Antoni Morawski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3643744/publications.pdf

Version: 2024-02-01

272 papers

9,566 citations

50 h-index 83 g-index

277 all docs

277 docs citations

277 times ranked

10803 citing authors

#	Article	IF	CITATIONS
1	Artificial Solar Light-Driven APTES/TiO2 Photocatalysts for Methylene Blue Removal from Water. Molecules, 2022, 27, 947.	1.7	11
2	The Effect of the Modification of Carbon Spheres with ZnCl2 on the Adsorption Properties towards CO2. Molecules, 2022, 27, 1387.	1.7	9
3	Magnetic Resonance Studies of Hybrid Nanocomposites Containing Nanocrystalline TiO2 and Graphene-Related Materials. Materials, 2022, 15, 2244.	1.3	0
4	New Insight on Carbon Dioxideâ€Mediated Hydrogen Production**. ChemistryOpen, 2022, 11, e202100262.	0.9	2
5	CO2 Reduction to Valuable Chemicals on TiO2-Carbon Photocatalysts Deposited on Silica Cloth. Catalysts, 2022, 12, 31.	1.6	8
6	The Benefits of Using Saccharose for Photocatalytic Water Disinfection. International Journal of Molecular Sciences, 2022, 23, 4719.	1.8	2
7	Effect of calcination on the photocatalytic activity and stability of TiO2 photocatalysts modified with APTES. Journal of Environmental Chemical Engineering, 2021, 9, 104794.	3. 3	23
8	Effect of APTES modified TiO2 on antioxidant enzymes activity secreted by Escherichia coli and Staphylococcus epidermidis. Biochemical and Biophysical Research Communications, 2021, 534, 1064-1068.	1.0	7
9	The Role of Adsorption in the Photocatalytic Decomposition of Dyes on APTES-Modified TiO2 Nanomaterials. Catalysts, 2021, 11, 172.	1.6	10
10	Hydrogen photoproduction on TiO2-reduced graphene oxide hybrid materials from water-ethanol mixture. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113406.	2.0	8
11	Magnetic moment centers in titanium dioxide photocatalysts loaded on reduced graphene oxide flakes. Reviews on Advanced Materials Science, 2021, 60, 57-63.	1.4	6
12	DC magnetization of titania supported on reduced graphene oxide flakes. Reviews on Advanced Materials Science, 2021, 60, 794-800.	1.4	1
13	ZnO/Carbon Spheres with Excellent Regenerability for Post-Combustion CO2 Capture. Materials, 2021, 14, 6478.	1.3	11
14	Influence of rGO and Preparation Method on the Physicochemical and Photocatalytic Properties of TiO2/Reduced Graphene Oxide Photocatalysts. Catalysts, 2021, 11, 1333.	1.6	8
15	Changes in Porous Parameters of the Ion Exchanged X Zeolite and Their Effect on CO2 Adsorption. Molecules, 2021, 26, 7520.	1.7	3
16	Methylene blue decomposition on TiO2/reduced graphene oxide hybrid photocatalysts obtained by a two-step hydrothermal and calcination synthesis. Catalysis Today, 2020, 357, 630-637.	2.2	52
17	Antibacterial effect of TiO2 nanoparticles modified with APTES. Catalysis Communications, 2020, 134, 105862.	1.6	37
18	Nitrogen-coordinated metallic cobalt disulfide self-encapsulated in graphitic carbon for electrochemical water oxidation. Applied Catalysis B: Environmental, 2020, 268, 118449.	10.8	44

#	Article	IF	Citations
19	Hybrid System Coupling Moving Bed Bioreactor with UV/O3 Oxidation and Membrane Separation Units for Treatment of Industrial Laundry Wastewater. Materials, 2020, 13, 2648.	1.3	7
20	Photocatalytic oxidation of nitric oxide over AgNPs/TiO2-loaded carbon fiber cloths. Journal of Environmental Management, 2020, 262, 110343.	3.8	17
21	Nanocomposite Titania–Carbon Spheres as CO ₂ and CH ₄ Sorbents. ACS Omega, 2020, 5, 1966-1973.	1.6	7
22	Influence of modification of titanium dioxide by silane coupling agents on the photocatalytic activity and stability. Journal of Environmental Chemical Engineering, 2020, 8, 103917.	3.3	36
23	Magnetic properties of TiO2/graphitic carbon nanocomposites. Reviews on Advanced Materials Science, 2019, 58, 107-122.	1.4	18
24	Bacterial Inactivation on Concrete Plates Loaded with Modified TiO2 Photocatalysts under Visible Light Irradiation. Molecules, 2019, 24, 3026.	1.7	22
25	Improved Self-Cleaning Properties of Photocatalytic Gypsum Plaster Enriched with Glass Fiber. Materials, 2019, 12, 357.	1.3	7
26	TiO2/graphene-based nanocomposites for water treatment: A brief overview of charge carrier transfer, antimicrobial and photocatalytic performance. Applied Catalysis B: Environmental, 2019, 253, 179-186.	10.8	152
27	Photocatalytic water disinfection under the artificial solar light by fructose-modified TiO2. Chemical Engineering Journal, 2019, 372, 203-215.	6.6	34
28	Influence of Ag/titanate nanotubes on physicochemical, antifouling and antimicrobial properties of mixedâ€matrix polyethersulfone ultrafiltration membranes. Journal of Chemical Technology and Biotechnology, 2019, 94, 2497-2511.	1.6	14
29	Novel Photocatalytic Nanocomposite Made of Polymeric Carbon Nitride and Metal Oxide Nanoparticles. Molecules, 2019, 24, 874.	1.7	9
30	Photocatalytic Activity and Mechanical Properties of Cements Modified with TiO2/N. Materials, 2019, 12, 3756.	1.3	24
31	Attaching titania clusters of various size to reduced graphene oxide and its impact on the conceivable photocatalytic behavior of the junctions—a DFT/D  +  U and TD DFTB modeling. Journal of Phy Condensed Matter, 2019, 31, 404001.	/s i@ 57	11
32	Hybrid carbon-TiO2 spheres: Investigation of structure, morphology and spectroscopic studies. Applied Surface Science, 2019, 469, 684-690.	3.1	8
33	Influence of TiO2 structure on its photocatalytic activity towards acetaldehyde decomposition. Applied Surface Science, 2019, 470, 376-385.	3.1	23
34	Preparation and characterisation of carbon spheres for carbon dioxide capture. Journal of Porous Materials, 2019, 26, 19-27.	1.3	19
35	On the characteristic and stability of iron diet supplements. Polish Journal of Chemical Technology, 2019, 21, 60-67.	0.3	2
36	The application of moving bed bio-reactor (MBBR) in commercial laundry wastewater treatment. Science of the Total Environment, 2018, 627, 1638-1643.	3.9	48

