Joel C Watts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3642732/publications.pdf Version: 2024-02-01

LOFI C WATTS

#	Article	IF	CITATIONS
1	Genetically engineered cellular models of prion propagation. Cell and Tissue Research, 2023, 392, 63-80.	1.5	3
2	Alpha-synuclein seeding shows a wide heterogeneity in multiple system atrophy. Translational Neurodegeneration, 2022, 11, 7.	3.6	42
3	The existence of Aβ strains and their potential for driving phenotypic heterogeneity in Alzheimer's disease. Acta Neuropathologica, 2021, 142, 17-39.	3.9	35
4	Sensitive protein misfolding cyclic amplification of sporadic Creutzfeldt–Jakob disease prions is strongly seed and substrate dependent. Scientific Reports, 2021, 11, 4058.	1.6	10
5	Aβ43 aggregates exhibit enhanced prion-like seeding activity in mice. Acta Neuropathologica Communications, 2021, 9, 83.	2.4	14
6	The aminoglycoside G418 hinders de novo prion infection in cultured cells. Journal of Biological Chemistry, 2021, 297, 101073.	1.6	7
7	Viral alpha-synuclein knockdown prevents spreading synucleinopathy. Brain Communications, 2021, 3, fcab247.	1.5	5
8	The cellular prion protein interacts with and promotes the activity of Na,K-ATPases. PLoS ONE, 2021, 16, e0258682.	1.1	8
9	α-Synuclein strains target distinct brain regions and cell types. Nature Neuroscience, 2020, 23, 21-31.	7.1	195
10	The utility of bank voles for studying prion disease. Progress in Molecular Biology and Translational Science, 2020, 175, 179-211.	0.9	8
11	Identification of a homology-independent linchpin domain controlling mouse and bank vole prion protein conversion. PLoS Pathogens, 2020, 16, e1008875.	2.1	9
12	Cellular models for discovering prion disease therapeutics: Progress and challenges. Journal of Neurochemistry, 2020, 153, 150-172.	2.1	28
13	Title is missing!. , 2020, 16, e1008875.		0
14	Title is missing!. , 2020, 16, e1008875.		0
15	Title is missing!. , 2020, 16, e1008875.		0
16	Title is missing!. , 2020, 16, e1008875.		0
17	Title is missing!. , 2020, 16, e1008875.		0
18	Title is missing!. , 2020, 16, e1008875.		0

2

JOEL C WATTS

#	Article	IF	CITATIONS
19	Calling α-synuclein a prion is scientifically justifiable. Acta Neuropathologica, 2019, 138, 505-508.	3.9	14
20	Engineering a murine cell line for the stable propagation of hamster prions. Journal of Biological Chemistry, 2019, 294, 4911-4923.	1.6	17
21	Full restoration of specific infectivity and strain properties from pure mammalian prion protein. PLoS Pathogens, 2019, 15, e1007662.	2.1	30
22	Structural heterogeneity and intersubject variability of Aβ in familial and sporadic Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E782-E791.	3.3	105
23	Prion-like propagation of \hat{l}^2 -amyloid aggregates in the absence of APP overexpression. Acta Neuropathologica Communications, 2018, 6, 26.	2.4	41
24	β-Amyloid Prions and the Pathobiology of Alzheimer's Disease. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a023507.	2.9	64
25	α-Synuclein: Multiple System Atrophy Prions. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a024588.	2.9	64
26	The function of the cellular prion protein in health and disease. Acta Neuropathologica, 2018, 135, 159-178.	3.9	72
27	Discriminating Strains of Self-Propagating Protein Aggregates Using a Conformational Stability Assay. Methods in Molecular Biology, 2018, 1777, 339-354.	0.4	5
28	The prion protein is embedded in a molecular environment that modulates transforming growth factor Î ² and integrin signaling. Scientific Reports, 2018, 8, 8654.	1.6	14
29	Experimental Models of Inherited PrP Prion Diseases. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a027151.	2.9	27
30	The Biology and Pathobiology of α-Synuclein. , 2017, , 109-130.		1
31	Strains of Pathological Protein Aggregates in Neurodegenerative Diseases. Discoveries, 2017, 5, e78.	1.5	8
32	Somatostatin binds to the human amyloid \hat{I}^2 peptide and favors the formation of distinct oligomers. ELife, 2017, 6, .	2.8	37
33	Guinea Pig Prion Protein Supports Rapid Propagation of Bovine Spongiform Encephalopathy and Variant Creutzfeldt-Jakob Disease Prions. Journal of Virology, 2016, 90, 9558-9569.	1.5	3
34	α-Synuclein-Based Animal Models of Parkinson's Disease: Challenges and Opportunities in a New Era. Trends in Neurosciences, 2016, 39, 750-762.	4.2	120
35	Towards authentic transgenic mouse models of heritable PrP prion diseases. Acta Neuropathologica, 2016, 132, 593-610.	3.9	40
36	Structural Studies of Truncated Forms of the Prion Protein PrP. Biophysical Journal, 2015, 108, 1548-1554.	0.2	25

