Naosuke Kamei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/36431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesenchymalâ€stemâ€cellâ€derived exosomes accelerate skeletal muscle regeneration. FEBS Letters, 2015, 589, 1257-1265.	2.8	420
2	Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. Stem Cells Translational Medicine, 2016, 5, 1620-1630.	3.3	325
3	BDNF, NT-3, and NGF Released From Transplanted Neural Progenitor Cells Promote Corticospinal Axon Growth in Organotypic Cocultures. Spine, 2007, 32, 1272-1278.	2.0	128
4	Acceleration of Skeletal Muscle Regeneration in a Rat Skeletal Muscle Injury Model by Local Injection of Human Peripheral Blood-Derived CD133-Positive Cells. Stem Cells, 2009, 27, 949-960.	3.2	82
5	Postoperative Segmental C5 Palsy After Cervical Laminoplasty May Occur Without Intraoperative Nerve Injury: A Prospective Study With Transcranial Electric Motor-Evoked Potentials. Spine, 2006, 31, 3013-3017.	2.0	78
6	Human platelet-rich plasma promotes axon growth in brain–spinal cord coculture. NeuroReport, 2012, 23, 712-716.	1.2	47
7	Lnk Deletion Reinforces the Function of Bone Marrow Progenitors in Promoting Neovascularization and Astrogliosis Following Spinal Cord Injury. Stem Cells, 2010, 28, 365-375.	3.2	40
8	The safety and efficacy of magnetic targeting using autologous mesenchymal stem cells for cartilage repair. Knee Surgery, Sports Traumatology, Arthroscopy, 2018, 26, 3626-3635.	4.2	40
9	Bone marrow stromal cells promoting corticospinal axon growth through the release of humoral factors in organotypic cocultures in neonatal rats. Journal of Neurosurgery: Spine, 2007, 6, 412-419.	1.7	36
10	Cell Magnetic Targeting System for Repair of Severe Chronic Osteochondral Defect in a Rabbit Model. Cell Transplantation, 2016, 25, 1073-1083.	2.5	35
11	Ex-vivo expanded human blood-derived CD133+ cells promote repair of injured spinal cord. Journal of the Neurological Sciences, 2013, 328, 41-50.	0.6	32
12	Magnetically Labeled Neural Progenitor Cells, Which Are Localized by Magnetic Force, Promote Axon Growth in Organotypic Cocultures. Spine, 2007, 32, 2300-2305.	2.0	31
13	Endothelial Progenitor Cells Promote Astrogliosis following Spinal Cord Injury through Jagged1-Dependent Notch Signaling. Journal of Neurotrauma, 2012, 29, 1758-1769.	3.4	31
14	Administration of Human Peripheral Blood-Derived CD133+ Cells Accelerates Functional Recovery in a Rat Spinal Cord Injury Model. Spine, 2009, 34, 249-254.	2.0	30
15	Neural progenitor cells promote corticospinal axon growth in organotypic co-cultures. NeuroReport, 2004, 15, 2579-2583.	1.2	27
16	Regeneration of peripheral nerve after transplantation of CD133+ cells derived from human peripheral blood. Journal of Neurosurgery, 2009, 110, 758-767.	1.6	25
17	The Use of Endothelial Progenitor Cells for the Regeneration of Musculoskeletal and Neural Tissues. Stem Cells International, 2017, 2017, 1-7.	2.5	25
18	Contribution of bone marrowâ€derived endothelial progenitor cells to neovascularization and astrogliosis following spinal cord injury. Journal of Neuroscience Research, 2012, 90, 2281-2292.	2.9	23