#	Article	IF	CITATIONS
37	Surface characteristics of KOH-treated commercial carbons applied for CO ₂ adsorption. Adsorption Science and Technology, 2018, 36, 478-492.	1.5	37
38	Antibacterial properties of TiO2 modified with reduced graphene oxide. Ecotoxicology and Environmental Safety, 2018, 147, 788-793.	2.9	89
39	Synthesis and characterization of TiO2/graphitic carbon nanocomposites with enhanced photocatalytic performance. Applied Surface Science, 2018, 437, 441-450.	3.1	22
40	Effectiveness of treatment of secondary effluent from a municipal wastewater treatment plant in a photocatalytic membrane reactor and hybrid UV/H2O2 – ultrafiltration system. Chemical Engineering and Processing: Process Intensification, 2018, 125, 318-324.	1.8	47
41	Application of modified concrete to remove surfactants from water. E3S Web of Conferences, 2018, 59, 00016.	0.2	1
42	Photocatalytic decomposition of surfactants on nitrogen modified TiO2. E3S Web of Conferences, 2018, 59, 00017.	0.2	1
43	The mechanical and photocatalytic properties of modified gypsum materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 236-237, 1-9.	1.7	16
44	Photocatalytic Water Disinfection under Solar Irradiation by d-Glucose-Modified Titania. Catalysts, 2018, 8, 316.	1.6	24
45	Adsorption and Photocatalytic Degradation of Anionic and Cationic Surfactants on Nitrogenâ∈Modified TiO ₂ . Journal of Surfactants and Detergents, 2018, 21, 909-921.	1.0	17
46	Assessment of the Suitability of the One-Step Hydrothermal Method for Preparation of Non-Covalently/Covalently-Bonded TiO2/Graphene-Based Hybrids. Nanomaterials, 2018, 8, 647.	1.9	12
47	Influence of irradiation on stability and effectiveness of TiO ₂ /N,C photocatalysts. Micro and Nano Letters, 2018, 13, 739-742.	0.6	2
48	Influence of an Electronic Structure of N-TiO2 on Its Photocatalytic Activity towards Decomposition of Acetaldehyde under UV and Fluorescent Lamps Irradiation. Catalysts, 2018, 8, 85.	1.6	37
49	Stability of selenium diet supplement. Polish Journal of Chemical Technology, 2018, 20, 84-87.	0.3	0
50	Photocatalytic degradation of acetic acid in the presence of visible light-active TiO 2 -reduced graphene oxide photocatalysts. Catalysis Today, 2017, 280, 108-113.	2.2	44
51	Highly microporous activated carbons from biomass for CO 2 capture and effective micropores at different conditions. Journal of CO2 Utilization, 2017, 18, 73-79.	3.3	265
52	Graphene oxide-TiO 2 and reduced graphene oxide-TiO 2 nanocomposites: Insight in charge-carrier lifetime measurements. Catalysis Today, 2017, 287, 189-195.	2.2	39
53	Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New Journal of Chemistry, 2017, 41, 1549-1557.	1.4	37
54	Adsorption of carbon dioxide on TEPA-modified TiO ₂ /titanate composite nanorods. New Journal of Chemistry, 2017, 41, 7870-7885.	1.4	16

#	Article	IF	Citations
55	The influence of feed composition on fouling and stability of a polyethersulfone ultrafiltration membrane in a photocatalytic membrane reactor. Chemical Engineering Journal, 2017, 310, 360-367.	6.6	42
56	Impact on CO2 Uptake of MWCNT after Acid Treatment Study. Journal of Nanomaterials, 2017, 2017, 1-11.	1.5	13
57	The use of moving bed bio-reactor to laundry wastewater treatment. E3S Web of Conferences, 2017, 22, 00015.	0.2	4
58	Modification of Titanium Dioxide with Graphitic Carbon from Anthracene Thermal Decomposition as a Promising Method for Visible- Active Photocatalysts Preparation. Journal of Advanced Oxidation Technologies, 2016, 19, .	0.5	4
59	Influence of titanium dioxide modification on the antibacterial properties. Polish Journal of Chemical Technology, 2016, 18, 56-64.	0.3	4
60	The role of adsorption in the photocatalytic decomposition of Orange II on carbon-modified TiO2. Journal of Molecular Liquids, 2016, 220, 504-512.	2.3	31
61	TiO 2 /titanate composite nanorod obtained from various alkali solutions as CO 2 sorbents from exhaust gases. Microporous and Mesoporous Materials, 2016, 231, 117-127.	2.2	17
62	Temperature study of magnetic resonance spectra of co-modified (Co,N)-TiO2 nanocomposites. Materials Science-Poland, 2016, 34, 242-250.	0.4	3
63	TiO2/glucose nanomaterials with enhanced antibacterial properties. Materials Letters, 2016, 185, 264-267.	1.3	10
64	Clay bricks modified by implementing of N―and/or Câ€TiO ₂ : insight into selfâ€cleaning properties toward fatty contaminant. Micro and Nano Letters, 2016, 11, 896-899.	0.6	3
65	A system coupling hybrid biological method with UV/O3 oxidation and membrane separation for treatment and reuse of industrial laundry wastewater. Environmental Science and Pollution Research, 2016, 23, 19145-19155.	2.7	43
66	Preparation and characterisation of TiO _{2 thermally modified with cyclohexane vapours. International Journal of Materials and Product Technology, 2016, 52, 286.}	0.1	18
67	Photocatalytic performance of thermally prepared TiO ₂ /C photocatalysts under artificial solar light. Micro and Nano Letters, 2016, 11, 202-206.	0.6	11
68	Study of nitric oxide degradation properties of photoactive concrete containing nitrogen and/or carbon coâ€modified titanium dioxide – preliminary findings. Micro and Nano Letters, 2016, 11, 231-235.	0.6	5
69	Humic acids removal in a photocatalytic membrane reactor with a ceramic UF membrane. Chemical Engineering Journal, 2016, 305, 19-27.	6.6	71
70	Preparation of Activated Carbon from Beet Molasses and TiO ₂ as the Adsorption of CO ₂ . Acta Physica Polonica A, 2016, 129, 158-161.	0.2	16
71	Activated Carbons from Molasses as CO ₂ Sorbents. Acta Physica Polonica A, 2016, 129, 402-404.	0.2	29
72	Magnetic resonance study of co-modified (Co,N)-TiO ₂ nanocomposites. Nukleonika, 2015, 60, 411-416.	0.3	6

