Voon Wee Yong

List of Publications by Citations

Source: https://exaly.com/author-pdf/3640895/voon-wee-yong-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

22,625 87 137 333 h-index g-index citations papers 25,718 348 7.3 7.13 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
333	Metalloproteinases in biology and pathology of the nervous system. <i>Nature Reviews Neuroscience</i> , 2001 , 2, 502-11	13.5	845
332	Matrix metalloproteinases and diseases of the CNS. <i>Trends in Neurosciences</i> , 1998 , 21, 75-80	13.3	556
331	Metalloproteinases: mediators of pathology and regeneration in the CNS. <i>Nature Reviews Neuroscience</i> , 2005 , 6, 931-44	13.5	444
330	The promise of minocycline in neurology. Lancet Neurology, The, 2004, 3, 744-51	24.1	390
329	Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. <i>Brain</i> , 2002 , 125, 1297-308	11.2	373
328	Review: Endocrine disrupting chemicals and immune responses: a focus on bisphenol-A and its potential mechanisms. <i>Molecular Immunology</i> , 2013 , 53, 421-30	4.3	322
327	Idiopathic Parkinson@ disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. <i>Neuroscience Letters</i> , 1986 , 67, 269-74	3.3	315
326	Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. <i>Brain</i> , 2003 , 126, 1628-37	11.2	310
325	Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. <i>Annals of Neurology</i> , 2003 , 53, 731-42	9.4	309
324	Pathophysiology of the brain extracellular matrix: a new target for remyelination. <i>Nature Reviews Neuroscience</i> , 2013 , 14, 722-9	13.5	308
323	Expanding antigen-specific regulatory networks to treat autoimmunity. <i>Nature</i> , 2016 , 530, 434-40	50.4	304
322	Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. <i>Nature Neuroscience</i> , 2004 , 7, 1088-95	25.5	303
321	Interferon beta in the treatment of multiple sclerosis: mechanisms of action. <i>Neurology</i> , 1998 , 51, 682-9	9 6.5	301
320	Inefficient clearance of myelin debris by microglia impairs remyelinating processes. <i>Journal of Experimental Medicine</i> , 2015 , 212, 481-95	16.6	283
319	CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. <i>Journal of Biological Chemistry</i> , 2002 , 277, 49481-7	5.4	283
318	Interferon beta-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. <i>Annals of Neurology</i> , 1996 , 40, 853-63	9.4	266
317	A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. <i>Journal of Neuroscience</i> , 2004 , 24, 1521-9	6.6	255

(2003-2003)

316	Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. <i>Brain</i> , 2003 , 126, 2738-49	11.2	254
315	Matrix metalloproteinase-9/gelatinase B is required for process outgrowth by oligodendrocytes. Journal of Neuroscience, 1999 , 19, 8464-75	6.6	244
314	Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. <i>Brain</i> , 2012 , 135, 1224-36	11.2	238
313	Interleukin-1beta promotes oligodendrocyte death through glutamate excitotoxicity. <i>Annals of Neurology</i> , 2003 , 53, 588-95	9.4	205
312	Differential mechanisms of action of interferon-beta and glatiramer aetate in MS. <i>Neurology</i> , 2002 , 59, 802-8	6.5	205
311	Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. <i>Journal of Neuroscience</i> , 2003 , 23, 11127-35	6.6	201
310	P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. <i>Journal of Neuroscience</i> , 2001 , 21, 7135-42	6.6	196
309	Vulnerability of human neurons to T cell-mediated cytotoxicity. <i>Journal of Immunology</i> , 2003 , 171, 368-	79 .3	182
308	White matter plasticity and enhanced remyelination in the maternal CNS. <i>Journal of Neuroscience</i> , 2007 , 27, 1812-23	6.6	176
307	Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. <i>Annals of Neurology</i> , 2012 , 72, 419-32	9.4	171
306	MMPs in the central nervous system: where the good guys go bad. <i>Seminars in Cell and Developmental Biology</i> , 2008 , 19, 42-51	7·5	170
305	Partial protection from the dopaminergic neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by four different antioxidants in the mouse. <i>Neuroscience Letters</i> , 1985 , 60, 109-14	3.3	169
304	An adverse role for matrix metalloproteinase 12 after spinal cord injury in mice. <i>Journal of Neuroscience</i> , 2003 , 23, 10107-15	6.6	166
303	Central nervous system-initiated inflammation and neurotrophism in trauma: IL-1 beta is required for the production of ciliary neurotrophic factor. <i>Journal of Immunology</i> , 2000 , 165, 2232-9	5.3	165
302	Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. <i>Neuro-Oncology</i> , 2010 , 12, 351-65	1	163
301	Depletion of Ly6G/Gr-1 leukocytes after spinal cord injury in mice alters wound healing and worsens neurological outcome. <i>Journal of Neuroscience</i> , 2009 , 29, 753-64	6.6	159
300	Interleukin-1 is a key regulator of matrix metalloproteinase-9 expression in human neurons in culture and following mouse brain trauma in vivo. <i>Journal of Neuroscience Research</i> , 2000 , 61, 212-24	4.4	158
299	Determinants of human B cell migration across brain endothelial cells. <i>Journal of Immunology</i> , 2003 , 170, 4497-505	5.3	155

