Andrew P Yankovskii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3642053/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of the thermoelastic characteristics of spatially reinforced fibrous media in the case of general anisotropy of their components. Mechanics of Composite Materials, 2010, 46, 451-460.	1.4	26
2	Constructing Yield Loci for Rigid-Plastic Reinforced Plates Considering the 2D Stress State in Fibers. Mechanics of Composite Materials, 2019, 54, 697-718.	1.4	11
3	Rational Profiling of Reinforced Rotating Disks. Mechanics of Composite Materials, 2002, 38, 1-16.	1.4	10
4	Elastic–Plastic Deformation of Flexible Plates With Spatial Reinforcement Structures. Journal of Applied Mechanics and Technical Physics, 2018, 59, 1058-1066.	0.5	9
5	Structural model for rigid-plastic yielding behavior of angle-ply reinforced composites of materials with different properties in tension and compression considering 2D stress state in all components. Mechanics of Advanced Materials and Structures, 2021, 28, 2151-2162.	2.6	9
6	Modeling the Creep of Rib-Reinforced Composite Media Made of Nonlinear Hereditary Phase Materials. 1. Structural Model. Mechanics of Composite Materials, 2015, 51, 1-16.	1.4	8
7	Analysis of the secondary anisotropic creep of layered metal-composite plates with account of their weakened resistance to the transverse shear 1. Structural models. Mechanics of Composite Materials, 2012, 48, 1-14.	1.4	7
8	Equal-Stressed Reinforcement of Metal-Composite Plates in Transverse Bending at Steady-State Creep with Account of Weakened Resistance to In-Plane Shears. Mechanics of Composite Materials, 2016, 52, 1-16.	1.4	7
9	Refined Deformation Model for Metal-Composite Plates of Regular Layered Structure in Bending Under Conditions of Steady-State Creep. Mechanics of Composite Materials, 2017, 52, 715-732.	1.4	7
10	Viscoplastic deformation of reinforced plates with varying thickness under explosive loads. International Applied Mechanics, 2008, 44, 188-199.	0.6	6
11	Viscoplastic dynamics of metallic composite shells of layered-fibrous structure under the action of loads of explosive type. I. Statement of the problem and method for solution. Journal of Mathematical Sciences, 2013, 192, 623-633.	0.4	6
12	Piecewise-Linear Yield Loci of Angle-Ply Reinforced Medium of Different-Resisting Rigid-Plastic Materials at 2D Stress State. Mechanics of Solids, 2020, 55, 1235-1252.	0.7	6
13	Applying the Explicit Time Central Difference Method for Numerical Simulation of the Dynamic Behavior of Elastoplastic Flexible Reinforced Plates. Journal of Applied Mechanics and Technical Physics, 2017, 58, 1223-1241.	0.5	5
14	Yield Loci of Reinforced Plates Made from Rigid-Plastic Unequiresistant Materials Considering the Two-Dimensional Stress State in Fibers I. Unidirectional Reinforcement. Mechanics of Composite Materials, 2020, 55, 699-714.	1.4	5
15	Title is missing!. Mechanics of Composite Materials, 2002, 38, 525-538.	1.4	4
16	Deformation behavior of rotating disks with thin high-modulus coatings. Strength of Materials, 2007, 39, 246-256.	0.5	4
17	Constructing the governing equations for a layered composite of regular structure within the limits of the theory of asymmetric elasticity on the basis of energy criteria of equivalence. Mechanics of Composite Materials, 2009, 45, 1-10.	1.4	4
18	A Refined Model of Stationary Heat Transfer in Composite Bodies Reinforced with Pipes Containing a Heat-Transfer Fluid Moving in Laminar Flow Conditions. Mechanics of Composite Materials, 2014, 50, 83-94.	1.4	4

#	Article	IF	CITATIONS
19	Refined Model of Heat Transfer in Composite Bodies Reinforced with Tubes with a Liquid Heat-Transfer Agent Moving in a Developed Turbulent Regime. Journal of Engineering Physics and Thermophysics, 2015, 88, 968-977.	0.6	4