#	Article	IF	Citations
73	The Photocatalytic Performance of Benzene- Modified TiO2 Photocatalysts under UV-vis Light Irradiation. Journal of Advanced Oxidation Technologies, 2015, 18, .	0.5	1
74	NOx photocatalytic degradation on gypsum plates modified by TiO ₂ -N,C photocatalysts. Polish Journal of Chemical Technology, 2015, 17, 8-12.	0.3	8
75	Cementitious Plates Containing TiO2-N,C Photocatalysts for NOx Degradation. Journal of Advanced Oxidation Technologies, 2015, 18, .	0.5	3
76	Review Selenium as aÂmarker of cancer risk and of selection for control examinations in surveillance. Wspolczesna Onkologia, 2015, 1A, 60-61.	0.7	4
77	Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. Journal of Chemical & Engineering Data, 2015, 60, 3148-3158.	1.0	99
78	Self-cleaning properties of cement plates loaded with N,C-modified TiO2 photocatalysts. Applied Surface Science, 2015, 330, 200-206.	3.1	69
79	Magnetic properties of co-modified Fe,N-TiO2 nanocomposites. Open Physics, 2015, 13, .	0.8	1
80	Effect of process parameters on fouling and stability of MF/UF TiO2 membranes in a photocatalytic membrane reactor. Separation and Purification Technology, 2015, 142, 137-148.	3.9	45
81	Preparation and Characterization of Rutile-Type TiO2 Doped with Cu. Journal of Materials Engineering and Performance, 2015, 24, 1243-1252.	1.2	19
82	The effect of anatase and rutile crystallites isolated from titania P25 photocatalyst on growth of selected mould fungi. Journal of Photochemistry and Photobiology B: Biology, 2015, 151, 54-62.	1.7	39
83	A study on the stability of polyethersulfone ultrafiltration membranes in a photocatalytic membrane reactor. Journal of Membrane Science, 2015, 495, 176-186.	4.1	43
84	Preliminary studies of photocatalytic activity of gypsum plasters containing TiO ₂ co-modified with nitrogen and carbon. Polish Journal of Chemical Technology, 2015, 17, 96-102.	0.3	14
85	Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Microporous and Mesoporous Materials, 2015, 202, 241-249.	2.2	25
86	Nitrogen-doped, metal-modified rutile titanium dioxide as photocatalysts for water remediation. Applied Catalysis B: Environmental, 2015, 162, 310-318.	10.8	57
87	CHAPTER 22. Selenium and Cancer. Food and Nutritional Components in Focus, 2015, , 377-390.	0.1	1
88	Formation of Combustible Hydrocarbons and H2 during Photocatalytic Decomposition of Various Organic Compounds under Aerated and Deaerated Conditions. Molecules, 2014, 19, 19633-19647.	1.7	13
89	TiO ₂ Supported on Quartz Wool for Photocatalytic Oxidation of Hydrogen Sulphide. Adsorption Science and Technology, 2014, 32, 765-773.	1.5	10
90	Nitrogen-Modified Titanium Dioxide as an Adsorbent for Gaseous SO ₂ . Adsorption Science and Technology, 2014, 32, 403-412.	1.5	2