298	Attenuation of astroglial reactivity by interleukin-10. <i>Journal of Neuroscience</i> , 1996 , 16, 2945-55	6.6	153
297	Hallervorden-Spatz disease: cysteine accumulation and cysteine dioxygenase deficiency in the globus pallidus. <i>Annals of Neurology</i> , 1985 , 18, 482-9	9.4	149
296	Remyelination therapies: a new direction and challenge in multiple sclerosis. <i>Nature Reviews Drug Discovery</i> , 2017 , 16, 617-634	64.1	146
295	The anchoring protein RACK1 links protein kinase Cepsilon to integrin beta chains. Requirements for adhesion and motility. <i>Journal of Biological Chemistry</i> , 2002 , 277, 22073-84	5.4	145
294	Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. <i>Brain</i> , 2016 , 139, 653-61	11.2	143
293	The benefits and detriments of macrophages/microglia in models of multiple sclerosis. <i>Clinical and Developmental Immunology</i> , 2013 , 2013, 948976		143
292	Taking advantage of the systemic immune system to cure brain diseases. <i>Neuron</i> , 2009 , 64, 55-60	13.9	141
291	Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade. <i>Journal of Neuroscience</i> , 2003 , 23, 4034-43	6.6	141
290	Astrogliosis in the neonatal and adult murine brain post-trauma: elevation of inflammatory cytokines and the lack of requirement for endogenous interferon-gamma. <i>Journal of Neuroscience</i> , 1997 , 17, 3664-74	6.6	139
289	Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. <i>Nature Reviews Drug Discovery</i> , 2019 , 18, 905-922	64.1	137
288	Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. <i>Nature Neuroscience</i> , 2014 , 17, 46-55	25.5	136
287	Biology of adult human microglia in culture: comparisons with peripheral blood monocytes and astrocytes. <i>Journal of Neuropathology and Experimental Neurology</i> , 1992 , 51, 538-49	3.1	135
286	Iron in multiple sclerosis: roles in neurodegeneration and repair. <i>Nature Reviews Neurology</i> , 2014 , 10, 459-68	15	134
285	Inflammation in neurological disorders: a help or a hindrance?. <i>Neuroscientist</i> , 2010 , 16, 408-20	7.6	133
284	Cortical remyelination: a new target for repair therapies in multiple sclerosis. <i>Annals of Neurology</i> , 2012 , 72, 918-26	9.4	132
283	Dynamics of the inflammatory response after murine spinal cord injury revealed by flow cytometry. Journal of Neuroscience Research, 2008 , 86, 1944-58	4.4	129
282	Nigrostriatal dopaminergic neurons remain undamaged in rats given high doses of L-DOPA and carbidopa chronically. <i>Journal of Neurochemistry</i> , 1984 , 43, 990-3	6	127
281	Elevation of matrix metalloproteinases (MMPs) in multiple sclerosis and impact of immunomodulators. <i>Journal of the Neurological Sciences</i> , 2007 , 259, 79-84	3.2	125

280	Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. <i>Annals of Neurology</i> , 2004 , 55, 756	9.4	124
279	Elevated membrane-type matrix metalloproteinases in gliomas revealed by profiling proteases and inhibitors in human cancer cells. <i>Molecular Cancer Research</i> , 2003 , 1, 333-45	6.6	123
278	Depletion of glutathione in brainstem of mice caused by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is prevented by antioxidant pretreatment. <i>Neuroscience Letters</i> , 1986 , 63, 56-60	3.3	122
277	An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination. <i>Nature Communications</i> , 2016 , 7, 11312	17.4	121
276	Oligodendrocytes utilize a matrix metalloproteinase, MMP-9, to extend processes along an astrocyte extracellular matrix. <i>Glia</i> , 1998 , 22, 53-63	9	120
275	Glioblastoma-associated microglia and macrophages: targets for therapies to improve prognosis. <i>Brain</i> , 2017 , 140, 1548-1560	11.2	118
274	A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. <i>Carcinogenesis</i> , 2012 , 33, 312-9	4.6	117
273	Tenascin-C stimulates glioma cell invasion through matrix metalloproteinase-12. <i>Cancer Research</i> , 2006 , 66, 11771-80	10.1	115
272	Glioma invasion in vitro: regulation by matrix metalloprotease-2 and protein kinase C. <i>Clinical and Experimental Metastasis</i> , 1996 , 14, 421-33	4.7	115
271	HIV-1 Tat neurotoxicity is prevented by matrix metalloproteinase inhibitors. <i>Annals of Neurology</i> , 2001 , 49, 230-41	9.4	114
271 270		· ·	114
	2001 , 49, 230-41	· ·	112
270	2001, 49, 230-41 Remyelination after spinal cord injury: is it a target for repair?. <i>Progress in Neurobiology</i> , 2014, 117, 54-7 Trial of Minocycline in a Clinically Isolated Syndrome of Multiple Sclerosis. <i>New England Journal of</i>	72 10.9	112
270 269	2001, 49, 230-41 Remyelination after spinal cord injury: is it a target for repair?. <i>Progress in Neurobiology</i> , 2014, 117, 54-7 Trial of Minocycline in a Clinically Isolated Syndrome of Multiple Sclerosis. <i>New England Journal of Medicine</i> , 2017, 376, 2122-2133 Myelin formation during development of the CNS is delayed in matrix metalloproteinase-9 and -12	7 2 10.9	112
270 269 268	Remyelination after spinal cord injury: is it a target for repair?. <i>Progress in Neurobiology</i> , 2014 , 117, 54-7 Trial of Minocycline in a Clinically Isolated Syndrome of Multiple Sclerosis. <i>New England Journal of Medicine</i> , 2017 , 376, 2122-2133 Myelin formation during development of the CNS is delayed in matrix metalloproteinase-9 and -12 null mice. <i>Journal of Neuroscience</i> , 2006 , 26, 2207-14 Minocycline attenuates T cell and microglia activity to impair cytokine production in T cell-microglia	7 2 10.9 59.2 6.6	112
270 269 268 267	Remyelination after spinal cord injury: is it a target for repair?. <i>Progress in Neurobiology</i> , 2014 , 117, 54-7 Trial of Minocycline in a Clinically Isolated Syndrome of Multiple Sclerosis. <i>New England Journal of Medicine</i> , 2017 , 376, 2122-2133 Myelin formation during development of the CNS is delayed in matrix metalloproteinase-9 and -12 null mice. <i>Journal of Neuroscience</i> , 2006 , 26, 2207-14 Minocycline attenuates T cell and microglia activity to impair cytokine production in T cell-microglia interaction. <i>Journal of Leukocyte Biology</i> , 2005 , 78, 135-43 An elevated matrix metalloproteinase (MMP) in an animal model of multiple sclerosis is protective	7210.9 59.2 6.6	112 111 110
269 268 267 266	Remyelination after spinal cord injury: is it a target for repair? <i>Progress in Neurobiology</i> , 2014 , 117, 54-7 Trial of Minocycline in a Clinically Isolated Syndrome of Multiple Sclerosis. <i>New England Journal of Medicine</i> , 2017 , 376, 2122-2133 Myelin formation during development of the CNS is delayed in matrix metalloproteinase-9 and -12 null mice. <i>Journal of Neuroscience</i> , 2006 , 26, 2207-14 Minocycline attenuates T cell and microglia activity to impair cytokine production in T cell-microglia interaction. <i>Journal of Leukocyte Biology</i> , 2005 , 78, 135-43 An elevated matrix metalloproteinase (MMP) in an animal model of multiple sclerosis is protective by affecting Th1/Th2 polarization. <i>FASEB Journal</i> , 2005 , 19, 1668-70 Interleukin-1 beta is required for the early evolution of reactive astrogliosis following CNS lesion.	7210.9 59.2 6.6 6.5	1112 1111 1100 1100