20	Deflections of uniformly stressed reinforced plates with account for their weakened resistance to the transverse shear. Journal of Applied Mechanics and Technical Physics, 2017, 58, 173-181.	0.5	4
21	Modeling the Elasto-Visco-Plastic Bending of Spatially Reinforced Plates Accounting for the Strain-Rate Sensitivity of Composition Components. Mechanics of Solids, 2019, 54, 832-852.	0.7	4
22	Load-bearing capacity of rigid-plastic reinforced shallow shells and plates. Mechanics of Advanced Materials and Structures, 2022, 29, 5651-5665.	2.6	4
23	Title is missing!. Mechanics of Composite Materials, 2000, 36, 481-491.	1.4	3
24	Thermoelastoplastic Bending of Complexly Reinforced Plates. Mechanics of Composite Materials, 2005, 41, 477-496.	1.4	3
25	Equal-stressed reinforcement of metal-composite plates with fibers of constant cross section in steady-state creep. Mechanics of Composite Materials, 2008, 44, 9-24.	1.4	3
26	Determination of the thermoelastic characteristics of spatially reinforced fibrous media in the case of general anisotropy of their components. Mechanics of Composite Materials, 2011, 46, 659-666.	1.4	3
27	Analysis of the secondary anisotropic creep of layered metal-composite plates with account of their weakened resistance to the transverse shear 2. Model of deformation. Mechanics of Composite Materials, 2012, 48, 193-208.	1.4	3
28	Steady-state creep of bent reinforced metal-composite plates with consideration of their reduced resistance to transverse shear. 1. Deformation model. Journal of Applied Mechanics and Technical Physics, 2014, 55, 506-514.	0.5	3
29	Structural model for spatially and flatly reinforced medium of rigid-plastic materials considering three-dimensional stress state in all components. Mechanics of Advanced Materials and Structures, 2022, 29, 2668-2679.	2.6	3
30	Rational Profiling of Equal-Stress-Reinforced Plates Subjected to Elastoplastic Transverse Bending. Mechanics of Composite Materials, 2003, 39, 205-220.	1.4	2
31	Elasticoplastic bending of rectangular plates reinforced with fibers of constant cross section. Mechanics of Composite Materials, 2005, 41, 9-22.	1.4	2
32	Thermoelastoplastic deformation of complexly reinforced shells. Mechanics of Composite Materials, 2006, 42, 491-506.	1.4	2
33	Asymptotic analysis of the solution of the problem of nonstationary heat conduction of laminar anisotropic inhomogeneous plates for small biot numbers on faces. Journal of Engineering Physics and Thermophysics, 2008, 81, 1076-1087.	0.6	2
34	Steady-state creep of complexly reinforced shallow metal-composite shells. Mechanics of Composite Materials, 2010, 46, 89-100.	1.4	2
35	Simulation of the steady-state creep of cross-reinforced metal composites with account of anisotropy of phase materials 1. The case of 3D reinforcement. Mechanics of Composite Materials, 2013, 49, 251-260.	1.4	2
36	Asymptotic Analysis of Solution of a Nonlinear Problem of Nonstationary Heat Conduction of Lamellar Anisotropic Inhomogeneous Shells with Mixed Boundary Conditions on Faces. Journal of Engineering Physics and Thermophysics, 2013, 86, 1344-1354.	0.6	2

#	Article	IF	CITATIONS
37	Steady-state creep of bent reinforced metal-composite plates with consideration of their reduced resistance to transverse shear 2. Analysis of calculated results. Journal of Applied Mechanics and Technical Physics, 2014, 55, 701-708.	0.5	2
38	Asymptotic analysis of solution to the nonlinear problem of non-stationary heat conductivity of layered anisotropic non-uniform shells at low Biot numbers on the front surfaces. Thermophysics and Aeromechanics, 2017, 24, 285-302.	0.5	2
39	Viscoelastic—Plastic Deformation of Plates with Spatial Reinforcement Structures. Journal of Applied Mechanics and Technical Physics, 2020, 61, 101-113.	0.5	2
