Zhijian Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3642378/publications.pdf

Version: 2024-02-01

117453 182168 3,454 117 34 51 citations h-index g-index papers 117 117 117 3061 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	p38 activation and viral infection. Expert Reviews in Molecular Medicine, 2022, 24, e4.	1.6	9
2	Angiotensin II Type I Receptor (AT1R): The Gate towards COVID-19-Associated Diseases. Molecules, 2022, 27, 2048.	1.7	38
3	Identification of an arthropod molecular target for plant-derived natural repellents. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118152119.	3.3	5
4	The Pathophysiology of Long COVID throughout the Renin-Angiotensin System. Molecules, 2022, 27, 2903.	1.7	44
5	Highly biocompatible and recyclable biomimetic nanoparticles for antibiotic-resistant bacteria infection. Biomaterials Science, 2021, 9, 826-834.	2.6	28
6	Capivasertib restricts SARS-CoV-2 cellular entry: a potential clinical application for COVID-19. International Journal of Biological Sciences, 2021, 17, 2348-2355.	2.6	31
7	Different pharmacological properties between scorpion toxin BmKcug2 and its degraded analogs highlight the diversity of K+ channel blockers from thermally processed scorpions. International Journal of Biological Macromolecules, 2021, 178, 143-153.	3.6	3
8	Scorpion Toxin-potassium Channel Interaction Law and its Applications. Venoms and Toxins, 2021, 1, 15-26.	0.3	1
9	Editorial: Venoms, Animal and Microbial Toxins. Frontiers in Pharmacology, 2021, 12, 706573.	1.6	O
10	Tick peptides evoke itch by activating MrgprC11/MRGPRX1 to sensitize TRPV1 in pruriceptors. Journal of Allergy and Clinical Immunology, 2021, 147, 2236-2248.e16.	1.5	25
11	Molecular Cloning and Functional Identification of the Antimicrobial Peptide Gene Ctri9594 from the Venom of the Scorpion Chaerilus tricostatus. Antibiotics, 2021, 10, 896.	1.5	3
12	BmK86-P1, a New Degradation Peptide with Desirable Thermostability and Kv1.2 Channel-Specific Activity from Traditional Chinese Scorpion Medicinal Material. Toxins, 2021, 13, 610.	1.5	4
13	The rapid development of the first instar telson with venom secretion highlights the remarkable survival ability of scorpions. Toxicon, 2021, 200, 198-202.	0.8	2
14	Counter-Regulatory Renin-Angiotensin System: An Important Line of Research to Understand and Limit the Severity of COVID-19. Infectious Disorders - Drug Targets, 2021, 21, .	0.4	9
15	ML-SA1 and SN-2 inhibit endocytosed viruses through regulating TRPML channel expression and activity. Antiviral Research, 2021, 195, 105193.	1.9	7
16	The Kv1.3 ion channel acts as a host factor restricting viral entry. FASEB Journal, 2021, 35, e20995.	0.2	0
17	The Renin-Angiotensin System: A Key Role in SARS-CoV-2-Induced COVID-19. Molecules, 2021, 26, 6945.	1.7	41
18	ImKTx96, a peptide blocker of the Kv1.2 ion channel from the venom of the scorpion Isometrus maculates. Peptides, 2020, 123, 170172.	1.2	1

#	Article	IF	CITATIONS
19	Purlisin, a toxinâ€like defensin derived from clinical pathogenic fungus <i>Purpureocillium lilacinum</i> with both antimicrobial and potassium channel inhibitory activities. FASEB Journal, 2020, 34, 15093-15107.	0.2	5
20	Virus-induced p38 MAPK activation facilitates viral infection. Theranostics, 2020, 10, 12223-12240.	4.6	65
21	Pharmacological Effects of a Novel Bradykinin-Related Peptide (RR-18) from the Skin Secretion of the Hejiang Frog (Ordorrana hejiangensis) on Smooth Muscle. Biomedicines, 2020, 8, 225.	1.4	3
22	ML-SA1, a selective TRPML agonist, inhibits DENV2 and ZIKV by promoting lysosomal acidification and protease activity. Antiviral Research, 2020, 182, 104922.	1.9	24
23	Counter-regulatory â€ [~] Renin-Angiotensin' System-based Candidate Drugs to Treat COVID-19 Diseases in SARS-CoV-2-infected Patients. Infectious Disorders - Drug Targets, 2020, 20, 407-408.	0.4	49
