vehicle exhaust based on self-powered ceramic porous triboelectric filter. Nano Energy, 2022, 96, 107107.	8.2	17
244	Synthesis, characterization, and properties of polypyrrole/expanded vermiculite intercalated nanocomposite. Journal of Applied Polymer Science, 2008, 110, 2862-2866.	1.3	16
245	Alloying of platinum and molybdenum for transparent counter electrodes. A strategy of enhancing power output for bifacial dye-sensitized solar cells. RSC Advances, 2015, 5, 51600-51607.	1.7	16
246	Multi-interfacial polyaniline-graphene/platinum counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2015, 173, 331-337.	2.6	16
247	Understanding the catalytic behaviour of NiM (M=Pt, Ru, Pd) counter electrode electrocatalysts in liquid-junction dye-sensitized solar cells. Electrochimica Acta, 2015, 184, 226-232.	2.6	16
248	Microenvironmentâ€Responsive Threeâ€Pronged Approach Breaking Traditional Chemotherapy to Target Cancer Stem Cells for Synergistic Inoperable Large Tumor Therapy. Small, 2016, 12, 5516-5523.	5.2	16
249	Counter electrodes from platinum alloy nanotube arrays with ZnO nanorod templates for dye-sensitized solar cells. Electrochimica Acta, 2016, 190, 648-654.	2.6	16
250	Allâ€Weather Solar Cells: A Rising Photovoltaic Revolution. Chemistry - A European Journal, 2017, 23, 8118-8127.	1.7	16
251	Efficiency enhancement of hybridized solar cells through co-sensitization and fast charge extraction by up-converted polyethylene glycol modified carbon quantum dots. Journal of Power Sources, 2017, 367, 158-166.	4.0	16
252	Alkylâ€Chainâ€Regulated Charge Transfer in Fluorescent Inorganic CsPbBr 3 Perovskite Solar Cells. Angewandte Chemie, 2020, 132, 4421-4425.	1.6	16

#	Article	IF	CITATIONS
253	Triboelectric behaviors of inorganic Cs _{1â^'x} A _x PbBr ₃ halide perovskites toward enriching the triboelectric series. Journal of Materials Chemistry A, 2020, 8, 25696-25705.	5.2	16
254	Reducing defect of inorganic perovskite film by sulphur-containing Lewis base for robust photodetectors. Journal of Energy Chemistry, 2021, 61, 163-169.	7.1	16
255	Laminated triboelectric acoustic energy harvester based on electrospun nanofiber towards real-time noise decibel monitoring. Nano Energy, 2022, 99, 107348.	8.2	16
256	Immunomagnetic nanoparticles based on a hydrophilic polymer coating for sensitive detection of Salmonella in raw milk by polymerase chain reaction. RSC Advances, 2015, 5, 3574-3580.	1.7	15
257	Counter electrode electrocatalysts from binary Pd–Co alloy nanoparticles for dye-sensitized solar cells. Solar Energy, 2016, 124, 68-75.	2.9	15
258	Mo incorporated W 18 O 49 nanofibers as robust electrocatalysts for high-efficiency hydrogen evolution. International Journal of Hydrogen Energy, 2017, 42, 14534-14546.	3.8	15
259	9.07%-Efficiency dye-sensitized solar cell from Pt-free RuCoSe ternary alloy counter electrode. Materials Letters, 2018, 218, 76-79.	1.3	15
260	High-Efficiency All-Inorganic Perovskite Solar Cells Tailored by Scalable Rutile TiO ₂ Nanorod Arrays with Excellent Stability. ACS Applied Materials & Interfaces, 2021, 13, 12091-12098.	4.0	15
261	Application of polymer gel electrolyte with graphite powder in quasiâ€solidâ€state dyeâ€sensitized solar cells. Polymer Composites, 2009, 30, 1687-1692.	2.3	14
262	Three-dimensional hydrogel frameworks for high-temperature proton exchange membrane fuel cells. Journal of Materials Science, 2014, 49, 5481-5491.	1.7	14
263	Cobalt sulfide decorated polyaniline complex counter electrodes for efficient dye-sensitized solar cells. Electrochimica Acta, 2015, 184, 64-69.	2.6	14
264	Alloying of Pt with Ni microtubes and Co nanosheets for counter electrode of dye-sensitized solar cell. Materials Letters, 2016, 164, 206-209.	1.3	14
265	Self-powered monoelectrodes made from graphene composite films to harvest rain energy. Energy, 2018, 158, 555-563.	4.5	14
266	Enhanced hole extraction by electron-rich alloys in all-inorganic CsPbBr ₃ perovskite solar cells. Chemical Communications, 2021, 57, 7577-7580.	2.2	14