#	Article	IF	Citations
91	Magnetic resonance study of co-modified (Fe,N)-TiO2. Journal of Alloys and Compounds, 2014, 606, 32-36.	2.8	11
92	Performance of two photocatalytic membrane reactors for treatment of primary and secondary effluents. Catalysis Today, 2014, 236, 135-145.	2.2	48
93	Removal of nonâ€steroidal antiâ€inflammatory drugs from primary and secondary effluents in a photocatalytic membrane reactor. Journal of Chemical Technology and Biotechnology, 2014, 89, 1265-1273.	1.6	42
94	Microscopic studies on TiO2 fouling of MF/UF polyethersulfone membranes in a photocatalytic membrane reactor. Journal of Membrane Science, 2014, 470, 356-368.	4.1	41
95	Induced self-cleaning properties towards Reactive Red 198 of the cement materials loaded with co-modified TiO2/N,C photocatalysts. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 615-628.	0.8	7
96	Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. Journal of CO2 Utilization, 2014, 5, 47-52.	3.3	73
97	Photocatalytic decomposition of benzo-[a]-pyrene on the surface of acrylic, latex and mineral paints. Influence of paint composition. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 286, 10-15.	2.0	27
98	EFFECT OF WATER ACTIVITY AND TEMPERATURE ON GROWTH AND LIPOLYTIC ACTIVITY OF PENICILLIUM CHRYSOGENUM STRAINS IN LIQUID CULTURE MEDIA WITH PLANT OILS. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2014, 21, .	0.1	0
99	Magnetic resonance study of annealed and rinsed N-doped TiO2 nanoparticles. Open Chemistry, 2013, 11, 1996-2004.	1.0	3
100	Cellulose-TiO2 nanocomposite with enhanced UV–Vis light absorption. Cellulose, 2013, 20, 1293-1300.	2.4	58
101	Porous carbon material containing CaO for acidic gas capture: Preparation and properties. Journal of Hazardous Materials, 2013, 263, 353-360.	6.5	22
102	Cu-modified TiO2 photocatalysts for decomposition of acetic acid with simultaneous formation of C1–C3 hydrocarbons and hydrogen. Applied Catalysis B: Environmental, 2013, 140-141, 108-114.	10.8	65
103	Preparation of photoactive nitrogen-doped rutile. Applied Surface Science, 2013, 266, 410-419.	3.1	25
104	Investigation of OH radicals formation on the surface of TiO2/N photocatalyst at the presence of terephthalic acid solution. Estimation of optimal conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 261, 7-11.	2.0	49
105	MgO/CaO-Loaded Activated Carbon for Carbon Dioxide Capture: Practical Aspects of Use. Industrial & Logineering Chemistry Research, 2013, 52, 6669-6677.	1.8	26
106	Evaluation of Performance of Hybrid Photolysis-DCMD and Photocatalysis-DCMD Systems Utilizing UV-C Radiation for Removal of Diclofenac Sodium Salt From Water. Polish Journal of Chemical Technology, 2013, 15, 51-60.	0.3	21
107	A Low Selenium Level Is Associated with Lung and Laryngeal Cancers. PLoS ONE, 2013, 8, e59051.	1.1	46
108	Photoluminescence and Photocatalytic Properties of Nanocrystalline TiO ₂ :Tb Thin Films. Journal of Nano Research, 2012, 18-19, 187-193.	0.8	3

#	Article	IF	CITATIONS
109	Adsorption of humic acid on mesoporous carbons prepared from poly- (ethylene terephthalate) templated with magnesium compounds. Polish Journal of Chemical Technology, 2012, 14, 95-99.	0.3	7
110	Photocatalytic properties of transparent TiO2 coatings doped with neodymium. Polish Journal of Chemical Technology, 2012, 14, 1-7.	0.3	9
111	Carbon Materials in Photocatalysis. Chemistry and Physics of Carbon: A Series of Advances, 2012, , 171-268.	0.3	3
112	The performance of a hybrid photocatalysisâ€"MD system for the treatment of tap water contaminated with ibuprofen. Catalysis Today, 2012, 193, 213-220.	2.2	45
113	Immobilized TiO ₂ for Phenol Degradation in a Pilot-Scale Photocatalytic Reactor. Journal of Nanomaterials, 2012, 2012, 1-10.	1.5	27
114	Carbon-modified TiO2 for photocatalysis. Nanoscale Research Letters, 2012, 7, 235.	3.1	21
115	MgO-loaded porous carbon for carbon dioxide sorption: Study on cyclic sorption–regeneration. International Journal of Greenhouse Gas Control, 2012, 10, 164-168.	2.3	8
116	EPR, spectroscopic and photocatalytic properties of N-modified TiO2 prepared by different annealing and water-rinsing processes. Materials Chemistry and Physics, 2012, 136, 889-896.	2.0	15
117	The role of adsorption in decomposition of dyes on TiO2 and N-modified TiO2 photocatalysts under UV and visible light irradiations. Materials Research Bulletin, 2012, 47, 3697-3703.	2.7	27
118	The Influence of Solution Composition on the Effectiveness of Degradation of Ibuprofen Sodium Salt in a Hybrid Photocatalysis $\hat{a} \in \mathcal{C}$ Membrane Distillation System. Journal of Advanced Oxidation Technologies, 2012, 15, .	0.5	2
119	Antifungal Effect of Titanium Dioxide, Indoor Light and the Photocatalytic Process in In Vitro Test on Different Media. Journal of Advanced Oxidation Technologies, 2012, 15, .	0.5	4
120	Influence of water temperature on the photocatalytic activity of titanium dioxide. Reaction Kinetics, Mechanisms and Catalysis, 2012, 106, 289-295.	0.8	10
121	A new method for preparation of rutile phase titania photoactive under visible light. Catalysis Communications, 2012, 24, 5-10.	1.6	25
122	High power impulse magnetron sputtering (HIPIMS) and traditional pulsed sputtering (DCMSP) Ag-surfaces leading to E. coli inactivation. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 227, 11-17.	2.0	27
123	A novel suspended/supported photoreactor design for photocatalytic decomposition of acetic acid with simultaneous production of useful hydrocarbons. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 236, 48-53.	2.0	16
124	Influence of annealing and rinsing on magnetic and photocatalytic properties of TiO2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 223-227.	1.7	13
125	Advantages of highly ionized pulse plasma magnetron sputtering (HIPIMS) of silver for improved E. coli inactivation. Thin Solid Films, 2012, 520, 3567-3573.	0.8	27
126	Decomposition of 3-chlorophenol on nitrogen modified TiO2 photocatalysts. Journal of Hazardous Materials, 2012, 203-204, 128-136.	6.5	24