24	SARS-CoV-2 & Developments. Infectious Disorders - Drug Targets, 2020, 20, 348-349.	0.4	31
25	Point of view: Should COVID-19 patients be supplemented with vitamin D?. Maturitas, 2020, 140, 24-26.	1.0	33
26	Topology, Antiviral Functional Residues and Mechanism of IFITM1. Viruses, 2020, 12, 295.	1.5	12
27	Neurological, Cognitive, and Behavioral Disorders during <scp>COVID</scp> â€19: The Nitric Oxide Track. Journal of the American Geriatrics Society, 2020, 68, 1922-1923.	1.3	9
28	Ion channel modulation by scorpion hemolymph and its defensin ingredients highlights origin of neurotoxins in telson formed in Paleozoic scorpions. International Journal of Biological Macromolecules, 2020, 148, 351-363.	3.6	6
29	Inhibitory Activity of a Scorpion Defensin BmKDfsin3 against Hepatitis C Virus. Antibiotics, 2020, 9, 33.	1.5	22
30	Thermostable potassium channel-inhibiting neurotoxins in processed scorpion medicinal material revealed by proteomic analysis: Implications of its pharmaceutical basis in traditional Chinese medicine. Journal of Proteomics, 2019, 206, 103435.	1.2	10
31	Diverse Structural Features of Potassium Channels Characterized by Scorpion Toxins as Molecular Probes. Molecules, 2019, 24, 2045.	1.7	22
32	A scorpion venom peptide Ev37 restricts viral late entry by alkalizing acidic organelles. Journal of Biological Chemistry, 2019, 294, 182-194.	1.6	31
33	Defensins, a novel type of animal toxin-like potassium channel inhibitor. Toxicon, 2019, 157, 101-105.	0.8	11
34	Expression of recombinant \hat{l} ±-toxin BmKM9 from scorpion Buthus martensii Karsch and its functional characterization on sodium channels. Peptides, 2018, 99, 153-160.	1.2	16
35	The Scorpion Venom Peptide Smp76 Inhibits Viral Infection by Regulating Type-I Interferon Response. Virologica Sinica, 2018, 33, 545-556.	1.2	24
36	Therapeutic Potential of a Scorpion Venom-Derived Antimicrobial Peptide and Its Homologs Against Antibiotic-Resistant Gram-Positive Bacteria. Frontiers in Microbiology, 2018, 9, 1159.	1.5	34

#	Article	IF	CITATIONS
37	Mouse \hat{I}^2 -Defensin 3, A Defensin Inhibitor of Both Its Endogenous and Exogenous Potassium Channels. Molecules, 2018, 23, 1489.	1.7	5
38	Triintsin, a human pathogenic fungus-derived defensin with broad-spectrum antimicrobial activity. Peptides, 2018, 107, 61-67.	1.2	5
39	Histidine-rich Modification of a Scorpion-derived Peptide Improves Bioavailability and Inhibitory Activity against HSV-1. Theranostics, 2018, 8, 199-211.	4.6	30
40	Pharmacological characterization of human beta-defensins 3 and 4 on potassium channels: Evidence of diversity in beta-defensin-potassium channel interactions. Peptides, 2018, 108, 14-18.	1.2	6
41	St20, a new venomous animal derived natural peptide with immunosuppressive and anti-inflammatory activities. Toxicon, 2017, 127, 37-43.	0.8	10
42	Discovery of three toxin peptides with Kv1.3 channel and IL-2 cytokine-inhibiting activities from Non-Buthidae scorpions, Chaerilus tricostatus and Chaerilus tryznai. Peptides, 2017, 91, 13-19.	1.2	6
43	Molecular characterization and expression analysis of $CS\hat{1}\pm\hat{1}^2$ defensin genes from the scorpion <i>Mesobuthus martensii</i>). Bioscience Reports, 2017, 37, .	1.1	6
44	Treating autoimmune disorders with venom-derived peptides. Expert Opinion on Biological Therapy, 2017, 17, 1065-1075.	1.4	40
45	The Scorpion Toxin Analogue BmKTX-D33H as a Potential Kv1.3 Channel-Selective Immunomodulator for Autoimmune Diseases. Toxins, 2016, 8, 115.	1.5	20
46	A Scorpion Defensin BmKDfsin4 Inhibits Hepatitis B Virus Replication in Vitro. Toxins, 2016, 8, 124.	1.5	25
47	Molecular basis for the toxin insensitivity of scorpion voltage-gated potassium channel MmKv1. Biochemical Journal, 2016, 473, 1257-1266.	1.7	5