267	Facile secondary-template synthesis of polyaniline microtube array for enhancing glucose biosensitivity. Journal of Materials Chemistry, 2011, 21, 12927.	6.7	13
268	Robust counter electrodes from nanoporous NiM (M=Pt, Pd) alloys for dye-sensitized solar cells. Electrochimica Acta, 2015, 182, 827-833.	2.6	13
269	Cylindrical dye-sensitized solar cells with high efficiency and stability over time and incident angle. Chemical Communications, 2016, 52, 3528-3531.	2.2	13
270	Synthesis of γ-Fe ₂ O ₃ @SiO ₂ @polypyrrole core/shell/shell nanospheres with flexible controllability of electromagnetic properties. RSC Advances, 2016, 6, 6623-6630.	1.7	13

#	Article	IF	CITATIONS
271	Triâ€Brominated Perovskite Film Management and Multipleâ€Ionic Defect Passivation for Highly Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, 2000819.	3.1	13
272	Synthesis, characterization and properties of polyaniline/expanded vermiculite intercalated nanocomposite. Science and Technology of Advanced Materials, 2008, 9, 025010.	2.8	12
273	Efficient dye-sensitized solar cell from spiny polyaniline nanofiber counter electrode. Materials Letters, 2014, 119, 28-31.	1.3	12
274	Counter electrodes from Mo–Se nanosheetÂalloys for bifacial dye-sensitized solar cells. Journal of Alloys and Compounds, 2015, 648, 930-936.	2.8	12
275	Transparent counter electrode from palladium selenide for bifacial dye-sensitized solar cell. Materials Letters, 2015, 160, 511-514.	1.3	12
276	Polypyrrole‑molybdenum sulfide complex as an efficient and transparent catalytic electrode for bifacial dye-sensitized solar cells. Catalysis Communications, 2022, 163, 106403.	1.6	12
277	Multifunctional Polymer Capping Frameworks Enable High-Efficiency and Stable All-Inorganic Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6432-6441.	2.5	12
278	Design and electrical conductivity of poly(acrylic acidâ€ <i>g</i> â€gelatin)/graphite conducting gel. Polymer Engineering and Science, 2009, 49, 1871-1878.	1.5	11
279	Enhanced methanol oxidation and CO tolerance using CeO2-added eggshell membrane-templated Pd network electrocatalyst. RSC Advances, 2012, 2, 11465.	1.7	11
280	Solar photocatalysts from Gd–La codoped TiO2 nanoparticles. Journal of Materials Science, 2014, 49, 3371-3378.	1.7	11
281	Poly(vinylidene fluoride)–implanted cobalt–platinum alloy counter electrodes for dye–sensitized solar cells. Electrochimica Acta, 2014, 147, 209-215.	2.6	11
282	A strategy of combining SILAR with solvothermal process for In2S3 sensitized quantum dot-sensitized solar cells. Applied Surface Science, 2015, 357, 666-671.	3.1	11
283	Double-layered TiO2 anodes from nanorods and nanoparticles for dye-sensitized solar cells. Materials Letters, 2016, 180, 228-230.	1.3	11
284	Bifunctional polyaniline electrode tailored hybridized solar cells for energy harvesting from sun and rain. Journal of Energy Chemistry, 2018, 27, 742-747.	7.1	11
285	Ternary hybrid PtM@polyaniline (MÂ= Ni, FeNi) counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2018, 291, 114-123.	2.6	11
286	Photo-induced charge boosting of liquid–solid electrokinetic generators for efficient wave energy harvesting. Journal of Materials Chemistry A, 2019, 7, 5373-5380.	5.2	11
287	A revolution of photovoltaics: persistent electricity generation beyond solar irradiation. Dalton Transactions, 2019, 48, 799-805.	1.6	11
288	Review on engineering two-dimensional nanomaterials for promoting efficiency and stability of perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 154-175.	7.1	11

#	Article	IF	CITATIONS
289	Synthesis and properties of poly(acrylamideâ€ <i>co</i> â€acrylic acid)/polyacrylamide superporous IPN hydrogels. Polymers for Advanced Technologies, 2009, 20, 1044-1049.	1.6	10
290	A facile route to a macroporous silver network for methanol oxidation. RSC Advances, 2011, 1, 1453.	1.7	10
291	Graphene-incorporated quasi-solid-state dye-sensitized solar cells. RSC Advances, 2015, 5, 43402-43407.	1.7	10
292	Platinum Alloy Tailored Allâ€Weather Solar Cells for Energy Harvesting from Sun and Rain. Angewandte Chemie, 2016, 128, 14624-14628.	1.6	10
