Michal P Krompiec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3642177/publications.pdf

Version: 2024-02-01

39 papers 1,065 citations

394421 19 h-index 32 g-index

40 all docs

40 docs citations

40 times ranked

1699 citing authors

#	Article	IF	CITATIONS
1	Meta-analysis: the molecular organization of non-fullerene acceptors. Materials Horizons, 2020, 7, 1062-1072.	12.2	38
2	Using Deep Machine Learning to Understand the Physical Performance Bottlenecks in Novel Thinâ€Film Solar Cells. Advanced Functional Materials, 2020, 30, 1907259.	14.9	36
3	Gap variability upon packing in organic photovoltaics. PLoS ONE, 2020, 15, e0234115.	2.5	O
4	How Does Polymorphism Affect the Interfacial Charge-Transfer States in Organic Photovoltaics?. Journal of Physical Chemistry C, 2019, 123, 25585-25595.	3.1	2
5	4,5-Diazafluorene co-oligomers as electron-deficient light-emitting materials and selective fluorescence sensors for mercury(<scp>ii</scp>) cations. Journal of Materials Chemistry C, 2018, 6, 3762-3773.	5 . 5	19
6	3,4-Phenylenedioxythiophenes (PheDOTs) functionalized with electron-withdrawing groups and their analogs for organic electronics. Journal of Materials Chemistry C, 2018, 6, 3743-3756.	5. 5	15
7	Insights into the Charge-Transfer Mechanism of Organic Photovoltaics: Effect of Domain Size. Journal of Physical Chemistry C, 2018, 122, 17024-17034.	3.1	13
8	Linear-scaling density functional simulations of the effect of crystallographic structure on the electronic and optical properties of fullerene solvates. Physical Chemistry Chemical Physics, 2017, 19, 5617-5628.	2.8	13
9	Effect of Polymerization Statistics on the Electronic Properties of Copolymers for Organic Photovoltaics. Journal of Physical Chemistry C, 2017, 121, 2529-2538.	3.1	11
10	Solar Trees: First Largeâ€Scale Demonstration of Fully Solution Coated, Semitransparent, Flexible Organic Photovoltaic Modules. Advanced Science, 2016, 3, 1500342.	11.2	204
11	Charge Transfer Dynamics in Donor–Acceptor Complexes between a Conjugated Polymer and Fluorene Acceptors. Journal of Physical Chemistry C, 2014, 118, 30291-30301.	3.1	26
12	Polyazomethine with vinylene and phenantridine moieties in the main chain: Synthesis, characterization, opto(electrical) properties and theoretical calculations. High Performance Polymers, 2012, 24, 319-330.	1.8	3
13	Synthesis, materials characterization and opto(electrical) properties of unsymmetrical azomethines with benzothiazole core. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 97, 546-555.	3.9	46
14	New low band gap compounds comprised of naphthalene diimide and imine units. Synthetic Metals, 2012, 162, 543-553.	3.9	19
15	An isomerizationâ€"1,3-dipolar cycloaddition tandem reaction towards the synthesis of 3-aryl-4-methyl-5-O-substituted isoxazolines from O-allyl compounds. Tetrahedron, 2012, 68, 6018-6031.	1.9	20
16	Synthesis, Structure, and Explosive Properties of a New Trinitrate Derivative of an Unexpected Condensation Product of Nitromethane with Glyoxal. Propellants, Explosives, Pyrotechnics, 2012, 37, 261-266.	1.6	6
17	New glass forming triarylamine based azomethines as a hole transport materials: Thermal, optical and electrochemical properties. Optical Materials, 2012, 34, 1333-1346.	3.6	32
18	Polymethacrylates with anthryl and carbazolyl groups prepared by atom transfer radical polymerization. Polymer Journal, 2011, 43, 448-454.	2.7	11