40	Modeling of heat transfer in composite bodies reinforced with tubes with swirlers through which the twisted liquid heat-transfer agent moves in turbulent regime. I. Statement of the problem. , 2020, 63, .		2
41	Modeling of thermoelastoplastic deformation of reinforced plates. I. Structural model of the reinforced medium. , 2021, 64, .		2
42	Design of Plane Thermoelastic Composite Constructions with Uniformly Stressed Reinforcement. Journal of Applied Mechanics and Technical Physics, 2001, 42, 376-385.	0.5	1
43	Title is missing!. Strength of Materials, 2001, 33, 303-317.	0.5	1
44	The effect of reinforcement structure and profile shape of curved composite disks on their limiting rotational speed. Strength of Materials, 2007, 39, 128-137.	0.5	1
45	Viscoplastic dynamics of isotropic plates of variable thickness under explosive loading. Journal of Applied Mechanics and Technical Physics, 2007, 48, 250-259.	0.5	1
46	Modeling of heat conduction processes in layered hybrid composites of regular structure with slit-like layers. Journal of Engineering Physics and Thermophysics, 2010, 83, 281-290.	0.6	1
47	Modeling of heat-conduction processes in tube-spatially-reinforced hybrid composites with an arbitrary anisotropy of the materials of the composition components. Journal of Engineering Physics and Thermophysics, 2011, 84, 926-939.	0.6	1
48	Simulation of the steady-state creep of crossreinforced metal composites with account of anisotropy of phase materials 2. The case of 2D reinforcement. Mechanics of Composite Materials, 2013, 49, 359-368.	1.4	1
49	Modeling the Creep of Rib-Reinforced Composite Media Made from Nonlinear Hereditary Phase Materials 2. Verification of the Model. Mechanics of Composite Materials, 2015, 51, 169-176.	1.4	1
50	Study of the Spectral Stability of Generalized Runge–Kutta Methods in the Initial Problem for the Transfer Equation. Journal of Mathematical Sciences, 2016, 215, 196-217.	0.4	1
51	Study on the Unsteady Creep of Composite Beams with an Irregular Laminar Fibrous Structure Made from Nonlinear Hereditary Materials. Mechanics of Composite Materials, 2017, 53, 457-470.	1.4	1
52	Analysis of the Spectral Stability of the Generalized Runge–Kutta Methods Applied to Initial-Boundary-Value Problems for Equations of the Parabolic Type. I. Explicit Methods. Journal of Mathematical Sciences, 2018, 229, 227-240.	0.4	1
53	Steady-State Creep of Metal-Composite Sandwich Panels with Thin Reinforced Bearing Layers. Mechanics of Composite Materials, 2019, 55, 421-434.	1.4	1
54	MODELING OF MECHANICAL BEHAVIOR OF CROSS-REINFORCED METAL COMPOSITES UNDER THE CONDITIONS OF STEADY-STATE CREEP. Composites: Mechanics, Computations, Applications, 2011, 2, 337-361.	0.3	1

#	Article	IF	CITATIONS
55	A Refined Model of Viscoelastic-Plastic Deformation of Flexible Plates with Spatial Reinforcement Structures. Journal of Applied Mechanics and Technical Physics, 2021, 62, 1045-1062.	0.5	1
56	Heat Conduction of Structures with a System of Capillary Tubes. Journal of Mathematical Sciences, 2002, 109, 1321-1337.	0.4	0
57	Title is missing!. Journal of Applied Mechanics and Technical Physics, 2003, 44, 415-424.	0.5	Ο
58	Equal-Stress Reinforcement of Elastoplastic Momentless Shells with a Protective Coating under Thermal and Force Loadings. Mechanics of Composite Materials, 2003, 39, 415-432.	1.4	0
59	On the influence of the reinforcement structure of fibrous shells of revolution on the heat conduction in them. Journal of Engineering Physics and Thermophysics, 2006, 79, 360-371.	0.6	Ο
60	Determining the effective thermoelastic characteristics of regularly laminated composite in the asymmetric theory of elasticity. International Applied Mechanics, 2009, 45, 1206-1213.	0.6	0
61	Solution of the stationary problem of heat conduction of laminated anisotropic inhomogeneous plates by the method of initial functions. Journal of Mathematical Sciences, 2009, 162, 274-295.	0.4	Ο