293	ZnO nanorods assisted Ni1.1Pt and Co3.9Pt alloy microtube counter electrodes for efficient dye-sensitized solar cells. Electrochimica Acta, 2016, 190, 903-911.	2.6	10
294	Amidation induced self-reduction of p-GO with Lewis-base termination for all-inorganic CsPbIBr ₂ perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 25418-25425.	5.2	10
295	Flexible, Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells Tailored by Heatâ€resistant Muscovite Substrates. ChemSusChem, 2021, 14, 1512-1516.	3.6	10
296	A multifunctional hydrogel with high onductivity, pHâ€responsive, and release properties from polyacrylate/polyptrrole. Journal of Applied Polymer Science, 2010, 116, 1376-1383.	1.3	9
297	Interfacial engineering of hybridized solar cells for simultaneously harvesting solar and rain energies. Journal of Materials Chemistry A, 2017, 5, 18551-18560.	5.2	9
298	Self-powered flexible monoelectrodes from graphene/reduced graphene oxide composite films to harvest rain energy. Journal of Alloys and Compounds, 2019, 776, 31-35.	2.8	9
299	Cluster effect of additives in precursors for inorganic perovskites solar cells. Electrochimica Acta, 2020, 331, 135379.	2.6	9
300	Application of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate in polymer heterojunction solar cells. Journal of Materials Science, 2013, 48, 3528-3534.	1.7	8
301	A bifacial quantum dot-sensitized solar cell with all–cadmium sulfide photoanode. Journal of Power Sources, 2015, 276, 215-221.	4.0	8
302	Filling perovskite (5-AVA)y(CH3NH3)1â^'yPbI3 or (5-AVA)y(CH3NH3)1â^'yPbI3â^'xClx halide in a 3D gel framework for multi-deformable perovskite solar cell. Solar Energy Materials and Solar Cells, 2017, 160, 67-76.	3.0	8
303	Efficient Defect Passivation and Charge Extraction with Hexamethylenetetramine Interface Modification for Holeâ€Transporting Layersâ€Free CsPbBr ₃ Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100344.	3.1	8
304	Toward elevated light harvesting: efficient dye-sensitized solar cells with titanium dioxide/silica photoanodes. RSC Advances, 2015, 5, 46260-46266.	1.7	7
305	Room-temperature fabrication of multi-deformable perovskite solar cells made in a three-dimensional gel framework. RSC Advances, 2016, 6, 82933-82940.	1.7	7
306	A long persistence phosphor tailored quasi-solid-state dye-sensitized solar cell that generates electricity in sunny and dark weathers. Chemical Communications, 2017, 53, 4815-4817.	2.2	7

#	Article	IF	CITATIONS
307	Hollow optical fiber induced solar cells with optical energy storage and conversion. Chemical Communications, 2017, 53, 12233-12235.	2.2	7
308	Extra-high short-circuit current for bifacial solar cells in sunny and dark–light conditions. Chemical Communications, 2017, 53, 10046-10049.	2.2	7
309	Film-type rain energy converters from conductive polymer/PtCo hybrids. Applied Energy, 2018, 218, 317-324.	5.1	7
310	Robust tungsten oxide nanostructure for efficient photoelectric conversion and hydrogen evolution. Materials Letters, 2022, 312, 131626.	1.3	7
311	Enhanced light harvesting of TiO2/La0.95Tb0.05PO4 photoanodes for dye-sensitized solar cells. Materials Chemistry and Physics, 2016, 173, 340-346.	2.0	6
312	Photoelectric engineering of all-weather bifacial solar cells in the dark. Electrochimica Acta, 2017, 254, 299-307.	2.6	6
313	Hybridized dye-sensitized solar cells for persistent power generation free of sun illumination. Electrochimica Acta, 2018, 280, 181-190.	2.6	6
314	Rain-responsive polypyrrole-graphene/PtCo electrodes for energy harvest. Electrochimica Acta, 2018, 285, 139-148.	2.6	6
315	<i>p</i> â€Type Charge Transfer Doping of Graphene Oxide with (NiCo) _{1â^'<i>y</i>} Fe _{<i>y</i>} O _{<i>x</i>} for Air‣table, Allâ€Inorganic CsPblBr ₂ Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 10702-10707.	1.6	6
316	Enhanced proton conductivity from phosphoric acidâ€incorporated 3D polyacrylamideâ€graftâ€starch hydrogel materials for highâ€ŧemperature proton exchange membranes. Journal of Applied Polymer Science, 2014, 131, .	1.3	5