48	Identification of two novel Chlorotoxin derivatives CA4 and CTX-23 with chemotherapeutic and anti-angiogenic potential. Scientific Reports, 2016, 6, 19799.	1.6	22
49	K1K8: an Hp1404-derived antibacterial peptide. Applied Microbiology and Biotechnology, 2016, 100, 5069-5077.	1.7	11
50	A Tat-conjugated Peptide Nucleic Acid Tat-PNA-DR Inhibits Hepatitis B Virus Replication In Vitro and In Vivo by Targeting LTR Direct Repeats of HBV RNA. Molecular Therapy - Nucleic Acids, 2016, 5, e295.	2.3	37
51	Human beta-defensin 1, a new animal toxin-like blocker of potassium channel. Toxicon, 2016, 113, 1-6.	0.8	9
52	Scorpion Potassium Channel-blocking Defensin Highlights a Functional Link with Neurotoxin. Journal of Biological Chemistry, 2016, 291, 7097-7106.	1.6	42
53	Toxin acidic residue evolutionary function-guided design of de novo peptide drugs for the immunotherapeutic target, the Kv1.3 channel. Scientific Reports, 2015, 5, 9881.	1.6	26
54	A single conserved basic residue in the potassium channel filter region controls KCNQ1 insensitivity toward scorpion toxins. Biochemistry and Biophysics Reports, 2015, 3, 62-67.	0.7	1

#	Article	IF	Citations
55	Plectasin, First Animal Toxin-Like Fungal Defensin Blocking Potassium Channels through Recognizing Channel Pore Region. Toxins, 2015, 7, 34-42.	1.5	27
56	SjAPI-2 is the first member of a new neurotoxin family with Ascaris-type fold and KCNQ1 inhibitory activity. International Journal of Biological Macromolecules, 2015, 79, 504-510.	3.6	11
57	Human αâ€defensins are immuneâ€related Kv1.3 channel inhibitors: new support for their roles in adaptive immunity. FASEB Journal, 2015, 29, 4324-4333.	0.2	23
58	Kv Channel S1-S2 Linker Working as a Binding Site of Human \hat{l}^2 -Defensin 2 for Channel Activation Modulation. Journal of Biological Chemistry, 2015, 290, 15487-15495.	1.6	15
59	Genome-wide analysis of homeobox genes from Mesobuthus martensii reveals Hox gene duplication in scorpions. Insect Biochemistry and Molecular Biology, 2015, 61, 25-33.	1.2	25
60	A p7 Ion Channel-derived Peptide Inhibits Hepatitis C Virus Infection in Vitro. Journal of Biological Chemistry, 2015, 290, 23254-23263.	1.6	5
61	A new Kunitz-type plasmin inhibitor from scorpion venom. Toxicon, 2015, 106, 7-13.	0.8	13
62	Neurotoxin-directed synthesis and in vitro evaluation of Au nanoclusters. RSC Advances, 2015, 5, 29647-29652.	1.7	1
63	Engineering a peptide inhibitor towards the KCNQ1/KCNE1 potassium channel (IKs). Peptides, 2015, 71, 77-83.	1.2	9
64	Endogenous animal toxin-like human \hat{l}^2 -defensin 2 inhibits own K+ channels through interaction with channel extracellular pore region. Cellular and Molecular Life Sciences, 2015, 72, 845-853.	2.4	34
65	Functional characterization of a new non-Kunitz serine protease inhibitor from the scorpion Lychas mucronatus. International Journal of Biological Macromolecules, 2015, 72, 158-162.	3.6	14
66	Functional characterization of two novel scorpion sodium channel toxins from Lychas mucronatus. Toxicon, 2014, 90, 318-325.	0.8	7
67	Overview of Scorpion Species from China and Their Toxins. Toxins, 2014, 6, 796-815.	1.5	31
68	Unusual binding mode of scorpion toxin BmKTX onto potassium channels relies on its distribution of acidic residues. Biochemical and Biophysical Research Communications, 2014, 447, 70-76.	1.0	32
69	Proteomic analysis of the venom from the scorpion Mesobuthus martensii. Journal of Proteomics, 2014, 106, 162-180.	1.2	43
70	Inhibitory activity and mechanism of two scorpion venom peptides against herpes simplex virus type 1. Antiviral Research, 2014, 102, 1-10.	1.9	53
71	BF9, the First Functionally Characterized Snake Toxin Peptide with Kunitz-Type Protease and Potassium Channel Inhibiting Properties. Journal of Biochemical and Molecular Toxicology, 2014, 28, 76-83.	1.4	32