262	Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. Journal of Neurology, Neurosurgery and Psychiatry, 2015 , 86, 273-9	5.5	105
261	PTEN/MMAC1/TEP1 in signal transduction and tumorigenesis. <i>FEBS Journal</i> , 1999 , 263, 605-11		105
260	Overexpression of 2@@cyclic nucleotide 3@phosphodiesterase in transgenic mice alters oligodendrocyte development and produces aberrant myelination. <i>Molecular and Cellular Neurosciences</i> , 1996 , 7, 453-66	4.8	103
259	The clinical response to minocycline in multiple sclerosis is accompanied by beneficial immune changes: a pilot study. <i>Multiple Sclerosis Journal</i> , 2007 , 13, 517-26	5	102
258	Myeloid cells - targets of medication in multiple sclerosis. <i>Nature Reviews Neurology</i> , 2016 , 12, 539-51	15	101
257	Enhanced Protein Kinase C Activity Correlates with the Growth Rate of Malignant Gliomas in Vitro. <i>Neurosurgery</i> , 1991 , 29, 880-887	3.2	100
256	Protein kinase C activity correlates with the growth rate of malignant gliomas: Part II. Effects of glioma mitogens and modulators of protein kinase C. <i>Neurosurgery</i> , 1992 , 31, 717-24; discussion 724	3.2	98
255	Chemokine-enhanced migration of human peripheral blood mononuclear cells is antagonized by interferon beta-1b through an effect on matrix metalloproteinase-9. <i>Journal of Neuroimmunology</i> , 1997 , 80, 38-46	3.5	96
254	Predominance of Th2 polarization by vitamin D through a STAT6-dependent mechanism. <i>Journal of Neuroinflammation</i> , 2011 , 8, 56	10.1	95
253	Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. <i>Journal of Neuroscience</i> , 2006 , 26, 10281-91	6.6	93
252	Protein Kinase C Activity Correlates with the Growth Rate of Malignant Gliomas. <i>Neurosurgery</i> , 1992 , 31, 717-724	3.2	92
251	Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 179	992-7	91
250	Additive effect of the combination of glatiramer acetate and minocycline in a model of MS. <i>Journal of Neuroimmunology</i> , 2005 , 158, 213-21	3.5	91
249	Harmful and beneficial effects of inflammation after spinal cord injury: potential therapeutic implications. <i>Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn</i> , 2012 , 109, 485-502	3	90
248	Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. <i>Nature Communications</i> , 2020 , 11, 3406	17.4	88
247	Human astrocytes are resistant to Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. <i>Journal of Neuroscience</i> , 2006 , 26, 3299-308	6.6	88
246	Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis. <i>Glia</i> , 2012 , 60, 1145-59	9	87
245	Multiexponential T2 and magnetization transfer MRI of demyelination and remyelination in murine spinal cord. <i>NeuroImage</i> , 2009 , 45, 1173-82	7.9	83

(1990-2014)