#	Article	IF	Citations
127	Effect of some thermally unstable magnesium compounds on the yield of char formed from poly(ethylene terephthalate). Journal of Thermal Analysis and Calorimetry, 2012, 107, 1147-1154.	2.0	16
128	Disinfection of E. coli by carbon modified TiO2 photocatalysts. Environmental Protection Engineering, 2012, 38, .	0.1	7
129	Photocatalytic mineralisation of humic acids using TiO ₂ modified by tungsten dioxide/hydrogen peroxide. Polish Journal of Chemical Technology, 2012, 14, 54-61.	0.3	4
130	<i>E. coli</i> Inactivation by High-Power Impulse Magnetron Sputtered (HIPIMS) Cu Surfaces. Journal of Physical Chemistry C, 2011, 115, 21113-21119.	1.5	33
131	New photocatalyst for decomposition of humic acids in photocatalysis and photo-Fenton processes. Polish Journal of Chemical Technology, 2011, 13, 8-14.	0.3	8
132	Degradation of Ibuprofen Sodium Salt in a Hybrid Photolysis – Membrane Distillation System Utilizing Germicidal UVC Lamp. Journal of Advanced Oxidation Technologies, 2011, 14, .	0.5	2
133	Methylene Blue decomposition under visible light irradiation in the presence of carbon-modified TiO2 photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 226, 68-72.	2.0	34
134	Photocatalytic properties of nanocrystalline TiO2 thin films doped with Tb. Open Physics, 2011, 9, 354-359.	0.8	3
135	Determination of the photocatalytic activity of TiO2 with high adsorption capacity. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 279-288.	0.8	26
136	Photocatalytic acetic acid decomposition leading to the production of hydrocarbons and hydrogen on Fe-modified TiO2. Catalysis Today, 2011, 161, 189-195.	2.2	28
137	The application of titanium dioxide for deactivation of bioparticulates: An overview. Catalysis Today, 2011, 169, 249-257.	2.2	240
138	The influence of physico-chemical properties of TiO2 on photocatalytic generation of C1–C3 hydrocarbons and hydrogen from aqueous solution of acetic acid. Applied Catalysis B: Environmental, 2011, 104, 21-29.	10.8	32
139	Recovery of process water from spent emulsions generated in copper cable factory. Journal of Hazardous Materials, 2011, 186, 1667-1671.	6.5	15
140	Carbon-modified TiO2 as Photocatalysts. Journal of Advanced Oxidation Technologies, 2010, 13, .	0.5	1
141	Removal of hazardous pharmaceutical from water by photocatalytic treatment. Open Chemistry, 2010, 8, 1288-1297.	1.0	16
142	Studies on nitrogen modified TiO2 photocatalyst prepared in different conditions. Materials Research Bulletin, 2010, 45, 1085-1091.	2.7	24
143	Physico-chemical properties and possible photocatalytic applications of titanate nanotubes synthesized via hydrothermal method. Journal of Physics and Chemistry of Solids, 2010, 71, 263-272.	1.9	89
144	Preparation of Fe-modified photocatalysts and their application for generation of useful hydrocarbons during photocatalytic decomposition of acetic acid. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 275-282.	2.0	25

#	Article	IF	CITATIONS
145	Integration of photocatalysis with membrane processes for purification of water contaminated with organic dyes. Catalysis Today, 2010, 156, 295-300.	2.2	44
146	A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon, 2010, 48, 2690-2707.	5.4	251
147	Integration of photocatalysis and membrane distillation for removal of mono- and poly-azo dyes from water. Desalination, 2010, 250, 666-672.	4.0	49
148	A preliminary study on antifungal effect of TiO ₂ -based paints in natural indoor light. Polish Journal of Chemical Technology, 2010, 12, 53-57.	0.3	17
149	Photocatalytic and Self-Cleaning Properties of Ag-Doped TiO2~!2009-10-16~!2009-10-30~!2010-01-27~!. Open Materials Science Journal, 2010, 4, 5-8.	0.2	30
150	Water purification using a novel reactor with the photoactive refill. Polish Journal of Chemical Technology, 2009, 11, 61-63.	0.3	1
151	TiO ₂ modified by ammonia as a long lifetime photocatalyst for dyes decomposition. Polish Journal of Chemical Technology, 2009, 11, 1-6.	0.3	6
152	Photocatalytic Activity of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mtext>TiO </mml:mtext> <mml:mn>2 xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mtext> WO </mml:mtext> <mml:mn>3 International Journal of Photoenergy, 2009, 2009, 1-7.</mml:mn></mml:msub></mml:mn></mml:msub></mml:math>	.3 <td>><i>< </i>mml:msub 1><i>< </i>mml:msu</td>	> <i>< </i> mml:msub 1> <i>< </i> mml:msu
153	Effect of process parameters on photodegradation of Acid Yellow 36 in a hybrid photocatalysis†membrane distillation system. Chemical Engineering Journal, 2009, 150, 152-159.	6.6	70
154	Water Purification Using a Novel Reactor with Photoactive Refill. Catalysis Letters, 2009, 127, 222-225.	1.4	5
155	TiO2 Nanoparticles with High Photocatalytic Activity Under Visible Light. Catalysis Letters, 2009, 128, 36-39.	1.4	23
156	Photocatalytic Removal of Phenol Under UV Irradiation on WO x –TiO2 Prepared by Sol–Gel Method. Catalysis Letters, 2009, 128, 190-196.	1.4	16
157	Lifetime of Carbon-Modified TiO2 Photocatalysts Under UV Light Irradiation. Catalysis Letters, 2009, 131, 606-611.	1.4	10
158	Carbon Modified TiO2 Photocatalyst with Enhanced Adsorptivity for Dyes from Water. Catalysis Letters, 2009, 131, 506-511.	1.4	42
159	Photodecomposition of dyes on Fe-C-TiO2 photocatalysts under UV radiation supported by photo-Fenton process. Journal of Hazardous Materials, 2009, 162, 111-119.	6.5	40
160	Azo dyes decomposition on new nitrogen-modified anatase TiO2 with high adsorptivity. Journal of Hazardous Materials, 2009, 166, 1-5.	6.5	58
161	Integration of photocatalysis with membrane processes for purification of water contaminated with organic dyes. Desalination, 2009, 241, 118-126.	4.0	54
162	Application of anatase-phase TiO2 for decomposition of azo dye in a photocatalytic membrane reactor. Desalination, 2009, 241, 97-105.	4.0	57

