Suchithra Thangalazhy-Gopakumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3642638/publications.pdf

Version: 2024-02-01

SUCHITHRA

#	Article	IF	CITATIONS
1	Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers, 2019, 98, 163-180.	2.7	335
2	Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst. Bioresource Technology, 2012, 118, 150-157.	4.8	255
3	Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresource Technology, 2010, 101, 8389-8395.	4.8	205
4	Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies. Bioresource Technology, 2017, 236, 155-163.	4.8	156
5	Production of hydrocarbon fuels from biomass using catalytic pyrolysis under helium and hydrogen environments. Bioresource Technology, 2011, 102, 6742-6749.	4.8	152
6	Catalytic Pyrolysis of Biomass over H ⁺ ZSM-5 under Hydrogen Pressure. Energy & Fuels, 2012, 26, 5300-5306.	2.5	152
7	Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals: Review on ice-templating method and adsorption mechanisms. Journal of Environmental Sciences, 2019, 79, 174-199.	3.2	136
8	Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: Response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies. Environmental Research, 2019, 168, 241-253.	3.7	132
9	Review on synthesis of 3D graphene-based configurations and their adsorption performance for hazardous water pollutants. Chemical Engineering Research and Design, 2018, 116, 262-286.	2.7	124
10	Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production. Bioresource Technology, 2015, 178, 65-69.	4.8	107
11	lce-templated graphene oxide/chitosan aerogel as an effective adsorbent for sequestration of metanil yellow dye. Bioresource Technology, 2019, 274, 134-144.	4.8	99
12	Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies. Bioresource Technology, 2017, 245, 656-664.	4.8	96
13	Influence of Pyrolysis Operating Conditions on Bio-Oil Components: A Microscale Study in a Pyroprobe. Energy & Fuels, 2011, 25, 1191-1199.	2.5	71
14	Adsorptive removal of diclofenac by graphene oxide: Optimization, equilibrium, kinetic and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 2019, 98, 150-162.	2.7	63
15	Facile synthesis of xanthan biopolymer integrated 3D hierarchical graphene oxide/titanium dioxide composite for adsorptive lead removal in wastewater. Bioresource Technology, 2020, 309, 123296.	4.8	58
16	Utilisation of eco-friendly and low cost 3D graphene-based composite for treatment of aqueous Reactive Black 5 dye: Characterisation, adsorption mechanism and recyclability studies. Journal of the Taiwan Institute of Chemical Engineers, 2020, 114, 57-66.	2.7	44
17	Multistage optimizations of slow pyrolysis synthesis of biochar from palm oil sludge for adsorption of lead. Bioresource Technology, 2017, 245, 944-953.	4.8	41
18	Effect of oxide catalysts on the properties of bio-oil from in-situ catalytic pyrolysis of palm empty fruit bunch fiber. Journal of Environmental Management, 2019, 247, 38-45.	3.8	35