244	Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury. <i>Brain</i> , 2014 , 137, 707-23	11.2	81	
243	Differential activation of ERKs to focal adhesions by PKC epsilon is required for PMA-induced adhesion and migration of human glioma cells. <i>Oncogene</i> , 2001 , 20, 7398-407	9.2	80	
242	Glatiramer acetate in combination with minocycline in patients with relapsingremitting multiple sclerosis: results of a Canadian, multicenter, double-blind, placebo-controlled trial. <i>Multiple Sclerosis Journal</i> , 2009 , 15, 1183-94	5	79	
241	Differential proliferative response of human and mouse astrocytes to gamma-interferon. <i>Glia</i> , 1992 , 6, 269-80	9	78	
240	Analysis of the mitochondrial proteome in multiple sclerosis cortex. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2011 , 1812, 630-41	6.9	77	
239	Differing roles for members of the phospholipase A2 superfamily in experimental autoimmune encephalomyelitis. <i>Brain</i> , 2009 , 132, 1221-35	11.2	77	
238	EMMPRIN: a novel regulator of leukocyte transmigration into the CNS in multiple sclerosis and experimental autoimmune encephalomyelitis. <i>Journal of Neuroscience</i> , 2011 , 31, 669-77	6.6	77	
237	Protein kinase C inhibitors suppress cell growth in established and low-passage glioma cell lines. A comparison between staurosporine and tamoxifen. <i>Neurosurgery</i> , 1993 , 33, 495-501; discussion 501	3.2	77	
236	The chemokine stromal cell derived factor-1 (CXCL12) promotes glioma invasiveness through MT2-matrix metalloproteinase. <i>Carcinogenesis</i> , 2005 , 26, 2069-77	4.6	74	
235	A new double labelling immunofluorescence technique for the determination of proliferation of human astrocytes in culture. <i>Journal of Neuroscience Methods</i> , 1987 , 21, 9-16	3	72	
234	Neurodegeneration and neuroprotection in multiple sclerosis and other neurodegenerative diseases. <i>Journal of Neuroimmunology</i> , 2006 , 176, 198-215	3.5	71	
233	Characterization of the early neuroinflammation after spinal cord injury in mice. <i>Journal of Neuropathology and Experimental Neurology</i> , 2007 , 66, 184-95	3.1	71	
232	Effective combination of minocycline and interferon-beta in a model of multiple sclerosis. <i>Journal of Neuroimmunology</i> , 2005 , 165, 83-91	3.5	71	
231	The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics. <i>Brain</i> , 2018 , 141, 1900-1916	11.2	71	
230	Metalloproteinases are enriched in microglia compared with leukocytes and they regulate cytokine levels in activated microglia. <i>Glia</i> , 2007 , 55, 516-26	9	70	
229	Astrocytes attenuate oligodendrocyte death in vitro through an alpha(6) integrin-laminin-dependent mechanism. <i>Glia</i> , 2001 , 36, 281-94	9	69	
228	Matrix metalloproteinase (MMP)-12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. <i>European Journal of Neuroscience</i> , 2005 , 21, 187-96	3.5	68	
227	Inhibition of growth of established human glioma cell lines by modulators of the protein kinase-C system. <i>Journal of Neurosurgery</i> , 1990 , 73, 594-600	3.2	68	

226	Mechanisms of lysophosphatidylcholine-induced demyelination: A primary lipid disrupting myelinopathy. <i>Glia</i> , 2018 , 66, 327-347	9	68
225	Increased invasive capacity of connexin43-overexpressing malignant glioma cells. <i>Journal of Neurosurgery</i> , 2003 , 99, 1039-46	3.2	66
224	Interferon-beta is a potent promoter of nerve growth factor production by astrocytes. <i>Journal of Neurochemistry</i> , 1997 , 69, 939-46	6	66
223	Multi-target-directed phenol-triazole ligands as therapeutic agents for Alzheimer@disease. <i>Chemical Science</i> , 2017 , 8, 5636-5643	9.4	66
222	T Cell Exhaustion in Glioblastoma: Intricacies of Immune Checkpoints. <i>Trends in Immunology</i> , 2017 , 38, 104-115	14.4	64
221	Laquinimod reduces neuroaxonal injury through inhibiting microglial activation. <i>Annals of Clinical and Translational Neurology</i> , 2014 , 1, 409-22	5.3	64
220	Kinetics of proinflammatory monocytes in a model of multiple sclerosis and its perturbation by laquinimod. <i>American Journal of Pathology</i> , 2012 , 181, 642-51	5.8	64
219	Migratory behavior of lymphocytes isolated from multiple sclerosis patients: effects of interferon beta-1b therapy. <i>Annals of Neurology</i> , 1999 , 46, 319-24	9.4	63
218	Overcoming neurite-inhibitory chondroitin sulfate proteoglycans in the astrocyte matrix. <i>Glia</i> , 2013 , 61, 972-84	9	62
217	Protein Kinase C Inhibitors Suppress Cell Growth in Established and Low-Passage Glioma Cell Lines. A Comparison between Staurosporine and Tamoxifen. <i>Neurosurgery</i> , 1993 , 33, 495-501	3.2	62
216	Astrocytes and catalase prevent the toxicity of catecholamines to oligodendrocytes. <i>Brain Research</i> , 1994 , 633, 83-90	3.7	62
215	Growth factors for human glial cells in culture. <i>Glia</i> , 1988 , 1, 113-23	9	61
214	The benefits of neuroinflammation for the repair of the injured central nervous system. <i>Cellular and Molecular Immunology</i> , 2019 , 16, 540-546	15.4	60
213	Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. <i>Science Advances</i> , 2020 , 6, eaay6324	14.3	60
212	Biochemically altered myelin triggers autoimmune demyelination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5528-5533	11.5	59
211	Astrocyte reactivity in neonatal mice: apparent dependence on the presence of reactive microglia/macrophages. <i>Glia</i> , 1996 , 18, 11-26	9	59
210	Stimulation of monocytes, macrophages, and microglia by amphotericin B and macrophage colony-stimulating factor promotes remyelination. <i>Journal of Neuroscience</i> , 2015 , 35, 1136-48	6.6	58
209	Reduced inflammation accompanies diminished myelin damage and repair in the NG2 null mouse spinal cord. <i>Journal of Neuroinflammation</i> , 2011 , 8, 158	10.1	58

(2013-1996)