#	Article	IF	CITATIONS
163	Enhanced adsorption of two azo dyes produced by carbon modification of TiO2. Desalination, 2009, 249, 359-363.	4.0	37
164	Removal of organic dyes in the hybrid photocatalysis/nanofiltration system. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 239-245.	0.8	4
165	Membrane processes used for separation of effluents from wire productions. Chemical Papers, 2009, 63, .	1.0	9
166	Porous Carbon Obtained by Carbonization of PET Mixed with Basic Magnesium Carbonate: Pore Structure and Pore Creation Mechanism. Industrial & Engineering Chemistry Research, 2009, 48, 7110-7116.	1.8	48
167	Carbon modified TiO ₂ photocatalysts for water purification. Polish Journal of Chemical Technology, 2009, 11, 46-50.	0.3	27
168	Integration of Photocatalysis with Ultrafiltration or Membrane Distillation for Removal of Azo Dye Direct Green 99 from Water. Journal of Advanced Oxidation Technologies, 2009, 12, .	0.5	2
169	Effectiveness of photodecomposition of an azo dye on a novel anatase-phase TiO2 and two commercial photocatalysts in a photocatalytic membrane reactor (PMR). Separation and Purification Technology, 2008, 63, 386-391.	3.9	41
170	Dye decomposition on P25 with enhanced adsorptivity. Polish Journal of Chemical Technology, 2008, 10, 11-16.	0.3	0
171	Study of Nitrogen-Modified Titanium Dioxide as an Adsorbent for Azo Dyes. Adsorption Science and Technology, 2008, 26, 501-513.	1.5	9
172	Glass-Like Carbon Spheres — Activation, Porosity and Application Possibilities. Adsorption Science and Technology, 2008, 26, 735-787.	1.5	16
173	Preparation of the TiO < sub > 2 < /sub > photocatalyst using pressurized ammonia. Polish Journal of Chemical Technology, 2007, 9, 51-56.	0.3	5
174	Preparation of TiO2/C Photocatalyst by Ethanol Modification of Hydrolysed Titania TiO(OH)2 in a Pressure Reactor. Journal of Advanced Oxidation Technologies, 2007, 10 , .	0.5	0
175	Removal of organic dye in the hybrid photocatalysis/membrane processes system. Polish Journal of Chemical Technology, 2007, 9, 94-98.	0.3	4
176	FTIR Studies of the Surface of TiO2, Fe-TiO2 and Fe-C-TiO2 Photocatalysts in Phenol Oxidation Via the Photo-Fenton Process. Journal of Advanced Oxidation Technologies, 2007, 10, .	0.5	0
177	TiO2-Nitrogen Modified for Water Decolourisation under VIS Radiation. Journal of Advanced Oxidation Technologies, 2007, 10, .	0.5	1
178	Comparison of effectiveness of methylene blue decomposition using pristine and carbon-coated TiO2 in a photocatalytic membrane reactor. Desalination, 2007, 212, 141-151.	4.0	33
179	Photodegradation of azo dye Acid Red 18 in a quartz labyrinth flow reactor with immobilized TiO2 bed. Dyes and Pigments, 2007, 75, 60-66.	2.0	49
180	Photocatalytic membrane reactor (PMR) coupling photocatalysis and membrane distillation—Effectiveness of removal of three azo dyes from water. Catalysis Today, 2007, 129, 3-8.	2.2	79

#	Article	IF	CITATIONS
181	Application of carbon-coated TiO2 for decomposition of methylene blue in a photocatalytic membrane reactor. Journal of Hazardous Materials, 2007, 140, 369-375.	6.5	64
182	Photocatalytic activity and OH radical formation on TiO2 in the relation to crystallinity. Applied Catalysis B: Environmental, 2007, 71, 163-168.	10.8	88
183	New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition. Applied Catalysis B: Environmental, 2007, 75, 118-123.	10.8	132
184	Effect of the carbon coating in Fe–C–TiO2 photocatalyst on phenol decomposition under UV irradiation via photo-Fenton process. Chemosphere, 2006, 64, 1225-1232.	4.2	26
185	Dependence of photocatalytic activity of anatase powders on their crystallinity. Chemosphere, 2006, 64, 437-445.	4.2	105
186	Biological activation of carbon filters. Water Research, 2006, 40, 355-363.	5.3	88
187	Preparation of TiO2-nitrogen-doped photocatalyst active under visible light. International Journal of Photoenergy, 2006, 2006, 1-8.	1.4	16
188	Thermally modified titania photocatalysts for phenol removal from water. International Journal of Photoenergy, 2006, 2006, 1-7.	1.4	2
189	TiO2/C Photocatalyst Prepared by Ethanol Vapour Treatment of TiO(OH)2. Journal of Advanced Oxidation Technologies, 2006, 9, .	0.5	0
190	Separation of effluents from regeneration of a cation exchanger by membrane distillation. Desalination, 2006, 197, 50-62.	4.0	6
191	Removal of azo-dye Acid Red 18 in two hybrid membrane systems employing a photodegradation process. Desalination, 2006, 198, 183-190.	4.0	41
192	Removal of humic acids by the ozonation–biofiltration process. Desalination, 2006, 198, 265-273.	4.0	44
193	Application of an ozonation–adsorption–ultrafiltration system for surface water treatment. Desalination, 2006, 190, 308-314.	4.0	33
194	Separation of ethylene glycol from model wastewater by nanofiltration. Desalination, 2006, 200, 358-360.	4.0	14
195	Hybridization of photocatalysis and membrane distillation for purification of wastewater. Catalysis Today, 2006, 118, 181-188.	2.2	45
196	Mechanism of phenol decomposition on FeCTiO2 and FeTiO2 photocatalysts via photo-Fenton process. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 224-228.	2.0	29
197	TiO2-anatase modified by carbon as the photocatalyst under visible light. Comptes Rendus Chimie, 2006, 9, 800-805.	0.2	37
198	Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO2 photocatalyst containing nitrogen. Applied Catalysis B: Environmental, 2006, 62, 150-158.	10.8	84

