Nilton Curi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3642651/publications.pdf

Version: 2024-02-01

117571 175177 4,029 165 34 52 h-index citations g-index papers 165 165 165 2802 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena, 2009, 79, 49-59.	2.2	223
2	Toposequence of Oxisols from the Central Plateau of Brazil. Soil Science Society of America Journal, 1984, 48, 341-346.	1.2	142
3	Trace element geochemistry in Brazilian Cerrado soils. Geoderma, 2004, 121, 31-43.	2.3	138
4	Influência da mineralogia da fração argila nas propriedades fÃsicas de latossolos da região sudeste do Brasil. Revista Brasileira De Ciencia Do Solo, 1999, 23, 515-524.	0.5	120
5	Mineralogia da fração argila e estrutura de latossolos da região sudeste do Brasil. Revista Brasileira De Ciencia Do Solo, 1999, 23, 507-514.	0.5	116
6	The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges. Geoderma, 2019, 354, 113793.	2.3	100
7	Major element geochemistry and geomorphic relationships in Brazilian Cerrado soils. Geoderma, 2004, 119, 179-195.	2.3	87
8	Occasional tillage in no-tillage systems: A global meta-analysis. Science of the Total Environment, 2020, 745, 140887.	3.9	77
9	Effect of Parent Rocks on Chemical and Mineralogical Properties of Some Oxisols in Brazil. Soil Science Society of America Journal, 1987, 51, 153-158.	1.2	75
10	Erosividade mensal e anual da chuva no Estado de Minas Gerais. Pesquisa Agropecuaria Brasileira, 2007, 42, 537-545.	0.9	71
11	Multiple linear regression and random forest to predict and map soil properties using data from portable X-ray fluorescence spectrometer (pXRF). Ciencia E Agrotecnologia, 2017, 41, 648-664.	1.5	65
12	Tracing tropical soil parent material analysis via portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado. Geoderma, 2019, 337, 718-728.	2.3	58
13	Soil horizon variation: A review. Advances in Agronomy, 2020, 160, 125-185.	2.4	57
14	Iron oxides in soils of different lithological origins in Ferriferous Quadrilateral (Minas Gerais,) Tj ETQq0 0 0 rgBT /	Overlock I	10 Tf 50 222 ⁻
15	Soil weathering analysis using a portable X-ray fluorescence (PXRF) spectrometer in an Inceptisol from the Brazilian Cerrado. Applied Clay Science, 2018, 162, 27-37.	2.6	53
16	Proximal Sensing and Digital Terrain Models Applied to Digital Soil Mapping and Modeling of Brazilian Latosols (Oxisols). Remote Sensing, 2016, 8, 614.	1.8	52
17	Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach. Geoderma, 2020, 362, 114136.	2.3	52
18	Modelling spatially distributed soil losses and sediment yield in the upper Grande River Basin - Brazil. Catena, 2017, 157, 139-150.	2.2	50

#	Article	IF	CITATIONS
19	Sea surface temperature (SST) and rainfall erosivity in the Upper Grande River Basin, southeast Brazil. Ciencia E Agrotecnologia, 2012, 36, 53-59.	1.5	48
20	pXRF in tropical soils: Methodology, applications, achievements and challenges. Advances in Agronomy, 2021, , 1-62.	2.4	47
21	Soil moisture in the root zone and its relation to plant vigor assessed by remote sensing at management scale. Geoderma, 2014, 221-222, 91-95.	2.3	46
22	Elemental analysis of Cerrado agricultural soils via portable X-ray fluorescence spectrometry: Inferences for soil fertility assessment. Geoderma, 2019, 353, 264-272.	2.3	45
23	A soil compaction diagnosis method for occasional tillage recommendation under continuous no tillage system in Brazil. Soil and Tillage Research, 2019, 194, 104307.	2.6	45
24	Erosividade da chuva e erodibilidade de Cambissolo e Latossolo na região de Lavras, sul de Minas Gerais. Revista Brasileira De Ciencia Do Solo, 2009, 33, 1811-1820.	0.5	44
25	Increasing arsenic sorption on red mud by phosphogypsum addition. Journal of Hazardous Materials, 2013, 262, 1196-1203.	6.5	43