208	Astrocytes promote process outgrowth by adult human oligodendrocytes in vitro through interaction between bFGF and astrocyte extracellular matrix. <i>Glia</i> , 1996 , 17, 237-53	9	58
207	Paraquat and two endogenous analogues of the neurotoxic substance N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine do not damage dopaminergic nigrostriatal neurons in the mouse. <i>Neuroscience Letters</i> , 1986 , 69, 285-9	3.3	58
206	Pilot study of minocycline in relapsing-remitting multiple sclerosis. <i>Canadian Journal of Neurological Sciences</i> , 2008 , 35, 185-91	1	55
205	Growth factors for fetal and adult human astrocytes in culture. <i>Brain Research</i> , 1988 , 444, 59-66	3.7	55
204	Monoamine oxidase B, smoking, and Parkinson@ disease. <i>Journal of the Neurological Sciences</i> , 1986 , 72, 265-72	3.2	55
203	Improving outcomes of neuroprotection by minocycline: guides from cell culture and intracerebral hemorrhage in mice. <i>American Journal of Pathology</i> , 2010 , 176, 1193-202	5.8	54
202	Contributions of multiple proteases to neurotoxicity in a mouse model of intracerebral haemorrhage. <i>Brain</i> , 2009 , 132, 26-36	11.2	54
201	Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells. <i>Journal of Immunology</i> , 2009 , 183, 298-3	6 ⁹³	53
200	Targeting MMPs in acute and chronic neurological conditions. <i>Neurotherapeutics</i> , 2007 , 4, 580-9	6.4	53
199	The expression of matrix metalloproteinase-12 by oligodendrocytes regulates their maturation and morphological differentiation. <i>Journal of Neuroscience</i> , 2004 , 24, 7597-603	6.6	52
198	Origin of contralateral reactive gliosis in surgically injured rat cerebral cortex. <i>Brain Research</i> , 1991 , 547, 223-8	3.7	52
197	Environmental factors and their regulation of immunity in multiple sclerosis. <i>Journal of the Neurological Sciences</i> , 2013 , 324, 10-6	3.2	51
196	The many faces of EMMPRIN - roles in neuroinflammation. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2011 , 1812, 213-9	6.9	51
195	Transplantation of human sympathetic neurons and adrenal chromaffin cells into parkinsonian monkeys: no reversal of clinical symptoms. <i>Journal of the Neurological Sciences</i> , 1989 , 94, 51-67	3.2	50
194	Immune modulatory therapies for spinal cord injury-past, present and future. <i>Experimental Neurology</i> , 2014 , 258, 91-104	5.7	49
193	Inflammatory and structural biomarkers in acute traumatic spinal cord injury. <i>Clinical Chemistry and Laboratory Medicine</i> , 2011 , 49, 425-33	5.9	47
192	Effects of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and its metabolite, N-methyl-4-phenylpyridinium ion, on dopaminergic nigrostriatal neurons in the mouse. <i>Neuroscience Letters</i> , 1985 , 58, 321-6	3.3	47
191	Remyelination therapy for multiple sclerosis. <i>Neurotherapeutics</i> , 2013 , 10, 44-54	6.4	45

190	ADAM-9 is a novel mediator of tenascin-C-stimulated invasiveness of brain tumor-initiating cells. <i>Neuro-Oncology</i> , 2015 , 17, 1095-105	1	45
189	Relative importance of proteinase-activated receptor-1 versus matrix metalloproteinases in intracerebral hemorrhage-mediated neurotoxicity in mice. <i>Stroke</i> , 2009 , 40, 2199-204	6.7	45
188	Alpha-tocopherol and beta-carotene do not protect marmosets against the dopaminergic neurotoxicity of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. <i>Journal of the Neurological Sciences</i> , 1987 , 81, 321-31	3.2	45
187	Activation of NOTCH Signaling by Tenascin-C Promotes Growth of Human Brain Tumor-Initiating Cells. <i>Cancer Research</i> , 2017 , 77, 3231-3243	10.1	44
186	When encephalitogenic T cells collaborate with microglia in multiple sclerosis. <i>Nature Reviews Neurology</i> , 2019 , 15, 704-717	15	44
185	Chondroitin sulfate proteoglycans as novel drivers of leucocyte infiltration in multiple sclerosis. <i>Brain</i> , 2018 , 141, 1094-1110	11.2	44
184	Proliferation of human and mouse astrocytes in vitro: signalling through the protein kinase C pathway. <i>Journal of the Neurological Sciences</i> , 1992 , 111, 92-103	3.2	43
183	Monocytes increase human cardiac myofibroblast-mediated extracellular matrix remodeling through TGF- 1 . <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2016 , 310, H716-24	5.2	43
182	Age-dependent decrease of process formation by cultured oligodendrocytes is augmented by protein kinase C stimulation. <i>Journal of Neuroscience Research</i> , 1991 , 29, 87-99	4.4	42
181	Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. <i>Nature Communications</i> , 2020 , 11, 4997	17.4	42
180	Association between the cerebral inflammatory and matrix metalloproteinase responses after severe traumatic brain injury in humans. <i>Journal of Neurotrauma</i> , 2013 , 30, 1727-36	5.4	41
179	Matrix metalloproteinases in intracerebral hemorrhage. <i>Neurological Research</i> , 2008 , 30, 775-82	2.7	41
178	The chemokine GRO-alpha (CXCL1) confers increased tumorigenicity to glioma cells. <i>Carcinogenesis</i> , 2005 , 26, 2058-68	4.6	41
177	Protein kinase C isoform alpha overexpression in C6 glioma cells and its role in cell proliferation. Journal of Neuro-Oncology, 1995 , 24, 241-50	4.8	41
176	Matrix metalloproteinase-12 deficiency worsens relapsing-remitting experimental autoimmune encephalomyelitis in association with cytokine and chemokine dysregulation. <i>American Journal of Pathology</i> , 2009 , 174, 898-909	5.8	39
175	Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. <i>Lancet Neurology, The</i> , 2020 , 19, 1023-1032	24.1	39
174	Differential microglia and macrophage profiles in human IDH-mutant and -wild type glioblastoma. <i>Oncotarget</i> , 2019 , 10, 3129-3143	3.3	38
173	The role of EMMPRIN in T cell biology and immunological diseases. <i>Journal of Leukocyte Biology</i> , 2015 , 98, 33-48	6.5	38