#	Article	IF	CITATIONS
199	The kinetics of phenol decomposition under UV irradiation with and without H2O2 on TiO2, Fe–TiO2 and Fe–C–TiO2 photocatalysts. Applied Catalysis B: Environmental, 2006, 63, 215-221.	10.8	97
200	Carbon-modified TiO2 photocatalyst by ethanol carbonisation. Applied Catalysis B: Environmental, 2006, 63, 272-276.	10.8	123
201	The preparation of TiO2–nitrogen doped by calcination of TiO2·xH2O under ammonia atmosphere for visible light photocatalysis. Solar Energy Materials and Solar Cells, 2005, 88, 269-280.	3.0	120
202	Preparation of exfoliated graphite by microwave irradiation. Carbon, 2005, 43, 2417-2419.	5 . 4	107
203	Treatment of effluents from the regeneration of ion exchangers using the MD process. Desalination, 2005, 180, 173-180.	4.0	26
204	Removal of micropollutants from water by ozonation/biofiltration process. Desalination, 2005, 182, 151-157.	4.0	30
205	Photocatalytic degradation of azo-dye Acid Red 18. Desalination, 2005, 185, 449-456.	4.0	102
206	TiO2 photocatalysts promoted by alkali metals. Applied Catalysis B: Environmental, 2005, 55, 221-226.	10.8	46
207	A new photocatalytic membrane reactor (PMR) for removal of azo-dye Acid Red 18 from water. Applied Catalysis B: Environmental, 2005, 59, 131-137.	10.8	92
208	Decomposition of nonionic surfactant in a labyrinth flow photoreactor with immobilized TiO2 bed. Applied Catalysis B: Environmental, 2005, 59, 155-160.	10.8	23
209	Comparison of the Life-time of P25 and A11 TiO2in a Labyrinth Flow Photoreactor. Environmental Technology (United Kingdom), 2005, 26, 515-524.	1.2	1
210	Studies on the effect of humic acids and phenol on adsorption–ultrafiltration process performance. Water Research, 2005, 39, 501-509.	5. 3	62
211	Carbon-coated anatase: adsorption and decomposition of phenol in water. Applied Catalysis B: Environmental, 2004, 50, 177-183.	10.8	92
212	New preparation of a carbon-TiO2 photocatalyst by carbonization of n-hexane deposited on TiO2. Applied Catalysis B: Environmental, 2004, 52, 61-67.	10.8	95
213	Surface water treatment by the nanofiltration method. Desalination, 2004, 162, 47-54.	4.0	31
214	Removal of organic matter by coagulation enhanced with adsorption on PAC. Desalination, 2004, 161, 79-87.	4.0	107
215	Trace analyses of gaseous products formed during heat treatment of high stage H2SO4-GICs and expanded graphite. Journal of Physics and Chemistry of Solids, 2004, 65, 165-169.	1.9	12
216	Hybridization of adsorptivity with photocatalytic activityâ€"carbon-coated anatase. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 167, 127-135.	2.0	92

#	Article	IF	CITATIONS
217	High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Applied Surface Science, 2004, 225, 235-242.	3.1	318
218	Application of TiO2-mounted activated carbon to the removal of phenol from water. Applied Catalysis B: Environmental, 2003, 41, 427-433.	10.8	295
219	The pH influence on photocatalytic decomposition of organic dyes over A11 and P25 titanium dioxide. Applied Catalysis B: Environmental, 2003, 45, 293-300.	10.8	59
220	A new route for preparation of TiO2-mounted activated carbon. Applied Catalysis B: Environmental, 2003, 46, 203-208.	10.8	112
221	Photocatalytic labyrinth flow reactor with immobilized P25 TiO2 bed for removal of phenol from water. Applied Catalysis B: Environmental, 2003, 46, 415-419.	10.8	61
222	Photocatalytic decomposition of textile dyes on TiO2-Tytanpol A11 and TiO2-Degussa P25. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157, 65-70.	2.0	41
223	Method for Preparation of Copper-Coated Carbon Material. Chemistry of Materials, 2003, 15, 862-865.	3.2	15
224	Exfoliated Graphite as a New Sorbent for Removal of Engine Oils from Wastewater. Spill Science and Technology Bulletin, 2003, 8, 569-571.	0.4	49
225	Kinetics of the Adsorption of Copper and Lead Ions from Aqueous Solution on to WD-ekstra Activated Carbon. Adsorption Science and Technology, 2002, 20, 441-452.	1.5	10
226	Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Applied Catalysis B: Environmental, 2002, 36, 45-51.	10.8	257
227	Adsorption of carbon dioxide on phenolic resin-based carbon spheres. Applied Surface Science, 2002, 196, 296-300.	3.1	17
228	Membrane processes used for potable water quality improvement. Desalination, 2002, 145, 315-319.	4.0	75
229	Treatment of spent emulsion from a cable factory by an integrated UF/NF membrane system. Desalination, 2002, 149, 163-167.	4.0	22
230	Creation of nano-sized spaces in carbon materials by oxidation and their characterization under STM. Synthetic Metals, 2001, 125, 231-238.	2.1	3
231	Purification of oily wastewater by hybrid UF/MD. Water Research, 2001, 35, 3665-3669.	5.3	158
232	Membrane distillation of NaCl solution containing natural organic matter. Journal of Membrane Science, 2001, 181, 279-287.	4.1	168
233	Pilot plant studies on the removal of trihalomethanes by composite reverse osmosis membranes. Desalination, 2001, 140, 227-234.	4.0	12
234	Photocatalytic degradation of Reactive Black 5. Applied Catalysis B: Environmental, 2001, 35, L1-L7.	10.8	93