26	Preconsolidation pressure, soil water retention characteristics, and texture of Latosols in the Brazilian Cerrado. Soil Research, 2013, 51, 193.	0.6	43
27	Soil erosion risk associated with climate change at Mantaro River basin, Peruvian Andes. Catena, 2016, 147, 110-124.	2.2	43
28	Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms. Catena, 2021, 197, 105003.	2.2	42
29	Strength attributes and compaction susceptibility of Brazilian Latosols. Soil and Tillage Research, 2009, 105, 122-127.	2.6	41
30	Selenium and mercury in Brazilian Cerrado soils and their relationships with physical and chemical soil characteristics. Chemosphere, 2019, 218, 412-415.	4.2	40
31	Soil subgroup prediction via portable X-ray fluorescence and visible near-infrared spectroscopy. Geoderma, 2020, 365, 114212.	2.3	40
32	Perdas de solo, água, nutrientes e carbono orgânico em Cambissolo e Latossolo sob chuva natural. Pesquisa Agropecuaria Brasileira, 2005, 40, 1223-1230.	0.9	39
33	Agricultural watershed modeling: a review for hydrology and soil erosion processes. Ciencia E Agrotecnologia, 2016, 40, 7-25.	1.5	38
34	Soil texture prediction using portable X-ray fluorescence spectrometry and visible near-infrared diffuse reflectance spectroscopy. Geoderma, 2020, 376, 114553.	2.3	38
35	Retrieving pedologist's mental model from existing soil map and comparing data mining tools for refining a larger area map under similar environmental conditions in Southeastern Brazil. Geoderma, 2016, 267, 65-77.	2.3	36
36	Parent material distribution mapping from tropical soils data via machine learning and portable X-ray fluorescence (pXRF) spectrometry in Brazil. Geoderma, 2019, 354, 113885.	2.3	36

#	Article	IF	Citations
37	Tropical soils characterization at low cost and time using portable X-ray fluorescence spectrometer (pXRF): Effects of different sample preparation methods. Ciencia E Agrotecnologia, 2018, 42, 80-92.	1.5	35
38	Spatial variability of the rainfall erosivity in southern region of Minas Gerais state, Brazil. Ciencia E Agrotecnologia, 2012, 36, 533-542.	1.5	33
39	Solum depth spatial prediction comparing conventional with knowledge-based digital soil mapping approaches. Scientia Agricola, 2014, 71, 316-323.	0.6	32
40	Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses. Ciencia E Agrotecnologia, 2018, 42, 501-512.	1.5	32
41	Maghemite quantification and magnetic signature of Brazilian soils with contrasting parent materials. Applied Clay Science, 2018, 161, 385-394.	2.6	32
42	P-sorption and desorption in Savanna Brazilian soils as a support for phosphorus fertilizer management. Ciencia E Agrotecnologia, 2013, 37, 521-530.	1.5	31
43	Critical soil moisture range for a coffee crop in an oxidic latosol as affected by soil management. Soil and Tillage Research, 2015, 154, 103-113.	2.6	31
44	Advances in Tropical Soil Characterization via Portable X-Ray Fluorescence Spectrometry. Pedosphere, 2019, 29, 468-482.	2.1	30
45	Soil moisture associated with least limiting water range, leaf water potential, initial growth and yield of coffee as affected by soil management system. Soil and Tillage Research, 2019, 189, 36-43.	2.6	30
46	Prediction of soil fertility via portable X-ray fluorescence (pXRF) spectrometry and soil texture in the Brazilian Coastal Plains. Geoderma, 2020, 357, 113960.	2.3	30
47	From sensor data to Munsell color system: Machine learning algorithm applied to tropical soil color classification via Nixâ,,¢ Pro sensor. Geoderma, 2020, 375, 114471.	2.3	30
48	Soil management and diverse crop rotation can mitigate early-stage no-till compaction and improve least limiting water range in a Ferralsol. Agricultural Water Management, 2021, 243, 106523.	2.4	29
