Kenneth E Sawin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3644133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microtubule Nucleation at Non-Spindle Pole Body Microtubule-Organizing Centers Requires Fission Yeast Centrosomin-Related Protein mod20p. Current Biology, 2004, 14, 763-775.	3.9	167
2	Regulation of Cell Polarity by Microtubules in Fission Yeast. Journal of Cell Biology, 1998, 142, 457-471.	5.2	140
3	Cytoplasmic microtubule organization in fission yeast. Yeast, 2006, 23, 1001-1014.	1.7	104
4	Role of microtubules and tea1p in establishment and maintenance of fission yeast cell polarity. Journal of Cell Science, 2004, 117, 689-700.	2.0	81
5	Fission Yeast mto2p Regulates Microtubule Nucleation by the Centrosomin-related Protein mto1p. Molecular Biology of the Cell, 2005, 16, 3040-3051.	2.1	71
6	A Genetic Engineering Solution to the "Arginine Conversion Problem―in Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Molecular and Cellular Proteomics, 2010, 9, 1567-1577.	3.8	66
7	Noncore Components of the Fission Yeast Î ³ -Tubulin Complex. Molecular Biology of the Cell, 2006, 17, 5075-5093.	2.1	58
8	Two distinct regions of Mto1 are required for normal microtubule nucleation and efficient association with the γ-tubulin complex in vivo. Journal of Cell Science, 2008, 121, 3971-3980.	2.0	57
9	Pom1 regulates the assembly of Cdr2–Mid1 cortical nodes for robust spatial control of cytokinesis. Journal of Cell Biology, 2014, 206, 61-77.	5.2	57
10	Fission Yeast Mto1 Regulates Diversity of Cytoplasmic Microtubule Organizing Centers. Current Biology, 2010, 20, 1959-1965.	3.9	55
11	Remodeling of the Fission Yeast Cdc42 Cell-Polarity Module via the Sty1 p38 Stress-Activated Protein Kinase Pathway. Current Biology, 2016, 26, 2921-2928.	3.9	51
12	Activation of the \hat{I}^3 -Tubulin Complex by the Mto1/2 Complex. Current Biology, 2014, 24, 896-903.	3.9	49
13	New and Old Reagents for Fluorescent Protein Tagging of Microtubules in Fission Yeast. Methods in Cell Biology, 2010, 97, 147-172.	1.1	44
14	A Catalytic Role for Mod5 in the Formation of the Tea1 Cell Polarity Landmark. Current Biology, 2010, 20, 1752-1757.	3.9	37
15	Characterization of Mug33 reveals complementary roles for actin cable-dependent transport and exocyst regulators in fission yeast exocytosis. Journal of Cell Science, 2011, 124, 2187-2199.	2.0	33
16	Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis. Nature Communications, 2015, 6, 7929.	12.8	27
17	Local and global Cdc42 GEFs for fission yeast cell polarity are coordinated by microtubules and the Tea1/Tea4/Pom1 axis. Journal of Cell Science, 2018, 131, .	2.0	27
18	Fission Yeast NDR/LATS Kinase Orb6 Regulates Exocytosis via Phosphorylation of the Exocyst Complex. Cell Reports, 2019, 26, 1654-1667.e7.	6.4	27

Kenneth E Sawin

#	ARTICLE	IF	CITATIONS
19	Reconstitution of Microtubule Nucleation InÂVitro Reveals Novel Roles for Mzt1. Current Biology, 2019, 29, 2199-2207.e10.	3.9	22
20	Microtubule stabilization in vivo by nucleation-incompetent Î ³ -tubulin complex. Journal of Cell Science, 2011, 124, 1207-1213.	2.0	19
21	Cell Polarity: Following Formin Function. Current Biology, 2002, 12, R6-R8.	3.9	16
22	Exportin Crm1 is repurposed as a docking protein to generate microtubule organizing centers at the nuclear pore. ELife, 2018, 7, .	6.0	15
23	Identification of 15 New Bypassable Essential Genes of Fission Yeast. Cell Structure and Function, 2019, 44, 113-119.	1.1	10
24	Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Technology in Fission Yeast. Cold Spring Harbor Protocols, 2017, 2017, pdb.top079814.	0.3	9
25	Microtubule Dynamics: Faint Speckle, Hidden Dragon. Current Biology, 2004, 14, R702-R704.	3.9	5
26	Deletion of Genes Encoding Arginase Improves Use of "Heavy―Isotope-Labeled Arginine for Mass Spectrometry in Fission Yeast. PLoS ONE, 2015, 10, e0129548.	2.5	5
27	Construction, Growth, and Harvesting of Fission Yeast Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Strains. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot091678.	0.3	5
28	Inexpensive synthetic-based matrix for both conventional and rapid purification of protein A- and tandem affinity purification-tagged proteins. Analytical Biochemistry, 2010, 397, 241-243.	2.4	3
29	Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-Based Quantitative Proteomics and Phosphoproteomics in Fission Yeast. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot091686.	0.3	3
30	Microtubule-independent movement of the fission yeast nucleus. Journal of Cell Science, 2021, 134, .	2.0	3
31	Cell Division: Mid-Level Management. Current Biology, 2007, 17, R93-R95.	3.9	1