#	Article	IF	CITATIONS
19	Characterization, liquid crystalline behavior, optical and electrochemical study of new aliphatic–aromatic polyimide with naphthalene and perylene subunits. Synthetic Metals, 2011, 161, 1660-1670.	3.9	25
20	New naphthalene diimide-based compounds containing triarylamine units and imine linkages: Thermal, optical and electrochemical properties. Synthetic Metals, 2011, 161, 2268-2279.	3.9	31
21	Characterization, liquid crystalline behavior, electrochemical and optoelectrical properties of new poly(azomethine)s and a poly(imide) with siloxane linkages. Optical Materials, 2011, 34, 61-74.	3.6	26
22	An electrochromic diquat-quaterthiophene alternating copolymer: A polythiophene with a viologen-like moiety in the main chain. Electrochimica Acta, 2011, 56, 8108-8114.	5.2	17
23	A cross-linked conjugated metallopolymer comprised of bisaxially coordinated ruthenium tetra-t-butyl phthalocyanine connected by quaterthiophene linkers. Electrochimica Acta, 2011, 56, 6824-6830.	5.2	11
24	Synthesis, spectroscopic investigation, structural characterization and DFT calculation of the complexes [ReX2(N2COPh)(4-PhPyr)(PPh3)2] (X=Cl,Br). Polyhedron, 2010, 29, 2629-2636.	2.2	2
25	Synthesis of 5-aminoisoxazolines from N-allyl compounds and nitrile oxides via tandem isomerization-1,3-dipolar cycloaddition. Tetrahedron, 2010, 66, 5972-5981.	1.9	28
26	New thermotropic azomethine–naphthalene diimides for optoelectronic applications. Synthetic Metals, 2010, 160, 2208-2218.	3.9	29
27	A new method for the synthesis of mixed orthoesters from O-allyl acetals. Tetrahedron Letters, 2009, 50, 1193-1195.	1.4	10
28	Transition Metals for Conjugation of Polyunsaturated Acids and their Esters. Current Organic Chemistry, 2009, 13, 896-913.	1.6	9
29	A selective convenient ruthenium-mediated synthesis of mixed acetals. Journal of Molecular Catalysis A, 2008, 290, 15-22.	4.8	8
30	Double bond migration in N-allylic systems catalyzed by transition metal complexes. Coordination Chemistry Reviews, 2008, 252, 1819-1841.	18.8	107
31	Synthesis and electropolymerization of 3,5-dithienylpyridines, their complexes and N-methylpyridinium cations. Synthetic Metals, 2008, 158, 831-838.	3.9	17
32	New catalytic systems for coupling of dihalogenopyridines and 5,5″-dibromo-2,2′:6′,2″-terpyridine with 5-bromo-2-trialkylstannylpyridines and 2-trialkylstannylthiophenes. Catalysis Communications, 2007, 8, 1457-1462.	3.3	9
33	Synthesis of perrhenic acid using ion exchange method. Hydrometallurgy, 2007, 89, 289-296.	4.3	20
34	The role of the functional group in double bond migration in allylic systems catalysed by ruthenium hydride complexes. Journal of Molecular Catalysis A, 2006, 253, 132-146.	4.8	44
35	Highly selective isomerization of N-allylamines catalyzed by ruthenium and rhodium complexes. Journal of Molecular Catalysis A, 2005, 237, 17-25.	4.8	22
36	Highly selective isomerization of N-allylamides catalyzed by ruthenium and rhodium complexes. Journal of Molecular Catalysis A, 2005, 225, 91-101.	4.8	33

3

#	Article	IF	CITATIONS
37	Highly Selective Isomerization of N-Allylamides and N-Allylamines ChemInform, 2004, 35, no.	0.0	0
38	Highly selective isomerization of N-allylamides and N-allylamines. Tetrahedron Letters, 2004, 45, 5257-5261.	1.4	63
39	Isomerisation of N-allyl-N-arylethanamides catalysed by ruthenium complexes. Journal of Molecular Catalysis A, 2002, 189, 169-185.	4.8	40