(1996-2019)

multiple sclerosis. <i>Journal of Clinical Investigation</i> , 2019 , 129, 3277-3292	15.9	38
Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities. <i>Brain</i> , 2020 , 143, 1297-1314	11.2	38
Multimodal Enhancement of Remyelination by Exercise with a Pivotal Role for Oligodendroglial PGC1[] Cell Reports, 2018, 24, 3167-3179	10.6	38
A quantitative analysis of suspected environmental causes of MS. <i>Canadian Journal of Neurological Sciences</i> , 2011 , 38, 98-105	1	37
Chondroitin sulphate proteoglycans: extracellular matrix proteins that regulate immunity of the central nervous system. <i>Autoimmunity Reviews</i> , 2011 , 10, 766-72	13.6	37
Immunopathogenesis of multiple sclerosis. <i>International Review of Neurobiology</i> , 2007 , 79, 99-126	4.4	37
Oligodendrocytes and Myelin. <i>Neurologic Clinics</i> , 1995 , 13, 23-49	4.5	37
The interplay between the immune and central nervous systems in neuronal injury. <i>Neurology</i> , 2010 , 74 Suppl 1, S9-S16	6.5	36
Treatment trials in progressive MScurrent challenges and future directions. <i>Nature Reviews Neurology</i> , 2013 , 9, 496-503	15	35
Interactions between microglia and T cells in multiple sclerosis pathobiology. <i>Journal of Interferon and Cytokine Research</i> , 2014 , 34, 615-22	3.5	35
Magnetic resonance imaging of blood-spinal cord barrier disruption in mice with experimental autoimmune encephalomyelitis. <i>Magnetic Resonance in Medicine</i> , 2007 , 58, 298-305	4.4	35
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) does not destroy nigrostriatal neurons in the scorbutic guinea pig. <i>Life Sciences</i> , 1985 , 36, 1233-8	6.8	35
Pro-inflammatory roles of chondroitin sulfate proteoglycans in disorders of the central nervous system. <i>Matrix Biology</i> , 2018 , 71-72, 432-442	11.4	34
Quetiapine fumarate for the treatment of multiple sclerosis: focus on myelin repair. <i>CNS Neuroscience and Therapeutics</i> , 2013 , 19, 737-44	6.8	34
Experimental demyelination and remyelination of murine spinal cord by focal injection of lysolecithin. <i>Journal of Visualized Experiments</i> , 2015 ,	1.6	34
Fibronectin attenuates process outgrowth in oligodendrocytes by mislocalizing MMP-9 activity. <i>Molecular and Cellular Neurosciences</i> , 2009 , 42, 234-42	4.8	34
Expression and regulation of matrix metalloproteinase-12 in experimental autoimmune encephalomyelitis and by bone marrow derived macrophages in vitro. <i>Journal of Neuroimmunology</i> , 2008 , 199, 24-34	3.5	34
Signal transduction for proliferation of glioma cells in vitro occurs predominantly through a protein kinase C-mediated pathway. <i>Brain Research</i> , 1996 , 710, 143-9	3.7	34
	A quantitative analysis of suspected environmental causes of MS. Canadian Journal of Neurological Sciences, 2011, 38, 98-105 Chondroitin sulphate proteoglycans: extracellular matrix proteins that regulate immunity of the central nervous system. Autoimmunity Reviews, 2011, 10, 766-72 Immunopathogenesis of multiple sclerosis. International Review of Neurobiology, 2007, 79, 99-126 Oligodendrocytes and Myelin. Neurologic Clinics, 1995, 13, 23-49 The interplay between the immune and central nervous systems in neuronal injury. Neurology, 2010, 74 Suppl 1, 59-516 Treatment trials in progressive MS-current challenges and future directions. Nature Reviews Neurology, 2013, 9, 496-503 Interactions between microglia and T cells in multiple sclerosis pathobiology. Journal of Interferon and Cytokine Research, 2014, 34, 615-22 Magnetic resonance imaging of blood-spinal cord barrier disruption in mice with experimental autoimmune encephalomyelitis. Magnetic Resonance in Medicine, 2007, 58, 298-305 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) does not destroy nigrostriatal neurons in the scorbulic guinea pig. Life Sciences, 1985, 36, 1233-8 Pro-inflammatory roles of chondroitin sulfate proteoglycans in disorders of the central nervous system. Matrix Biology, 2018, 71-72, 432-442 Quetiapine fumarate for the treatment of multiple sclerosis: focus on myelin repair. CNS Neuroscience and Therapeutics, 2013, 19, 737-44 Experimental demyelination and remyelination of murine spinal cord by focal injection of lysolecithin. Journal of Visualized Experiments, 2015, Fibronectin attenuates process outgrowth in oligodendrocytes by mislocalizing MMP-9 activity. Molecular and Cellular Neurosciences, 2009, 42, 234-42 Experssion and regulation of matrix metalloproteinase-12 in experimental autoimmune encephalomyelitis and by bone marrow derived macrophages in vitro. Journal of Neuroimmunology, 2008, 199, 24-34	Multimodal Enhancement of Remyelination by Exercise with a Pivotal Role for Oligodendroglial PGC1DCell Reports, 2018, 24, 3167-3179 A quantitative analysis of suspected environmental causes of MS. Canadian Journal of Neurological Sciences, 2011, 38, 98-105 Chondroitin sulphate proteoglycans: extracellular matrix proteins that regulate immunity of the central nervous system. Autoimmunity Reviews, 2011, 10, 766-72 Immunopathogenesis of multiple sclerosis. International Review of Neurobiology, 2007, 79, 99-126 44 Oligodendrocytes and Myelin. Neurologic Clinics, 1995, 13, 23-49 The interplay between the immune and central nervous systems in neuronal injury. Neurology, 2010, 74 Suppl 1, 59-\$16 Treatment trials in progressive MS-current challenges and future directions. Nature Reviews Neurology, 2013, 9, 496-503 Interactions between microglia and T cells in multiple sclerosis pathobiology. Journal of Interferon and Cytokine Research, 2014, 34, 615-22 Magnetic resonance imaging of blood-spinal cord barrier disruption in mice with experimental autoimmune encephalomyelitis. Magnetic Resonance in Medicine, 2007, 58, 298-305 44 1-Methyl-4-phenyl-1, 2, 3-c-tetrahydropyridine (MFTP) does not destroy nigrostriatal neurons in the scorbutic guinea pig. Life Sciences, 1985, 36, 1233-8 Pro-inflammatory roles of chondroitin sulfate proteoglycans in disorders of the central nervous system. Matrix Biology, 2018, 71-72, 432-442 Quetiapine fumarate for the treatment of multiple sclerosis: focus on myelin repair. CNS Neuroscience and Therapeutics, 2013, 19, 737-44 Experimental demyelination and remyelination of murine spinal cord by focal injection of lysolecithin. Journal of Visualized Experiments, 2015, Fibronectin attenuates process outgrowth in oligodendrocytes by mislocalizing MMP-9 activity. Molecular and Cellular Neurosciences, 2009, 42, 234-42 Experssion and regulation of matrix metalloproteinase-12 in experimental autoimmune encephalonyelitis and by bone marrow derived macrophages in vitro. Journal of Neuroimm