317	Microporous gel electrolyte for quasi-solid-state dye-sensitized solar cell. Polymer Engineering and Science, 2014, 54, 2531-2535.	1.5	5
318	Two steps synthesis and conductivity of polyacrylamide/Cu conducting hydrogel. Polymer Composites, 2009, 30, 1132-1137.	2.3	4
319	Percolation effect and thermoplasticity of conducting [poly(acrylic acid)/C16TAB-modified graphene oxide]n multilayer films. Journal of Materials Science, 2013, 48, 1843-1851.	1.7	4
320	A nanoporous titanium dioxide framework for dye-sensitized solar cell. Materials Letters, 2015, 161, 185-188.	1.3	4
321	A strategy of integrating ultraviolet absorption and crosslinking in a single molecule: DFT calculation and experimental. Journal of Molecular Structure, 2016, 1107, 249-253.	1.8	4
322	High conducting multilayer films from poly(acrylic acid) and graphite by layerâ€byâ€layer selfâ€assembly. Polymer Composites, 2010, 31, 145-151.	2.3	3
323	Controllably hierarchical growth of large-scale ZnO microrods. RSC Advances, 2012, 2, 2211.	1.7	3
324	Insights on the accumulation of charge carriers for enhanced electrical and photoelectric behaviors in conducting multilayer films. RSC Advances, 2013, 3, 25190.	1.7	3

#	Article	IF	CITATIONS
325	An avenue of expanding triiodide reduction and shortening charge diffusion length in solid-state dye-sensitized solar cells. Journal of Power Sources, 2015, 273, 180-184.	4.0	3
326	Spatial confinement growth of perovskite nanocrystals for ultra-flexible solar cells. RSC Advances, 2016, 6, 59429-59437.	1.7	3
327	Photoelectric engineering of bifacial dye-sensitized solar cells beyond sunny days. Electrochimica Acta, 2019, 297, 660-668.	2.6	3
328	Preparation and Conductivity of Polyaniline/Sio ₂ Composites. Polymers and Polymer Composites, 2007, 15, 605-610.	1.0	2
329	A high mechanical strength hydrogel from polyacrylamide/polyacrylamide with interpenetrating network structure by two-steps synthesis method. E-Polymers, 2008, 8, .	1.3	2
330	A simple route to high-strength hydrogel with an interpenetrating polymer network. E-Polymers, 2009, 9, .	1.3	2
331	Preparation and electrochemical properties of polyaniline/α-RuCl ₃ . <i>x</i> H ₂ O composites for supercapacitor. Polymer Composites, 2013, 34, 2142-2147.	2.3	2
332	Thermalâ€Triggered Dynamic Disulfide Bond Selfâ€Heals Inorganic Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	2
333	Morphological and electrochemical properties of "polyelectrolyte multilayer films―made from polyaniline and ZnO nanoparticles: Deposition as films or as clusters?. Polymer Composites, 2013, 34, 1333-1341.	2.3	1
334	Growth of hexagonal polyaniline fibers with polyacrylamide pendants. Polymer Composites, 2014, 35, 253-262.	2.3	1
335	Insights on tunneled electrons for electrical and photoelectric behaviors in conducting multilayer films. Polymer Engineering and Science, 2015, 55, 107-112.	1.5	1
336	Frontispiece: Allâ€Weather Solar Cells: A Rising Photovoltaic Revolution. Chemistry - A European Journal, 2017, 23, .	1.7	1
337	Selfâ€Powered Lowâ€Platinum Nanorod Alloy Monoelectrodes for Rain Energy Harvest. Energy Technology, 2018, 6, 1606-1609.	1.8	1
338	Using SnO2 QDs and CsMBr3 (M = Sn, Bi, Cu) QDs as Charge-Transporting Materials for 10.6%-Efficie All-Inorganic CsPbBr3 Perovskite Solar Cells with an Ultrahigh Open-Circuit Voltage of 1.610 V (Solar) Tj ETQq0	ncy 0 03:gBT /	Overlock 10 Tf
339	Electronic metal–support interaction constructed for preparing sinter-resistant nano-platinum catalyst with redox property. Dalton Transactions, 2022, 51, 7491-7502.	1.6	1
340	Alcohol elastomer based on superabsorbents. Polymers for Advanced Technologies, 2012, 23, 870-876.	1.6	0
341	Nanoflake Patterning of Self-Assembled Multilayer Films. Polymers and Polymer Composites, 2013, 21, 73-78.	1.0	0
342	Peculiar electrical and photoelectric behaviors in conducting multilayers: Insights into accumulative charge tunneling. Journal of Applied Polymer Science, 2014, 131, .	1.3	0