49	Relation of strength and mineralogical attributes in Brazilian latosols. Soil and Tillage Research, 2009, 102, 14-18.	2.6	28
50	Gypsum effects on the spatial distribution of coffee roots and the pores system in oxidic Brazilian Latosol. Soil and Tillage Research, 2015, 145, 171-180.	2.6	27
51	Do different arbuscular mycorrhizal fungi affect the formation and stability of soil aggregates?. Ciencia E Agrotecnologia, 0, 43, .	1.5	27
52	Digital soil mapping approach based on fuzzy logic and field expert knowledge. Ciencia E Agrotecnologia, 2013, 37, 287-298.	1.5	26
53	Spatial prediction of soil–water transmissivity based on fuzzy logic in a Brazilian headwater watershed. Catena, 2016, 143, 26-34.	2.2	25
54	Using pedological knowledge to improve sediment source apportionment in tropical environments. Journal of Soils and Sediments, 2019, 19, 3274-3289.	1.5	25

#	Article	IF	CITATIONS
55	Ãndices de erosividade da chuva, perdas de solo e fator erodibilidade para dois solos da região dos cerrados - primeira aproximação. Revista Brasileira De Ciencia Do Solo, 1997, 21, 427-434.	0.5	23
56	Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas. Ciencia E Agrotecnologia, 2016, 40, 534-546.	1.5	23
57	Digital soil mapping including additional point sampling in Posses ecosystem services pilot watershed, southeastern Brazil. Scientific Reports, 2019, 9, 13763.	1.6	23
58	Relação entre atributos fÃsicos, mineralogia da fração argila e formas de alumÃnio no solo. Revista Brasileira De Ciencia Do Solo, 2003, 27, 01-09.	0.5	23
59	Caracterização de óxidos de ferro de solos do ambiente tabuleiros costeiros. Revista Brasileira De Ciencia Do Solo, 2008, 32, 1017-1031.	0.5	22
60	The Influence of Soil Moisture on Oxide Determination in Tropical Soils via Portable Xâ€ray Fluorescence. Soil Science Society of America Journal, 2018, 82, 632-644.	1.2	22
61	Modeling arsenic content in Brazilian soils: What is relevant?. Science of the Total Environment, 2020, 712, 136511.	3.9	22
62	Effect of compaction on the relationship between electrical resistivity and soil water content in Oxisol. Soil and Tillage Research, 2021, 208, 104876.	2.6	22
63	Dynamics and losses of soil organic matter and nutrients by water erosion in cover crop management systems in olive groves, in tropical regions. Soil and Tillage Research, 2021, 209, 104863.	2.6	22
64	Drivers of Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image Time Series. Remote Sensing, 2021, 13, 2223.	1.8	22
65	Mineralogia, quÃmica e micromorfologia de solos de uma microbacia nos tabuleiros costeiros do EspÃrito Santo. Pesquisa Agropecuaria Brasileira, 2000, 35, 1237-1250.	0.9	21
66	Retenção e dessorção competitivas de ânions inorgânicos em gibbsita natural de solo. Pesquisa Agropecuaria Brasileira, 2007, 42, 1627-1633.	0.9	21
67	Spatial prediction of soil properties in two contrasting physiographic regions in Brazil. Scientia Agricola, 2016, 73, 274-285.	0.6	21
68	Assessing models for prediction of some soil chemical properties from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian Coastal Plains. Geoderma, 2020, 357, 113957.	2.3	21
69	Soil type spatial prediction from Random Forest: different training datasets, transferability, accuracy and uncertainty assessment. Scientia Agricola, 2019, 76, 243-254.	0.6	20
70	Propriedades cristalográficas de caulinitas de solos do ambiente tabuleiros costeiros, Amazônia e Recôncavo Baiano. Revista Brasileira De Ciencia Do Solo, 2008, 32, 1857-1872.	0.5	19
71	Levantamento pedológico e sistema de informações geográficas naavaliação do uso das terras em sub-bacia hidrográfica de Minas Gerais. Ciencia E Agrotecnologia, 2009, 33, 1544-1553.	1.5	19