62	Determining the optimal parameters of thin rigid plate coatings. Russian Journal of Non-Ferrous Metals, 2009, 50, 182-188.	0.6	0
63	Asymptotic solution of the problem of nonstationary thermal conductivity of laminated anisotropic inhomogeneous shells. Journal of Mathematical Sciences, 2010, 168, 718-738.	0.4	0
64	Identification of reinforcement structures of composite constructions from the results of thermophysical experiments on steady-state temperature fluctuations. Journal of Engineering Physics and Thermophysics, 2011, 84, 348-358.	0.6	0
65	Identification of structures of reinforcement of thin-slab composite structures on the basis of experimental data on the stationary distribution of temperature. Journal of Mathematical Sciences, 2011, 174, 415-424.	0.4	0
66	Determination of the effective coefficients of thermal conductivity of rib-reinforced polyfoams on the basis of the energy criterion of equivalence. Journal of Mathematical Sciences, 2012, 183, 261-273.	0.4	0
67	Viscoplastic dynamics of metal-composite shells with layered fibrous structures under the action of explosion-type loads. II. Discussion of the numerical results. Journal of Mathematical Sciences, 2013, 194, 245-256.	0.4	Ο
68	A Refined Model of Stationary Heat Transfer in Composite Bodies Reinforced With Pipes Containing a Heat-Transfer Fluid Moving in Laminar Flow Conditions. 2. A Model Problem**. Mechanics of Composite Materials, 2014, 50, 149-154.	1.4	0
69	Refinement of the Upper and Lower Bounds of Effective Heat Conductivity Coefficients of Rib-Reinforced Composite Media. Journal of Engineering Physics and Thermophysics, 2016, 89, 1014-1023.	0.6	Ο
70	A Heuristic Approach to the Determination of the Effective Thermal Conductivity Coefficients of Biperiodic Composite Media. Journal of Engineering Physics and Thermophysics, 2016, 89, 1574-1581.	0.6	0
71	Practical Stability of the "Cross―Scheme in the Numerical Integration of Dynamic Equations for Flexible Thin-Walled Structural Elements Obeying the Hypotheses of the Timoshenko Theory. Journal of Mathematical Sciences, 2017, 222, 81-102.	0.4	0
72	A refined model of longitudinally reinforced metal composite wall-beams under steady creep conditions. Mathematical Models and Computer Simulations, 2017, 9, 248-261.	0.5	0

#	Article	IF	CITATIONS
73	Influence of Thermal Action on the Effect of Increasing the Carrying Capacity of Rotating Disks with Thin High-Modulus Coatings. Journal of Engineering Physics and Thermophysics, 2018, 91, 999-1005.	0.6	0
74	Refined Model of the Dynamic Behavior of Flexible Reinforced Shallow Shells Made from Nonlinear Elastic Materials. Mechanics of Composite Materials, 2018, 54, 499-512.	1.4	0
75	STEADY-STATE CREEPING OF LAMINATED METAL-COMPOSITE PLATES WITH COMPLEX REINFORCED STRUCTURES IN TRANSVERSE-LONGITUDINAL BENDING. Composites: Mechanics, Computations, Applications, 2010, 1, 135-168.	0.3	0
76	Modeling the Viscoelastoplastic Deformation of Flexible Reinforced Plates with Weak Resistance to Transverse Shear. Journal of Applied Mechanics and Technical Physics, 2020, 61, 1089-1106.	0.5	0
77	Modeling the inelastic dynamic behavior of cylindrical reinforced shells taking into account the dependence of plastic properties on the strain rate. Konstrukcii Iz Kompozicionnyh Materialov, 2022, , 19-28.	0.1	0
78	Mathematical modeling the rigid-plastic yielding behavior of fibrous flatly-reinforced composites of anisotropic materials at 2D stress state. Mechanics of Advanced Materials and Structures, 2023, 30, 1692-1702.	2.6	0
79	Simulation of Viscoelastoplastic Behavior of Shallow Shells with Account for Strain Rate of the Material. PrikladnaÅ¢ Mehanika, TehniÄeskaÅ¢ Fizika, 2022, 63, 140-150.	0.0	0