JOEL C WATTS

#	Article	IF	CITATIONS
37	Modulation of <scp>C</scp> reutzfeldtâ€ <scp>J</scp> akob disease prion propagation by the <scp>A</scp> 224 <scp>V</scp> mutation. Annals of Neurology, 2015, 78, 540-553.	2.8	18
38	Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5308-17.	3.3	578
39	Propagation of prions causing synucleinopathies in cultured cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4949-58.	3.3	191
40	Evidence That Bank Vole PrP Is a Universal Acceptor for Prions. PLoS Pathogens, 2014, 10, e1003990.	2.1	92
41	Endoproteolytic processing of the mammalian prion glycoprotein family. FEBS Journal, 2014, 281, 862-876.	2.2	25
42	Distinct synthetic Aβ prion strains producing different amyloid deposits in bigenic mice. Proceedings of the United States of America, 2014, 111, 10329-10334.	3.3	140
43	Mouse Models for Studying the Formation and Propagation of Prions. Journal of Biological Chemistry, 2014, 289, 19841-19849.	1.6	83
44	Serial propagation of distinct strains of AÎ ² prions from Alzheimer's disease patients. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10323-10328.	3.3	247
45	Drug resistance confounding prion therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4160-9.	3.3	120
46	Transmission of multiple system atrophy prions to transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19555-19560.	3.3	359
47	The Prion Protein Modulates A-type K+ Currents Mediated by Kv4.2 Complexes through Dipeptidyl Aminopeptidase-like Protein 6. Journal of Biological Chemistry, 2013, 288, 37241-37255.	1.6	25
48	Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3498-3503.	3.3	65
49	Purified and synthetic Alzheimer's amyloid beta (Aβ) prions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11025-11030.	3.3	327
50	Conformational Transformation and Selection of Synthetic Prion Strains. Journal of Molecular Biology, 2011, 413, 527-542.	2.0	49
51	Family reunion – The ZIP/prion gene family. Progress in Neurobiology, 2011, 93, 405-420.	2.8	33
52	Spontaneous generation of anchorless prions in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21223-21228.	3.3	68
53	Bioluminescence imaging of AÎ ² deposition in bigenic mouse models of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2528-2533.	3.3	109
54	Protease-Resistant Prions Selectively Decrease Shadoo Protein. PLoS Pathogens, 2011, 7, e1002382.	2.1	39

JOEL C WATTS

#	Article	IF	CITATIONS
55	Wildâ€ŧype Shadoo proteins convert to amyloidâ€ŀike forms under native conditions. Journal of Neurochemistry, 2010, 113, 92-104.	2.1	27
56	Evolutionary descent of prion genes from a ZIP metal ion transport ancestor. Nature Precedings, 2009, , .	0.1	2
57	Interactome Analyses Identify Ties of PrPC and Its Mammalian Paralogs to Oligomannosidic N-Glycans and Endoplasmic Reticulum-Derived Chaperones. PLoS Pathogens, 2009, 5, e1000608.	2.1	108
58	Evolutionary Descent of Prion Genes from the ZIP Family of Metal Ion Transporters. PLoS ONE, 2009, 4, e7208.	1.1	108
59	The in Vivo Brain Interactome of the Amyloid Precursor Protein. Molecular and Cellular Proteomics, 2008, 7, 15-34.	2.5	143
60	The prion protein family: Diversity, rivalry, and dysfunction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 654-672.	1.8	102
61	The CNS glycoprotein Shadoo has PrPC-like protective properties and displays reduced levels in prion infections. EMBO Journal, 2007, 26, 4038-4050.	3.5	114
62	The Expanding Universe of Prion Diseases. PLoS Pathogens, 2006, 2, e26.	2.1	115
63	Genetic Mapping of Activity Determinants within Cellular Prion Proteins. Journal of Biological Chemistry, 2004, 279, 55443-55454.	1.6	55