NAOSUKE KAMEI

#	Article	IF	CITATIONS
19	Pathology and Treatment of Traumatic Cervical Spine Syndrome: Whiplash Injury. Advances in Orthopedics, 2018, 2018, 1-6.	1.0	23
20	CD133 + cells from human umbilical cord blood reduce cortical damage and promote axonal growth in neonatal rat organ coâ€cultures exposed to hypoxia. International Journal of Developmental Neuroscience, 2010, 28, 581-587.	1.6	21
21	Long-term outcome of targeted therapy for low back pain in elderly degenerative lumbar scoliosis. European Spine Journal, 2021, 30, 2020-2032.	2.2	19
22	Quality Evaluation of Human Bone Marrow Mesenchymal Stem Cells for Cartilage Repair. Stem Cells International, 2017, 2017, 1-9.	2.5	16
23	Role of Mesenchymal Stem Cells Densities When Injected as Suspension in Joints with Osteochondral Defects. Cartilage, 2019, 10, 61-69.	2.7	15
24	Promotion of skeletal muscle repair in a rat skeletal muscle injury model by local injection of human adipose tissue-derived regenerative cells. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1150-1160.	2.7	14
25	Local administration of WP9QY (W9) peptide promotes bone formation in a rat femur delayed-union model. Journal of Bone and Mineral Metabolism, 2018, 36, 383-391.	2.7	14
26	<i>In Vivo</i> Kinetics of Mesenchymal Stem Cells Transplanted into the Knee Joint in a Rat Model Using a Novel Magnetic Method of Localization. Clinical and Translational Science, 2015, 8, 467-474.	3.1	13
27	Electrophysiological assessments of the motor pathway in diabetic patients with compressive cervical myelopathy. Journal of Neurosurgery: Spine, 2015, 23, 707-714.	1.7	13
28	Therapeutic Potential of Multilineage-Differentiating Stress-Enduring Cells for Osteochondral Repair in a Rat Model. Stem Cells International, 2017, 2017, 1-8.	2.5	13
29	Magnetic Targeted Delivery of Induced Pluripotent Stem Cells Promotes Articular Cartilage Repair. Stem Cells International, 2017, 2017, 1-7.	2.5	13
30	The therapeutic potential of ex vivo expanded CD133+ cells derived from human peripheral blood for peripheral nerve injuries. Journal of Neurosurgery, 2012, 117, 787-794.	1.6	11
31	Transforaminal percutaneous endoscopic discectomy for lumbar disc herniation in athletes under the local anesthesia. Journal of Orthopaedic Science, 2019, 24, 1015-1019.	1.1	11
32	The correlation between sagittal spinopelvic alignment and degree of lumbar degenerative spondylolisthesis. Journal of Orthopaedic Science, 2019, 24, 969-973.	1.1	11
33	CD133+ cells from human peripheral blood promote corticospinal axon regeneration. NeuroReport, 2008, 19, 799-803.	1.2	10
34	Magnetic cell delivery for the regeneration of musculoskeletal and neural tissues. Regenerative Therapy, 2018, 9, 116-119.	3.0	10
35	The effects of combining chondroitinase ABC and NEP1-40 on the corticospinal axon growth in organotypic co-cultures. Neuroscience Letters, 2010, 476, 14-17.	2.1	8
36	Novel Hybrid Hydroxyapatite Spacers Ensure Sufficient Bone Bonding in Cervical Laminoplasty. Asian Spine Journal, 2018, 12, 1078-1084.	2.0	8