72	Proximal sensor data fusion and auxiliary information for tropical soil property prediction: Soil texture. Geoderma, 2022, 422, 115936.	2.3	19

#	Article	IF	Citations
73	Competitive Sorption of Arsenate and Phosphate on Aluminum Mining By-product. Water, Air, and Soil Pollution, 2012, 223, 5433-5444.	1.1	18
74	Adsorption and availability of phosphorus in response to humic acid rates in soils limed with CaCO3 or MgCO3. Ciencia E Agrotecnologia, 2018, 42, 7-20.	1.5	18
7 5	Soils of the Brazilian Coastal Plains biome: prediction of chemical attributes via portable X-ray fluorescence (pXRF) spectrometry and robust prediction models. Soil Research, 2020, 58, 683.	0.6	18
76	Foliar Elemental Analysis of Brazilian Crops via Portable X-ray Fluorescence Spectrometry. Sensors, 2020, 20, 2509.	2.1	18
77	Sorção de selênio em solos do bioma cerrado. Revista Brasileira De Ciencia Do Solo, 2011, 35, 1995-2003.	0.5	17
78	Tropical Soil Toposequence Characterization via pXRF Spectrometry. Soil Science Society of America Journal, 2019, 83, 1153-1166.	1.2	17
79	Linking phosphorus sorption and magnetic susceptibility in clays and tropical soils. Soil Research, 2020, 58, 430.	0.6	17
80	Assessment of Vulnerability of Oxisols to Compaction in the Cerrado Region of Brazil. Pedosphere, 2010, 20, 252-260.	2.1	16
81	Tropical soil pH and sorption complex prediction via portable X-ray fluorescence spectrometry. Geoderma, 2020, 361, 114132.	2.3	16
82	Comparison of portable X-ray fluorescence spectrometry and laboratory-based methods to assess the soil elemental composition: Applications for wetland soils. Environmental Technology and Innovation, 2020, 19, 100826.	3.0	16
83	A framework for testing large-scale distributed soil erosion and sediment delivery models: Dealing with uncertainty in models and the observational data. Environmental Modelling and Software, 2021, 137, 104961.	1.9	16
84	Formation and variation of a 4.5Âm deep Oxisol in southeastern Brazil. Catena, 2021, 206, 105492.	2.2	16
85	Teor total e capacidade máxima de adsorção de chumbo em Latossolos brasileiros. Revista Brasileira De Ciencia Do Solo, 2001, 25, 279-288.	0.5	15
86	Synthesis of proximal sensing, terrain analysis, and parent material information for available micronutrient prediction in tropical soils. Precision Agriculture, 2019, 20, 746-766.	3.1	15
87	Adsorção e dessorção aniônicas individuais por gibbsita pedogenética. Quimica Nova, 2009, 32, 99-105.	0.3	15
88	Caracterização de subproduto da indústria de alumÃnio e seu uso na retenção de cádmio e chumbo em sistemas monoelementares. Quimica Nova, 2009, 32, 868-874.	0.3	14
89	Effect of Equilibrium Solution Ionic Strength on the Adsorption of Zn, Cu, Cd, Pb, As, and P on Aluminum Mining By-Product. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	14
90	Role of Inceptisols in the Hydrology of Mountainous Catchments in Southeastern Brazil. Journal of Hydrologic Engineering - ASCE, 2016, 21, 05015017.	0.8	13

#	Article	IF	Citations
91	Knowledge-based digital soil mapping for predicting soil properties in two representative watersheds. Scientia Agricola, 2018, 75, 144-153.	0.6	13
92	Proximal sensing applied to soil texture prediction and mapping in Brazil. Geoderma Regional, 2020, 23, e00321.	0.9	13
93	Modeling and prediction of sulfuric acid digestion analyses data from PXRF spectrometry in tropical soils. Scientia Agricola, 2020, 77, .	0.6	13
94	Scaling of pores in 3D images of Latosols (Oxisols) with contrasting mineralogy under a conservation management system. Soil Research, 2014, 52, 231.	0.6	12
95	Deep furrow and additional liming for coffee cultivation under first year in a naturally dense inceptisol. Geoderma, 2020, 357, 113934.	2.3	12
