Cristian Mateos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/364255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Persisting big-data: The NoSQL landscape. Information Systems, 2017, 63, 1-23.	3.6	108
2	RESTful service composition at a glance: A survey. Journal of Network and Computer Applications, 2016, 60, 32-53.	9.1	88
3	Body condition estimation on cows from depth images using Convolutional Neural Networks. Computers and Electronics in Agriculture, 2018, 155, 12-22.	7.7	65
4	Distributed job scheduling based on Swarm Intelligence: A survey. Computers and Electrical Engineering, 2014, 40, 252-269.	4.8	57
5	Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006). Advances in Engineering Software, 2015, 84, 31-47.	3.8	57
6	Reinforcement learning-based application Autoscaling in the Cloud: A survey. Engineering Applications of Artificial Intelligence, 2021, 102, 104288.	8.1	48
7	Estimating Body Condition Score in Dairy Cows From Depth Images Using Convolutional Neural Networks, Transfer Learning and Model Ensembling Techniques. Agronomy, 2019, 9, 90.	3.0	41
8	An ACO-inspired algorithm for minimizing weighted flowtime in cloud-based parameter sweep experiments. Advances in Engineering Software, 2013, 56, 38-50.	3.8	39
9	Detecting WSDL bad practices in code-first Web Services. International Journal of Web and Grid Services, 2011, 7, 357.	0.5	37
10	A tool to improve codeâ€first Web services discoverability through text mining techniques. Software - Practice and Experience, 2015, 45, 925-948.	3.6	31
11	Augmenting computing capabilities at the edge by jointly exploiting mobile devices: A survey. Future Generation Computer Systems, 2018, 88, 644-662.	7.5	29
12	RESTful Web Services improve the efficiency of data transfer of a whole-farm simulator accessed by Android smartphones. Computers and Electronics in Agriculture, 2012, 87, 14-18.	7.7	27
13	Best practices for describing, consuming, and discovering web services: a comprehensive toolset. Software - Practice and Experience, 2013, 43, 613-639.	3.6	27
14	A Two-Phase Energy-Aware Scheduling Approach for CPU-Intensive Jobs in Mobile Grids. Journal of Grid Computing, 2017, 15, 55-80.	3.9	26
15	An architecture and platform for developing distributed recommendation algorithms on large-scale social networks. Journal of Information Science, 2015, 41, 686-704.	3.3	24
16	Battery-aware centralized schedulers for CPU-bound jobs in mobile Grids. Pervasive and Mobile Computing, 2016, 29, 73-94.	3.3	23
17	Energy-efficient job stealing for CPU-intensive processing in mobile devices. Computing (Vienna/New) Tj ETQq1 🕻	1 0.78431 4.8	4 rgBT /Overl
18	DewSim: A traceâ€driven toolkit for simulating mobile device clusters in Dew computing environments. Software - Practice and Experience, 2020, 50, 688-718.	3.6	19