72	Sj7170, a Unique Dual-function Peptide with a Specific α-Chymotrypsin Inhibitory Activity and a Potent Tumor-activating Effect from Scorpion Venom. Journal of Biological Chemistry, 2014, 289, 11667-11680.	1.6	10

#	Article	IF	Citations
73	Kv1.3 potassium channel-blocking toxin Ctri9577, novel gating modifier of Kv4.3 potassium channel from the scorpion toxin family. Biochemical and Biophysical Research Communications, 2014, 444, 406-410.	1.0	11
74	Hp1404, a New Antimicrobial Peptide from the Scorpion Heterometrus petersii. PLoS ONE, 2014, 9, e97539.	1.1	27
75	Expression and characterization of a novel scorpine-like peptide Ev37, from the scorpion Euscorpiops validus. Protein Expression and Purification, 2013, 88, 127-133.	0.6	18
76	Design of histidine-rich peptides with enhanced bioavailability and inhibitory activity against hepatitis C virus. Biomaterials, 2013, 34, 3511-3522.	5.7	36
77	Fusion expression and purification of four disulfide-rich peptides reveals enterokinase secondary cleavage sites in animal toxins. Peptides, 2013, 39, 145-151.	1.2	14
78	Cloning and characterization of a novel Kunitz-type inhibitor from scorpion with unique cysteine framework. Toxicon, 2013, 72, 5-10.	0.8	17
79	Molecular diversity of Chaerilidae venom peptides reveals the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae. Journal of Proteomics, 2013, 89, 1-14.	1.2	59
80	The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods. Nature Communications, 2013, 4, 2602.	5.8	187
81	Notes on the scorpions (Arachnida, Scorpiones) from Xizang with the redescription of Scorpiops jendeki KovaÅ™Ák, 2000 (Scorpiones, Euscorpiidae) fromÁYunnanÁ(China). ZooKeys, 2013, 301, 51-99.	0.5	10
82	Two Conserved Arginine Residues from the SK3 Potassium Channel Outer Vestibule Control Selectivity of Recognition by Scorpion Toxins. Journal of Biological Chemistry, 2013, 288, 12544-12553.	1.6	26
83	SjAPI, the First Functionally Characterized Ascaris-Type Protease Inhibitor from Animal Venoms. PLoS ONE, 2013, 8, e57529.	1.1	35
84	Mucroporin-M1 Inhibits Hepatitis B Virus Replication by Activating the Mitogen-activated Protein Kinase (MAPK) Pathway and Down-regulating HNF4 \hat{l}_{\pm} in Vitro and in Vivo*. Journal of Biological Chemistry, 2012, 287, 30181-30190.	1.6	57
85	Recombinant expression, purification, and characterization of scorpion toxin Bml±TX14. Protein Expression and Purification, 2012, 82, 325-331.	0.6	14
86	Identification of a new specific Kv1.3 channel blocker, Ctri9577, from the scorpion Chaerilus tricostatus. Peptides, 2012, 36, 94-99.	1.2	13
87	StCT2, a new antibacterial peptide characterized from the venom of the scorpion Scorpiops tibetanus. Peptides, 2012, 36, 213-220.	1.2	54
88	Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: Implication for proteome evolution of scorpion venom arsenal. Journal of Proteomics, 2012, 75, 1563-1576.	1.2	96
89	Anti-HIV-1 Activity of a New Scorpion Venom Peptide Derivative Kn2-7. PLoS ONE, 2012, 7, e34947.	1.1	59
90	Antibacterial Activity and Mechanism of a Scorpion Venom Peptide Derivative In Vitro and In Vivo. PLoS ONE, 2012, 7, e40135.	1.1	79

#	Article	IF	Citations
91	ImKTx88, a novel selective Kv1.3 channel blocker derived from the scorpion Isometrus maculates. Toxicon, 2011, 57, 348-355.	0.8	24
92	Ctriporin, a New Anti-Methicillin-Resistant Staphylococcus aureus Peptide from the Venom of the Scorpion Chaerilus tricostatus. Antimicrobial Agents and Chemotherapy, 2011, 55, 5220-5229.	1.4	57
93	A new natural α-helical peptide from the venom of the scorpion Heterometrus petersii kills HCV. Peptides, 2011, 32, 11-19.	1.2	68
94	Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides, 2011, 32, 1518-1525.	1.2	113