96	Assessing soil contamination in automobile scrap yards by portable X-ray fluorescence spectrometry and magnetic susceptibility. Environmental Monitoring and Assessment, 2020, 192, 46.	1.3	12
97	Compressive response of some agricultural soils influenced by the mineralogy and moisture. International Agrophysics, 2013, 27, 239-246.	0.7	12
98	Morphology, mineralogy and micromorphology of soils associated to summit depressions of the Northeastern Brazilian Coastal Plains. Ciencia E Agrotecnologia, 2012, 36, 507-517.	1.5	11
99	MICROMORPHOLOGY AND PEDOGENESIS OF MOUNTAINOUS INCEPTISOLS IN THE MANTIQUEIRA RANGE (MG). Ciencia E Agrotecnologia, 2015, 39, 455-462.	1.5	11
100	Cemented Horizons and Hardpans in the Coastal Tablelands of Northeastern Brazil. Revista Brasileira De Ciencia Do Solo, 2017, 41, .	0.5	11
101	Land-use effect on hydropedology in a mountainous region of Southeastern Brazil. Ciencia E Agrotecnologia, 2017, 41, 413-427.	1.5	11
102	Conditions affecting oxide quantification in unknown tropical soils via handheld X-ray fluorescence spectrometer. Soil Research, 2018, 56, 648.	0.6	11
103	Adsorption of Selenite in Tropical Soils as Affected by Soil Management, Ionic Strength, and Soil Properties. Journal of Soil Science and Plant Nutrition, 2020, 20, 139-148.	1.7	11
104	Tropical soil order and suborder prediction combining optical and X-ray approaches. Geoderma Regional, 2020, 23, e00331.	0.9	11
105	RainfallErosivityFactor: An R package for rainfall erosivity (R-factor) determination. Catena, 2020, 189, 104509.	2.2	11
106	National-scale spatial variations of soil magnetic susceptibility in Brazil. Journal of South American Earth Sciences, 2021, 108, 103191.	0.6	11
107	Assessment of soil erosion in olive orchards (Olea europaea L.) under cover crops management systems in the tropical region of Brazil. Revista Brasileira De Ciencia Do Solo, 2020, 44, .	0.5	11
108	The Brazilian soil Mid-infrared Spectral Library: The Power of the Fundamental Range. Geoderma, 2022, 415, 115776.	2.3	11

#	Article	IF	Citations
109	A hydropedological approach to a mountainous Clayey Humic Dystrudept in the Mantiqueira Range, southeastern Brazil. Scientia Agricola, 2018, 75, 60-69.	0.6	10
110	Micronutrients prediction via pXRF spectrometry in Brazil: Influence of weathering degree. Geoderma Regional, 2021, 27, e00431.	0.9	10
111	Proximal sensor data fusion for tropical soil property prediction: Soil fertility properties. Journal of South American Earth Sciences, 2022, 116, 103873.	0.6	10
112	Prediction of soil nutrient content via pXRF spectrometry and its spatial variation in a highly variable tropical area. Precision Agriculture, 2022, 23, 18-34.	3.1	9
113	Similar Soils but Different Soil-Forming Factors: Converging Evolution of Inceptisols in Brazil. Pedosphere, 2017, 27, 747-757.	2.1	8
114	Soil parent material prediction for Brazil via proximal soil sensing. Geoderma Regional, 2020, 22, e00310.	0.9	8
115	Xanthic- and Rhodic-Acrudoxes under cerrado vegetation: differential internal drainage and covarying micromorphological properties. Ciencia E Agrotecnologia, 2016, 40, 443-453.	1.5	8
116	Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry. Ciencia E Agrotecnologia, 0, 44, .	1.5	8
117	Detailed soil survey of an experimental watershed representative of the Brazilian Coastal Plains and its practical application. Ciencia E Agrotecnologia, 2014, 38, 50-60.	1.5	8
118	The fundamental of the effects of water, organic matter, and iron forms on the pXRF information in soil analyses. Catena, 2022, 210, 105868.	2.2	8
119	Mono- and Multielement Sorption of Trace Metals on Oxidic Industrial By-products. Water, Air, and Soil Pollution, 2012, 223, 1661-1670.	1.1	7