2

#	Article	IF	CITATIONS
19	Refactoring code-first Web Services for early avoiding WSDL anti-patterns: Approach and comprehensive assessment. Science of Computer Programming, 2014, 89, 374-407.	1.9	18
20	A survey on approaches to gridification. Software - Practice and Experience, 2008, 38, 523-556.	3.6	17
21	Anti-pattern free code-first web services for state-of-the-art Java WSDL generation tools. International Journal of Web and Grid Services, 2013, 9, 107.	0.5	17
22	EasySOC: Making web service outsourcing easier. Information Sciences, 2014, 259, 452-473.	6.9	17
23	DPM: A novel distributed large-scale social graph processing framework for link prediction algorithms. Future Generation Computer Systems, 2018, 78, 474-480.	7.5	15
24	Discovering web services in social web service repositories using deep variational autoencoders. Information Processing and Management, 2020, 57, 102231.	8.6	15
25	Bottom-up and top-down COBOL system migration to Web Services: An experience report. IEEE Internet Computing, 2011, , .	3.3	14
26	A structural-semantic web service selection approach to improve retrievability of web services. Information Systems Frontiers, 2018, 20, 1319-1344.	6.4	14
27	Towards Integrating Mobile Devices into Dew Computing: A Model for Hour-Wise Prediction of Energy Availability. Information (Switzerland), 2019, 10, 86.	2.9	14
28	A Task Execution Scheme for Dew Computing with State-of-the-Art Smartphones. Electronics (Switzerland), 2021, 10, 2006.	3.1	14
29	Are Smartphones Really Useful for Scientific Computing?. Lecture Notes in Computer Science, 2012, , 38-47.	1.3	14
30	CMI: An online multi-objective genetic autoscaler for scientific and engineering workflows in cloud infrastructures with unreliable virtual machines. Journal of Network and Computer Applications, 2020, 149, 102464.	9.1	13
31	A Comparative Analysis of NSGA-II and NSGA-III for Autoscaling Parameter Sweep Experiments in the Cloud. Scientific Programming, 2020, 2020, 1-17.	0.7	13
32	Predicting Web Service Maintainability via Object-Oriented Metrics: A Statistics-Based Approach. Lecture Notes in Computer Science, 2012, , 29-39.	1.3	13
33	JGRIM: An approach for easy gridification of applications. Future Generation Computer Systems, 2008, 24, 99-118.	7.5	12
34	Revising WSDL Documents: Why and How, Part 2. IEEE Internet Computing, 2013, 17, 46-53.	3.3	12
35	Multi-objective Swarm Intelligence schedulers for online scientific Clouds. Computing (Vienna/New) Tj ETQq1	1 0.784314 4.8	rgBT /Overloc
36	A domain independent readability metric for web service descriptions. Computer Standards and	5.4	12

#	Article	IF	CITATIONS
37	An approach for non-intrusively adding malleable fork/join parallelism into ordinary JavaBean compliant applications. Computer Languages, Systems and Structures, 2010, 36, 288-315.	1.4	11
38	SWAM: A logic-based mobile agent programming language for the Semantic Web. Expert Systems With Applications, 2011, 38, 1723-1737.	7.6	11
39	Service selection based on a practical interface assessment scheme. International Journal of Web and Grid Services, 2013, 9, 369.	0.5	11
40	Mining Social Web Service Repositories for Social Relationships to Aid Service Discovery. , 2017, , .		11
41	A Suite of Cognitive Complexity Metrics. Lecture Notes in Computer Science, 2012, , 234-247.	1.3	11
42	Extending movilog for supporting Web services. Computer Languages, Systems and Structures, 2007, 33, 11-31.	1.4	10
43	Separation of concerns in service-oriented applications based on pervasive design patterns. , 2010, , .		10
44	Improving scientific application execution on android mobile devices via code refactorings. Software - Practice and Experience, 2017, 47, 763-796.	3.6	10
45	Meta-heuristic based autoscaling of cloud-based parameter sweep experiments with unreliable virtual machines instances. Computers and Electrical Engineering, 2018, 69, 364-377.	4.8	10
46	EasyFJP: Providing hybrid parallelism as a concern for divide and conquer java applications. Computer Science and Information Systems, 2013, 10, 1129-1163.	1.0	10
47	GMAC: An overlay multicast network for mobile agent platforms. Journal of Parallel and Distributed Computing, 2008, 68, 1081-1096.	4.1	9
48	On the evaluation of gridification effort and runtime aspects of JGRIM applications. Future Generation Computer Systems, 2010, 26, 797-819.	7.5	9
49	Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments in Distributed Environments. , 2013, , 410-448.		9
50	Reactive Mobility by Failure: When Fail Means Move. Information Systems Frontiers, 2005, 7, 141-154.	6.4	8
51	Measuring the impact of the approach to migration in the quality of web service interfaces. Enterprise Information Systems, 2015, 9, 58-85.	4.7	8
52	Publication practices in the Argentinian Computer Science community: a bibliometric perspective. Scientometrics, 2015, 102, 1795-1814.	3.0	8
53	Spotting and Removing WSDL Anti-pattern Root Causes in Code-first Web Services Using NLP Techniques : A Thorough Validation of Impact on Service Discoverability. Computer Standards and Interfaces, 2018, 56, 116-133.	5.4	8
54	A bio-inspired scheduler for minimizing makespan and flowtime of computational mechanics applications on federated clouds. Journal of Intelligent and Fuzzy Systems, 2016, 31, 1731-1743.	1.4	7