154	Hydroxychloroquine reduces microglial activity and attenuates experimental autoimmune encephalomyelitis. <i>Journal of the Neurological Sciences</i> , 2015 , 358, 131-7	3.2	33
153	Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system. <i>Acta Neuropathologica</i> , 2020 , 139, 893-909	14.3	33
152	Extracellular matrix metalloproteinase inducer shows active perivascular cuffs in multiple sclerosis. <i>Brain</i> , 2013 , 136, 1760-77	11.2	33
151	Susceptibility-weighted imaging in the experimental autoimmune encephalomyelitis model of multiple sclerosis indicates elevated deoxyhemoglobin, iron deposition and demyelination. <i>Multiple Sclerosis Journal</i> , 2013 , 19, 721-31	5	33
150	Mitogenic signaling and the relationship to cell cycle regulation in astrocytomas. <i>Journal of Neuro-Oncology</i> , 2001 , 51, 245-64	4.8	33
149	Neurochemical abnormalities in brains of renal failure patients treated by repeated hemodialysis. Journal of Neurochemistry, 1985 , 45, 1043-8	6	33
148	Regenerative Capacity of Macrophages for Remyelination. <i>Frontiers in Cell and Developmental Biology</i> , 2016 , 4, 47	5.7	33
147	Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models. <i>NeuroImage: Clinical</i> , 2014 , 4, 743-56	5.3	32
146	Expression and modulation of HLA-DR on cultured human adult astrocytes. <i>Journal of Neuropathology and Experimental Neurology</i> , 1991 , 50, 16-28	3.1	32
145	EMMPRIN, an upstream regulator of MMPs, in CNS biology. <i>Matrix Biology</i> , 2015 , 44-46, 138-46	11.4	31
144	Systematic screening of generic drugs for progressive multiple sclerosis identifies clomipramine as a promising therapeutic. <i>Nature Communications</i> , 2017 , 8, 1990	17.4	31
143	Cytokine production in T lymphocyte-microglia interaction is attenuated by glatiramer acetate: a mechanism for therapeutic efficacy in multiple sclerosis. <i>Multiple Sclerosis Journal</i> , 2002 , 8, 299-306	5	31
142	Reduction of microglial activity in a model of multiple sclerosis by dipyridamole. <i>Journal of Neuroinflammation</i> , 2013 , 10, 89	10.1	30
141	A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis. <i>Journal of Neuroinflammation</i> , 2012 , 9, 64	10.1	30
140	Neuroinflammation and demyelination in multiple sclerosis after allogeneic hematopoietic stem cell transplantation. <i>Archives of Neurology</i> , 2010 , 67, 716-22		30
139	The potential use of MMP inhibitors to treat CNS diseases. <i>Expert Opinion on Investigational Drugs</i> , 1999 , 8, 255-68	5.9	30
138	Manipulation of glutathione contents fails to alter dopaminergic nigrostriatal neurotoxicity of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. <i>Neuroscience Letters</i> , 1986 , 70, 261	- 3 .3	30
137	The extracellular matrix: Focus on oligodendrocyte biology and targeting CSPGs for remyelination therapies. <i>Glia</i> , 2018 , 66, 1809-1825	9	29