120	Phosphorus transfer at a small catchment in southeastern Brazil: distributed modelling in different land use scenarios. Ciencia E Agrotecnologia, 2017, 41, 565-579.	1.5	7
121	Relationship Among Crop Systems, Soil Cover, and Water Erosion on a Typic Hapludox. Revista Brasileira De Ciencia Do Solo, 2018, 42, .	0.5	7
122	Organic Matter Removal on Oxide Determination in Oxisols Via Portable X-ray Fluorescence. Communications in Soil Science and Plant Analysis, 2019, 50, 673-681.	0.6	7
123	Soil parent material prediction through satellite multispectral analysis on a regional scale at the Western Paulista Plateau, Brazil. Geoderma Regional, 2021, 26, e00412.	0.9	7
124	Long-term no tillage management impact on soil hydro-physical properties in coffee cultivation. Geoderma, 2021, 404, 115306.	2.3	7
125	Sistema de informações geográficas no planejamento de uso do solo. Revista Brasileirade Ciencias Agrarias, 2013, 8, 316-323.	0.3	7
126	Rainfall erosivity estimation: Comparison and statistical assessment among methods using data from Southeastern Brazil. Revista Brasileira De Ciencia Do Solo, 2022, 46, .	0.5	7

#	Article	IF	Citations
127	Projections of rainfall erosivity in climate change scenarios for the largest watershed within Brazilian territory. Catena, 2022, 213, 106225.	2.2	7
128	Using Nix color sensor and Munsell soil color variables to classify contrasting soil types and predict soil organic carbon in Eastern India. Computers and Electronics in Agriculture, 2022, 199, 107192.	3.7	7
129	Ãndice de cobertura vegetal pela cultura do milho no perÃodo de chuvas intensas no sul de Minas Gerais. Ciencia E Agrotecnologia, 2010, 34, 345-351.	1.5	6
130	Erosividade das chuvas e tempo de recorrência para Lavras, Minas Gerais. Revista Ceres, 2014, 61, 09-16.	0.1	6
131	Elemental concentration via portable x-ray fluorescence spectrometry: Assessing the impact of water content. Ciencia E Agrotecnologia, 0, 43, .	1.5	6
132	Tracing the origin of reservoir sediments using magnetic properties in Southeastern Brazil. Semina:Ciencias Agrarias, 2020, 41, 847.	0.1	6
133	PEDOTRANSFER FUNCTIONS FOR WATER RETENTION IN THE MAIN SOILS FROM THE BRAZILIAN COASTAL PLAINS. Ciencia E Agrotecnologia, 2015, 39, 331-338.	1.5	6
134	Prediction of soil organic matter content by combining data from Nix ProTM color sensor and portable X-ray fluorescence spectrometry in tropical soils. Geoderma Regional, 2022, 28, e00461.	0.9	6
135	Pedogenic processes in a chronosequence of very deeply weathered soils in southeastern Brazil. Catena, 2022, 215, 106362.	2.2	6
136	Land use capability classification adaptation in low and intermediate technology farming systems: A soil erosion indicator. Soil Use and Management, 2021, 37, 164-180.	2.6	5
137	Proximal sensor-enhanced soil mapping in complex soil-landscape areas of Brazil. Pedosphere, 2021, 31, 615-626.	2.1	5
138	How sulfate content and soil depth affect the adsorption/desorption of selenate and selenite in tropical soils?. Revista Brasileira De Ciencia Do Solo, 2020, 44, .	0.5	5
139	Relationship between soil organic matter fractions and cover plants in Olive post planting. Revista Brasileira De Fruticultura, 2018, 40, .	0.2	4
140	Nonlinear models for soil moisture sensor calibration in tropical mountainous soils. Scientia Agricola, 2022, 79, .	0.6	4
141	Variation of properties of two contrasting Oxisols enhanced by pXRF and Vis-NIR. Journal of South American Earth Sciences, 2022, 115, 103748.	0.6	4
142	Mapping land use capability in tropical conditions adapting criteria to different levels of agricultural management. Ciencia E Agrotecnologia, 2018, 42, 631-642.	1.5	3