NAOSUKE KAMEI

#	Article	IF	CITATIONS
37	Monitoring immune response after allogeneic transplantation of mesenchymal stem cells for osteochondral repair. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e275-e286.	2.7	7
38	Endoplasmic reticulum stress transducer old astrocyte specifically induced substance contributes to astrogliosis after spinal cord injury. Neural Regeneration Research, 2018, 13, 536.	3.0	7
39	Magnetic Targeting of Human Peripheral Blood CD133+Cells for Skeletal Muscle Regeneration. Tissue Engineering - Part C: Methods, 2013, 19, 631-641.	2.1	6
40	Chondrocyte Cell-Sheet Transplantation for Treating Monoiodoacetate-Induced Arthritis in Rats. Tissue Engineering - Part C: Methods, 2017, 23, 346-356.	2.1	6
41	Vertebral osteomyelitis caused by Mycobacteroides abscessus subsp. abscessus resulting in spinal cord injury due to vertebral body fractures. Journal of Infection and Chemotherapy, 2022, 28, 290-294.	1.7	6
42	<i>In Vitro</i> Safety and Quality of Magnetically Labeled Human Mesenchymal Stem Cells Preparation for Cartilage Repair. Tissue Engineering - Part C: Methods, 2019, 25, 324-333.	2.1	5
43	Endoscopic repair of the urinary bladder with magnetically labeled mesenchymal stem cells: Preliminary report. Regenerative Therapy, 2019, 10, 46-53.	3.0	5
44	Quantitative evaluation of abnormal finger movements in myelopathy hand during the grip and release test using gyro sensors. PLoS ONE, 2021, 16, e0258808.	2.5	5
45	Prognostic factors for spontaneous spinal epidural hematoma: a multicenter case–control study. Acta Neurochirurgica, 2022, 164, 1493-1499.	1.7	5
46	Quantitative Assessment of Bone Marrow Edema in Adolescent Athletes with Lumbar Spondylolysis Using Contrast Ratio on Magnetic Resonance Imaging. Asian Spine Journal, 2021, 15, 682-687.	2.0	4
47	Magnetic Resonance Imaging Evaluation of Cartilage Repair and Iron Particle Kinetics After Magnetic Delivery of Stem Cells. Tissue Engineering - Part C: Methods, 2018, 24, 679-687.	2.1	3
48	Electrophysiological Assessment and Classification of Motor Pathway Function in Patients With Spinal Dural Arteriovenous Fistula. Journal of Clinical Neurophysiology, 2019, 36, 45-51.	1.7	3
49	Comparison of the electrophysiological characteristics of tight filum terminale and tethered cord syndrome. Acta Neurochirurgica, 2022, 164, 2235-2242.	1.7	3
50	Quantifying Bone Marrow Edema Adjacent to the Lumbar Vertebral Endplate on Magnetic Resonance Imaging: A Cross-Sectional Study of Patients with Degenerative Lumbar Disease. Asian Spine Journal, 2022, 16, 254-260.	2.0	2
51	Surgical outcomes of cervical myelopathy in patients with athetoid cerebral palsy. European Journal of Orthopaedic Surgery and Traumatology, 2022, 32, 1283-1289.	1.4	2
52	Radiographic Factors for Adjacent Vertebral Fractures and Cement Loosening Following Balloon Kyphoplasty in Patients with Osteoporotic Vertebral Fractures. Spine Surgery and Related Research, 2022, 6, 159-166.	0.7	2
53	Development of a rat model with lumbar vertebral endplate lesion. European Spine Journal, 2022, 31, 874-881.	2.2	2
54	Evaluation of intervertebral disc degeneration using T2 signal ratio on magnetic resonance imaging. European Journal of Radiology, 2022, 152, 110358.	2.6	2

NAOSUKE KAMEI

#	Article	IF	CITATIONS
55	Evidence that impaired motor conduction in the bilateral ulnar and tibial nerves underlies cervical spondylotic amyotrophy in patients with unilateral deltoid muscle atrophy. Spine Surgery and Related Research, 2018, 2, 23-29.	0.7	1
56	Discrimination of a nerve fiber that is the origin of a cauda equina tumor using acetylcholinesterase staining. Neuropathology, 2017, 37, 415-419.	1.2	0
57	Spinous Process Fractures In Osteoporotic Vertebral Fractures: A Cross-Sectional Study. Spine Surgery and Related Research, 2021, 6, 139-144.	0.7	0
58	Primary Spinal Cord Melanoma: A Two-Case Report and Literature Review. Spine Surgery and Related Research, 2022, , .	0.7	0