SUCHITHRA

#	Article	IF	CITATIONS
19	Kinetics and Mechanisms for Copyrolysis of Palm Empty Fruit Bunch Fiber (EFBF) with Palm Oil Mill Effluent (POME) Sludge. Energy & Fuels, 2017, 31, 8217-8227.	2.5	31
20	Sludge as a relinquishing catalyst in Co-Pyrolysis with palm Empty Fruit Bunch Fiber. Journal of Analytical and Applied Pyrolysis, 2018, 132, 56-64.	2.6	24
21	Enhancement of Palm Kernel Shell Fuel Properties via Wet Torrefaction: Response Surface, Optimization, and Combustion Studies. Energy & Fuels, 2019, 33, 11009-11020.	2.5	22
22	Insight into Co-pyrolysis of Palm Kernel Shell (PKS) with Palm Oil Sludge (POS): Effect on Bio-oil Yield and Properties. Waste and Biomass Valorization, 2020, 11, 5877-5889.	1.8	20
23	Sustainable technologies for waste reduction and pollutants removals. Clean Technologies and Environmental Policy, 2021, 23, 1-2.	2.1	19
24	Valorisation of oil palm wastes into high yield and energy content biochars via slow pyrolysis: Multivariate process optimisation and combustion kinetic studies. Materials Science for Energy Technologies, 2020, 3, 601-610.	1.0	17
25	Catalytic pyrolysis of cellulose with oxides: effects on physical properties and reaction pathways. Clean Technologies and Environmental Policy, 2019, 21, 1629-1643.	2.1	15
26	Design of bio-oil additives via computer-aided molecular design tools and phase stability analysis on final blends. Computers and Chemical Engineering, 2019, 123, 257-271.	2.0	15
27	Utilisation of environmentally friendly okara-based biosorbent for cadmium(II) removal. Environmental Science and Pollution Research, 2021, 28, 40608-40622.	2.7	14
28	Applicability of a novel and highly effective adsorbent derived from industrial palm oil mill sludge for copper sequestration: Central composite design optimisation and adsorption performance evaluation. Journal of Environmental Chemical Engineering, 2021, 9, 105968.	3.3	13
29	Usage of a new macro-hierarchical graphene sponge in batch adsorption and packed column configuration for efficient decontamination of cadmium in aqueous environment. Journal of Environmental Chemical Engineering, 2021, 9, 106057.	3.3	11
30	Design of bio-oil additives using mathematical optimisation tools considering blend functionality and sustainability aspects. Sustainable Production and Consumption, 2019, 19, 53-63.	5.7	10
31	Design of bio-oil additives via molecular signature descriptors using a multi-stage computer-aided molecular design framework. Frontiers of Chemical Science and Engineering, 2022, 16, 168-182.	2.3	9
32	Synthesis of a highly recoverable 3D MnO2/rGO hybrid aerogel for efficient adsorptive separation of pharmaceutical residue. Journal of Environmental Sciences, 2022, 118, 194-203.	3.2	9
33	Insights into the effectiveness of synthetic and natural additives in improving biodiesel oxidation stability. Sustainable Energy Technologies and Assessments, 2022, 52, 102296.	1.7	9
34	Comparison of Bio-Oil Properties from Non-Catalytic and In-Situ Catalytic Fast Pyrolysis of Palm Empty Fruit Bunch. Materials Today: Proceedings, 2018, 5, 23456-23465.	0.9	8
35	Production of Bio-oil from Underutilized Forest Biomass Using an Auger Reactor. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2015, 37, 750-757.	1.2	7
36	Kinetics and mechanisms for catalytic pyrolysis of empty fruit bunch fibre and cellulose with oxides. SN Applied Sciences, 2020, 2, 1.	1.5	7

SUCHITHRA

#	Article	IF	CITATIONS
37	Esterification and neutralization of bio-oil from palm empty fruit bunch fibre with calcium oxide. Bioresource Technology Reports, 2020, 12, 100560.	1.5	6
38	Wet torrefaction pre-treatment of yard waste to improve the fuel properties. Materials Science for Energy Technologies, 2021, 4, 211-223.	1.0	5
39	Enhancement of fuel properties of yard waste through dry torrefaction. Materials Science for Energy Technologies, 2021, 4, 156-165.	1.0	4
40	Computer-Aided Framework for the Design of Optimal Bio-Oil/Solvent Blend with Economic Considerations. Processes, 2021, 9, 2159.	1.3	3
41	Co-Processing of Woody Biomass and Poultry Litter for Bio-Oil Production with High pH. Transactions of the ASABE, 2013, 56, 231-236.	1.1	2
42	Fast Pyrolysis of Agricultural Wastes for Bio-fuel and Bio-char. Environmental Footprints and Eco-design of Products and Processes, 2016, , 301-332.	0.7	2
43	Evaluation of industrial palm oil sludge as an effective green adsorbing substrate for toxic aqueous cadmium removal. Materials Science for Energy Technologies, 2021, 4, 224-235.	1.0	2
44	Reactive and non-reactive solvents as bio-oil blends: a computer-aided molecular design approach. Biomass Conversion and Biorefinery, 2019, 11, 1633.	2.9	1
45	Special Issue "Green Technologies: Bridging Conventional Practices and Industry 4.0― Processes, 2020, 8, 552.	1.3	1
46	Investigation of eggshell as catalyst on the torrefaction of empty fruit bunch. Materials Science for Energy Technologies, 2021, 4, 189-201.	1.0	1
47	Integrated Forest Biorefineries: Gasification and Pyrolysis for Fuel and Power Production. RSC Green Chemistry, 2012, , 211-255.	0.0	1

48 Biosorption. , 2019, , 143-164.

0