143	A sensors-based profile heterogeneity index for soil characterization. Catena, 2021, 207, 105670.	2.2	3
144	Environmental degradation risk by water erosion in a water producer Colombian Andes basin. Ciencia E Agrotecnologia, 0, 45, .	1.5	3

#	Article	IF	CITATIONS
145	Sustainable productive intensification for family farming in developing tropical countries. Ciencia E Agrotecnologia, 0, 43, .	1.5	3
146	Land-use influence on the soil hydrology: An approach in upper Grande River basin, Southeast Brazil. Ciencia E Agrotecnologia, 0, 43, .	1.5	3
147	MACRO simulator (version 5.0) for predicting atrazine herbicide behavior in brazilian latosols. Ciencia E Agrotecnologia, 2013, 37, 211-220.	1.5	3
148	Water erosion associated with rainfall patterns in the extreme South of Bahia in eucalyptus post-planting. Semina: Ciencias Agrarias, 2017, 38, 2463.	0.1	3
149	Monitoring land use impacts on sediment production: a case study of the pilot catchment from the Brazilian program of payment for environmental services. Revista Brasileira De Ciencia Do Solo, 2020, 44, .	0.5	3
150	Relationship between elemental content determined. Soil Research, 2022, 60, 661-677.	0.6	3
151	Comparing the sorptive affinity of an aluminum-mining by-product for cationic and anionic pollutants. International Journal of Environmental Science and Technology, 2021, 18, 1237-1252.	1.8	2
152	X-ray fluorescence spectrometry applied to digital mapping of soil fertility attributes in tropical region with elevated spatial variability. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20200646.	0.3	2
153	Lateral loss of clay in the genesis of Luvisols in the Semi-Arid Depression of the Jequitinhonha Valley, Minas Gerais - Brazil. Ciencia E Agrotecnologia, 0, 43, .	1.5	2
154	Assessing Water Erosion Processes in Degraded Area Using Unmanned Aerial Vehicle Imagery. Revista Brasileira De Ciencia Do Solo, 0, 43, .	0.5	2
155	Study of an abnormal occurrence of Oxisols in strongly undulated relief in the south of Minas Gerais, Brazil, with support of pXRF and geomorphology. Ciencia E Agrotecnologia, 0, 45, .	1.5	2
156	Chemical and mineralogical changes in the textural fractions of quartzite-derived tropical soils, along weathering, assessed by portable X-ray fluorescence spectrometry and X-ray diffraction. Journal of South American Earth Sciences, 2021, 112, 103634.	0.6	2
157	Soil and climate effects on winter wine produced under the tropical environmental conditions of southeastern Brazil. Oeno One, 2022, 56, 63-79.	0.7	2
158	Digital soil mapping: Predicting soil classes distribution in large areas based on existing soil maps from similar small areas. Ciencia E Agrotecnologia, 0, 45, .	1.5	1
159	Soil catenas in a pilot sub-basin in the region of Itajub \tilde{A}_i , Minas Gerais state, Brazil, for environmental planning. Semina:Ciencias Agrarias, 2021, 42, 1511-1528.	0.1	1
160	Pedology-based management class establishment: a study case in Brazilian coffee crops. Precision Agriculture, $0, 1$.	3.1	1
161	Macro scale analysis of Syrah vineyards under winter growing cycles: Agronomical and ecophysiological responses. Scientia Agricola, 2021, 78, .	0.6	0
162	Preconsolidation stress of gibbsitic and kaolinitic Oxisols under a multipractice conservationist coffee system. Semina: Ciencias Agrarias, 2021, 42, 1049-1068.	0.1	0

NILTON CURI

#	Article	IF	CITATIONS
163	ELEMENTOS-TRAÇO EM ÃGUAS, SEDIMENTOS E SOLOS DA BACIA DO RIO DAS MORTES, MINAS GERAIS. Holos, 0, 4, 308.	0.0	0
164	Hydrosedimentological modeling in a headwater basin in Southeast Brazil. Revista Brasileira De Ciencia Do Solo, 2020, 44, .	0.5	0
165	Using proximal sensors to assess pedogenetic development of Inceptisols and Oxisols in Brazil. Geoderma Regional, 2022, 28, e00465.	0.9	0