95	Synthesis of Highly Luminescent and Anion-Exchangeable Cerium-Doped Layered Yttrium Hydroxides for Sensing and Photofunctional Applications. Advanced Functional Materials, 2011, 21, 4388-4396.	7.8	65
96	ImKTx1, a new Kv1.3 channel blocker with a unique primary structure. Journal of Biochemical and Molecular Toxicology, 2011 , 25 , 244 - 251 .	1.4	25
97	SdPI, The First Functionally Characterized Kunitz-Type Trypsin Inhibitor from Scorpion Venom. PLoS ONE, 2011, 6, e27548.	1.1	53
98	The scorpions of Yunnan (China): updated identification key, new record, and distributions (Arachnida: Scorpiones). ZooKeys, 2011, 82, 1-33.	0.5	11
99	Neurotoxin-conjugated upconversion nanoprobes for direct visualization ofÂtumors under near-infrared irradiation. Biomaterials, 2010, 31, 8724-8731.	5.7	109
100	Molecular diversity of toxic components from the scorpion <i>Heterometrus petersii</i> venom revealed by proteomic and transcriptome analysis. Proteomics, 2010, 10, 2471-2485.	1.3	89
101	Proteinâ^'Protein Recognition Control by Modulating Electrostatic Interactions. Journal of Proteome Research, 2010, 9, 3118-3125.	1.8	32
102	BmKCT toxin inhibits glioma proliferation and tumor metastasis. Cancer Letters, 2010, 291, 158-166.	3.2	55
103	Cloning and functional characterization of a new antimicrobial peptide gene StCT1 from the venom of the scorpion Scorpiops tibetanus. Peptides, 2010, 31, 22-26.	1.2	36
104	Imcroporin, a New Cationic Antimicrobial Peptide from the Venom of the Scorpion <i>Isometrus maculates</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 3472-3477.	1.4	83
105	Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal. BMC Genomics, 2009, 10, 290.	1.2	84
106	Molecular cloning and functional identification of a new K+ channel blocker, LmKTx10, from the scorpion Lychas mucronatus. Peptides, 2009, 30, 675-680.	1.2	17
107	Molecular Information of Charybdotoxin Blockade in the Large Conductance Calcium-activated Potassium Channel. Journal of Chemical Information and Modeling, 2009, 49, 1831-1838.	2.5	24
108	Molecular basis of inhibitory peptide maurotoxin recognizing Kv1.2 channel explored by ZDOCK and molecular dynamic simulations. Proteins: Structure, Function and Bioinformatics, 2008, 70, 844-854.	1.5	55

#	Article	IF	CITATION
109	Mucroporin, the First Cationic Host Defense Peptide from the Venom of <i>Lychas mucronatus </i> Antimicrobial Agents and Chemotherapy, 2008, 52, 3967-3972.	1.4	84
110	Molecular cloning and electrophysiological studies on the first K+ channel toxin (LmKTx8) derived from scorpion Lychas mucronatus. Peptides, 2007, 28, 2306-2312.	1.2	18
111	Cloning and characterization of BmK86, a novel K+-channel blocker from scorpion venom. Biochemical and Biophysical Research Communications, 2007, 360, 728-734.	1.0	26
112	Interaction Simulation of hERG K+Channel with Its Specific BeKm-1 Peptide:Â Insights into the Selectivity of Molecular Recognition. Journal of Proteome Research, 2007, 6, 611-620.	1.8	53
113	Adaptive Evolution after Gene Duplication in α-KT × 14 Subfamily from Buthus martensii Karsch. IUBMB Life, 2005, 57, 513-521.	1.5	8
114	Simulation of the Interaction Between ScyTx and Small Conductance Calcium-Activated Potassium Channel by Docking and MM-PBSA. Biophysical Journal, 2004, 87, 105-112.	0.2	61
115	Expression, purification and functional characterization of a recombinant scorpion venom peptide BmTXK \hat{l}^2 . Peptides, 2003, 24, 187-192.	1.2	32
116	Does MMLV-RT lacking RNase H activity have the capability of switching templates during reverse transcription?. FEBS Letters, 2002, 520, 185-185.	1.3	5
117	A naturally occurring non-coding fusion transcript derived from scorpion venom gland: implication for the regulation of scorpion toxin gene expression. FEBS Letters, 2001, 508, 241-244.	1.3	6