#	Article	IF	Citations
235	Adsoption of trihalomethanes (THMs) onto carbon spheres. Desalination, 2000, 130, 107-112.	4.0	19
236	Mass transfer of HCl and H2O across the hydrophobic membrane during membrane distillation. Journal of Membrane Science, 2000, 166, 149-157.	4.1	79
237	Ethanol production in membrane distillation bioreactor. Catalysis Today, 2000, 56, 159-165.	2.2	97
238	FTIR and Thermal Studies of FeCl3-CrO3-Graphite Bi-Intercalation Compound. Molecular Crystals and Liquid Crystals, 2000, 340, 161-166.	0.3	0
239	Photocatalytic decomposition of oil in water. Water Research, 2000, 34, 1638-1644.	5.3	91
240	Studies of Exfoliated Graphite (EG) for Heavy Oil Sorption. Molecular Crystals and Liquid Crystals, 2000, 340, 113-119.	0.3	38
241	Quantitative assessment of pores in oxidized carbon spheres using scanning tunneling microscopy. Journal of Materials Research, 1999, 14, 1102-1112.	1.2	42
242	Effects of carbonization atmosphere and subsequent oxidation on pore structure of carbon spheres observed by scanning tunneling microscopy. Journal of Materials Research, 1999, 14, 3152-3157.	1.2	31
243	PHOTOCATALYTIC PURIFICATION OF SOIL CONTAMINATED WITH OIL USING MODIFIED TiO2 POWDERS. Solar Energy, 1999, 66, 395-399.	2.9	38
244	Poly(ethylene terephthalate) as a source for activated carbon. Polymers for Advanced Technologies, 1999, 10, 588-595.	1.6	20
245	Photocatalytic Production of Hydrogen on Reduced CrO ₃ -Graphite Intercalation Compound. Molecular Crystals and Liquid Crystals, 1998, 310, 327-332.	0.3	2
246	Synthesis and Structure of FeCl3-CrO3-Graphite Bi-Intercalation Compound. Molecular Crystals and Liquid Crystals, 1998, 310, 63-68.	0.3	1
247	A new preparation method of catalyst for ammonia synthesis. Applied Catalysis A: General, 1997, 156, 19-27.	2.2	4
248	Application of modified synthetic carbon for adsorption of trihalomethanes (THMs) from water. Desalination, 1997, 114, 23-27.	4.0	25
249	Application of Kî—,Biî— graphite intercalation compounds as stereoselective catalysts of cyclohexanol conversion. Journal of Physics and Chemistry of Solids, 1996, 57, 805-808.	1.9	2
250	Study on the preparation of KCFeAl2O3 catalysts for ammonia synthesis at mild conditions followed by Mössbauer spectroscopy. Applied Catalysis A: General, 1996, 141, 1-16.	2.2	3
251	A new method for preparation of potassium-pillared layered titanate applied in photocatalysis. Journal of Physics and Chemistry of Solids, 1996, 57, 1011-1017.	1.9	18
252	Preparation of thin film graphite-like carbons intercalated by metallic potassium. Journal of Physics and Chemistry of Solids, 1996, 57, 809-820.	1.9	1

#	Article	IF	CITATIONS
253	Preparation of K-C-Fe/Al2O3 catalysts for ammonia synthesis at mild conditions. Studies in Surface Science and Catalysis, 1995, 91, 131-140.	1.5	1
254	Study on the concentration of acids by membrane distillation. Journal of Membrane Science, 1995, 102, 113-122.	4.1	144
255	Purification of oily wastewater by ultrafiltration. Separation and Purification Technology, 1995, 5, 197-205.	0.7	71
256	Metal-Graphite Intercalation Compounds As New Dehydrogenation Catalysts. Molecular Crystals and Liquid Crystals, 1994, 245, 195-200.	0.3	0
257	Modified carbonization of polyacrylonitrile by incorporation of FeCl2 and Fe(NO3)3â€"pore structure. Carbon, 1994, 32, 1457-1461.	5.4	8
258	A study of separation by the direct-contact membrane distillation process. Separation and Purification Technology, 1994, 4, 244-248.	0.7	15
259	Thermally stimulated electron emission from the K-Bi-graphite intercalation compound. Carbon, 1993, 31, 549-551.	5.4	3
260	Bi-K-Graphite Intercalation Compound as a New Catalyst for Styrene Synthesis. Journal of Catalysis, 1993, 144, 627-631.	3.1	3
261	Application of CoCl2î—,K-graphite intercalation compounds in catalysis. Synthetic Metals, 1993, 59, 249-252.	2.1	1
262	Preparation of Graphite-Iron-Potassium Catalysts for Ammonia Synthesis. Studies in Surface Science and Catalysis, 1991, 63, 487-496.	1.5	2
263	Alkali doping of α-Fe/graphite-Fe catalysts. Synthetic Metals, 1989, 34, 713-718.	2.1	6
264	Mössbauer spectroscopy studies of iron-graphite catalysts derived from graphite intercalation compounds. Reactivity of Solids, 1989, 7, 199-205.	0.3	3
265	On the reduction of graphite intercalation compounds with iron trichloride. Reactivity of Solids, 1988, 6, 29-38.	0.3	13
266	Controlled reactivity of graphite with iron(III) chloride. Reactivity of Solids, 1987, 4, 269-273.	0.3	9
267	Increase the Microporosity and CO ₂ Adsorption of a Commercial Activated Carbon. Applied Mechanics and Materials, 0, 749, 17-21.	0.2	4
268	The Increase of the Micoporosity and CO2 Adsorption Capacity of the Commercial Activated Carbon CWZ-22 by KOH Treatment. , 0, , .		8
269	Possibilities of application of advanced oxidation - membrane separation system for treatment and reuse of laundry wastewater., 0, 64, 218-222.		2
270	Surface water treatment in hybrid systems coupling advanced oxidation processes and ultrafiltration using ceramic membrane., 0, 64, 302-306.		9

#	Article	lF	CITATIONS
271	Application of MBR technology for laundry wastewater treatment. , 0, 64, 213-217.		6
272	Removal of organic pollutants and surfactants from laundry wastewater in membrane bioreactor (MBR)., 0, 134, 281-288.		6