#	Article	IF	CITATIONS
55	Word embeddings for improving REST services discoverability. , 2017, , .		7
56	Exploiting named entity recognition for improving syntactic-based web service discovery. Journal of Information Science, 2019, 45, 398-415.	3.3	7
57	A Bio-inspired Datacenter Selection Scheduler for Federated Clouds and Its Application to Frost Prediction. Journal of Network and Systems Management, 2019, 27, 688-729.	4.9	7
58	A Q-learning approach for the autoscaling of scientific workflows in the Cloud. Future Generation Computer Systems, 2022, 127, 168-180.	7.5	7
59	Estimating Web Service interface quality through conventional object-oriented metrics. CLEI Electronic Journal, 2013, 16, .	0.3	7
60	A software tool for semi-automatic gridification of resource-intensive Java bytecodes and its application to ray tracing and sequence alignment. Advances in Engineering Software, 2011, 42, 172-186.	3.8	6
61	A performance comparison of data-aware heuristics for scheduling jobs in mobile grids. , 2017, , .		6
62	Evaluating the Performance of Three Popular Web Mapping Libraries: A Case Study Using Argentina's Life Quality Index. ISPRS International Journal of Geo-Information, 2020, 9, 563.	2.9	6
63	New Heuristics for Scheduling and Distributing Jobs under Hybrid Dew Computing Environments. Wireless Communications and Mobile Computing, 2021, 2021, 1-12.	1.2	6
64	Simplifying Mobile Agent Development through Reactive Mobility by Failure. Lecture Notes in Computer Science, 2002, , 163-174.	1.3	6
65	Exploring Web Service QoS Estimation for Web Service Composition. Communications in Computer and Information Science, 2020, , 171-184.	0.5	6
66	Integrating Intelligent Mobile Agents with Web Services. International Journal of Web Services Research, 2005, 2, 85-103.	0.8	5
67	SI-based scheduling of scientific experiments on Clouds. , 2013, , .		5
68	Improving REST Service Discovery with Unsupervised Learning Techniques. , 2015, , .		5
69	Practical Criteria for Scheduling CPU-Bound Jobs in Mobile Devices at the Edge. , 2018, , .		5
70	Learning budget assignment policies for autoscaling scientific workflows in the cloud. Cluster Computing, 2020, 23, 87-105.	5.0	5
71	A platform for automating battery-driven batch benchmarking and profiling of Android-based mobile devices. Simulation Modelling Practice and Theory, 2021, 109, 102266.	3.8	5
72	The EasySOC Project: A Rich Catalog of Best Practices for Developing Web Service Applications. , 2010, ,		4

.

#	Article	IF	CITATIONS
73	Towards a Computer Assisted Approach for Migrating Legacy Systems to SOA. Lecture Notes in Computer Science, 2012, , 484-497.	1.3	4
74	Enhancing the BYG gridification tool with state-of-the-art Grid scheduling mechanisms and explicit tuning support. Advances in Engineering Software, 2012, 43, 27-43.	3.8	4
75	A multi-core computing approach for large-scale multi-label classification. Intelligent Data Analysis, 2017, 21, 329-352.	0.9	4
76	Supporting Ontology-Based Semantic Matching of Web Services in MoviLog. Lecture Notes in Computer Science, 2006, , 390-399.	1.3	4
77	SI-Based Scheduling of Parameter Sweep Experiments on Federated Clouds. Communications in Computer and Information Science, 2014, , 28-42.	0.5	4
78	A Stitch in Time Saves Nine: Early Improving Code-First Web Services Discoverability. International Journal of Cooperative Information Systems, 2015, 24, 1550004.	0.8	4
79	Keeping Web Service interface complexity low using an OO metric-based early approach. , 2016, , .		3
80	Migration from COBOL to SOA: Measuring the Impact on Web Services Interfaces Complexity. Communications in Computer and Information Science, 2017, , 266-279.	0.5	3
81	A distributed approach for accelerating sparse matrix arithmetic operations for high-dimensional feature selection. Knowledge and Information Systems, 2017, 51, 459-497.	3.2	3
82	Controlling complexity of web services interfaces through a metrics-driven approach. , 2017, , .		3
83	An Analysis of Distributed Programming Models and Frameworks for Large-scale Graph Processing. IETE Journal of Research, 2020, , 1-9.	2.6	3
84	Reducing Efforts in Web Services Refactoring. Lecture Notes in Computer Science, 2019, , 544-559.	1.3	3
85	An Analysis of the Effects of Bad Smell-Driven Refactorings in Mobile Applications on Battery Usage. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2016, , 155-175.	0.5	3
86	mâ€JGRIM: a novel middleware for Gridifying Java applications into mobile Grid services. Software - Practice and Experience, 2010, 40, 331-362.	3.6	2
87	A Three-level Scheduler to Execute Scientific Experiments on Federated Clouds. IEEE Latin America Transactions, 2015, 13, 3359-3369.	1.6	2
88	Extending JASAG with data processing techniques for speeding up agricultural simulation applications: A case study with Simugan. Information Processing in Agriculture, 2016, 3, 235-243.	4.1	2
89	A Novel Unsupervised Learning Approach for Assessing Web Services Refactoring. Communications in Computer and Information Science, 2019, , 273-284.	0.5	2
90	Simulation on Cloud Computing Infrastructures of Parametric Studies of Nonlinear Solids Problems. Lecture Notes in Computer Science, 2012, , 58-70.	1.3	2

#	Article	IF	CITATIONS
91	Grid-Enabling Applications with JGRIM. International Journal of Grid and High Performance Computing, 2009, 1, 52-72.	0.9	2
92	Adding Semantic Web Services Matching and Discovery Support to the MoviLog Platform. , 2006, , 51-60.		2
93	An approach to improve code-first web services discoverability at development time. , 2012, , .		1
94	Legacy System Migration Approaches. IEEE Latin America Transactions, 2013, 11, 840-851.	1.6	1
95	A software support to initiate systems engineering students in serviceâ€oriented computing. Computer Applications in Engineering Education, 2014, 22, 252-265.	3.4	1
96	Motrol 2.0: A Dew-oriented hardware/software platform for batch-benchmarking smartphones. , 2021, , .		1
97	A Programming Interface and Platform Support for Developing Recommendation Algorithms on Large-Scale Social Networks. Lecture Notes in Computer Science, 2014, , 67-74.	1.3	1
98	The SOA Frontier. , 0, , 126-152.		1
99	A Programming Model for the Semantic Web. Lecture Notes in Computer Science, 2012, , 208-218.	1.3	1
100	An Evaluation on Developer's Perception of XML Schema Complexity Metrics for Web Services. Lecture Notes in Computer Science, 2013, , 475-486.	1.3	1
101	An NSGA-III-Based Multi-objective Intelligent Autoscaler for Executing Engineering Applications in Cloud Infrastructures. Lecture Notes in Computer Science, 2020, , 249-263.	1.3	1
102	Parallelism as a Concern in Java through Fork-join Synchronization Patterns. , 2012, , .		0
103	Sparse-matrix arithmetic operations in computer clusters: A text feature selection application. , 2014, ,		Ο
104	Clasificación multi-etiqueta utilizando computación distribuida. , 2014, , .		0
105	A tool for building retrievable code-first Web Services. , 2014, , .		0
106	Broker Scheduler based on ACO for Federated Cloud-based scientific experiments. , 2016, , .		0
107	Assessing readability of Web service interfaces. , 2016, , .		0
108	An Evaluation of Distributed Processing Models for Random Walk-Based Link Prediction Algorithms Over Social Big Data. Advances in Intelligent Systems and Computing, 2016, , 919-928.	0.6	0

#	Article	IF	CITATIONS
109	Energy Implications of Common Operations in Resource-Intensive Java-Based Scientific Applications. Advances in Intelligent Systems and Computing, 2016, , 739-748.	0.6	0
110	Task Scheduling for Processing Big Graphs in Heterogeneous Commodity Clusters. Communications in Computer and Information Science, 2018, , 235-249.	0.5	0
111	A Model for Hour-Wise Prediction of Mobile Device Energy Availability. Advances in Intelligent Systems and Computing, 2018, , 351-358.	0.6	0
112	Grid-Enabling Applications with JGRIM. , 0, , 39-56.		0
113	A Simulation Scheduling Module to Improve User Experience in the Simugan Beef-Cattle Farm Simulator. IEEE Latin America Transactions, 2022, 20, 162-170.	1.6	0
114	Mobile Agents Meet Web Services. , 0, , 98-121.		0