136	Prolactin in multiple sclerosis. <i>Multiple Sclerosis Journal</i> , 2013 , 19, 15-23	5	29
135	Unique spectral signatures of the nucleic acid dye acridine orange can distinguish cell death by apoptosis and necroptosis. <i>Journal of Cell Biology</i> , 2017 , 216, 1163-1181	7.3	28
134	A prospective evaluation of the temporal matrix metalloproteinase response after severe traumatic brain injury in humans. <i>Journal of Neurotrauma</i> , 2013 , 30, 1717-26	5.4	28
133	Prospects of repair in multiple sclerosis. <i>Journal of the Neurological Sciences</i> , 2009 , 277 Suppl 1, S16-8	3.2	28
132	Association of alpha-synuclein immunoreactivity with inflammatory activity in multiple sclerosis lesions. <i>Journal of Neuropathology and Experimental Neurology</i> , 2009 , 68, 179-89	3.1	28
131	Activity-Dependent and Experience-Driven Myelination Provide New Directions for the Management of Multiple Sclerosis. <i>Trends in Neurosciences</i> , 2016 , 39, 356-365	13.3	28
130	Fluorescent Phosphorus Dendrimer as a Spectral Nanosensor for Macrophage Polarization and Fate Tracking in Spinal Cord Injury. <i>Macromolecular Bioscience</i> , 2015 , 15, 1523-34	5.5	27
129	Adenovirus-mediated wild-type p53 gene transfer and overexpression induces apoptosis of human glioma cells independent of endogenous p53 status. <i>Journal of Neuropathology and Experimental Neurology</i> , 1997 , 56, 872-8	3.1	27
128	Prospects for neuroprotection in multiple sclerosis. <i>Frontiers in Bioscience - Landmark</i> , 2004 , 9, 864-72	2.8	27
127	Biomarkers of intestinal barrier function in multiple sclerosis are associated with disease activity. <i>Multiple Sclerosis Journal</i> , 2020 , 26, 1340-1350	5	27
126	The good, the bad and the ugly. Macrophages/microglia with a focus on myelin repair. <i>Frontiers in Bioscience - Scholar</i> , 2011 , 3, 846-56	2.4	26
125	Protein kinase C and growth regulation of malignant gliomas. <i>Canadian Journal of Neurological Sciences</i> , 1995 , 22, 264-71	1	26
124	Production of soluble autocrine inhibitory factors by human glioma cell lines. <i>Journal of the Neurological Sciences</i> , 1992 , 110, 178-85	3.2	26
123	Patrolling monocytes play a critical role in CX3CR1-mediated neuroprotection during excitotoxicity. <i>Brain Structure and Function</i> , 2015 , 220, 1759-76	4	25
122	alpha2,3-sialyltransferase mRNA and alpha2,3-linked glycoprotein sialylation are increased in malignant gliomas. <i>Brain Research</i> , 1997 , 755, 175-9	3.7	25
121	Efficacy of Minocycline in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis of Rodent and Clinical Studies. <i>Frontiers in Neurology</i> , 2018 , 9, 1103	4.1	25
120	Cleavage of osteopontin by matrix metalloproteinase-12 modulates experimental autoimmune encephalomyelitis disease in C57BL/6 mice. <i>American Journal of Pathology</i> , 2010 , 177, 1448-58	5.8	24
119	Apoptosis is induced in glioma cells by antisense oligonucleotides to protein kinase C alpha and is enhanced by cycloheximide. <i>NeuroReport</i> , 1998 , 9, 1727-33	1.7	24

118	Deficient Surveillance and Phagocytic Activity of Myeloid Cells Within Demyelinated Lesions in Aging Mice Visualized by Live Multiphoton Imaging. <i>Journal of Neuroscience</i> , 2018 , 38, 1973-1988	6.6	23
117	Inflammatory cytokine modulation of matrix metalloproteinase expression and invasiveness of glioma cells in a 3-dimensional collagen matrix. <i>Journal of Neuro-Oncology</i> , 2009 , 91, 157-64	4.8	23
116	Continued disease activity in a patient with multiple sclerosis after allogeneic hematopoietic cell transplantation. <i>Archives of Neurology</i> , 2009 , 66, 116-20		22
115	Unexpected additive effects of minocycline and hydroxychloroquine in models of multiple sclerosis: Prospective combination treatment for progressive disease?. <i>Multiple Sclerosis Journal</i> , 2018 , 24, 1543-1556	5	21
114	3T deep gray matter T2 hypointensity correlates with disability over time in stable relapsing-remitting multiple sclerosis: a 3-year pilot study. <i>Journal of the Neurological Sciences</i> , 2010 , 297, 76-81	3.2	21
113	Targeting progressive neuroaxonal injury: lessons from multiple sclerosis. <i>CNS Drugs</i> , 2011 , 25, 783-99	6.7	21
112	Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. <i>Nature Neuroscience</i> , 2021 , 24, 489-503	25.5	21
111	Gray Matter Hypoxia in the Brain of the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. <i>PLoS ONE</i> , 2016 , 11, e0167196	3.7	20
110	Impact of Minocycline on Extracellular Matrix Metalloproteinase Inducer, a Factor Implicated in Multiple Sclerosis Immunopathogenesis. <i>Journal of Immunology</i> , 2016 , 197, 3850-3860	5.3	19
109	Cellular factors promoting resistance to effective treatment of glioma with oncolytic myxoma virus. <i>Cancer Research</i> , 2014 , 74, 7260-73	10.1	19
108	The extracellular matrix as modifier of neuroinflammation and remyelination in multiple sclerosis. <i>Brain</i> , 2021 , 144, 1958-1973	11.2	19
107	Prolactin in combination with interferon-deduces disease severity in an animal model of multiple sclerosis. <i>Journal of Neuroinflammation</i> , 2015 , 12, 55	10.1	18
106	Control of brain tumor growth by reactivating myeloid cells with niacin. <i>Science Translational Medicine</i> , 2020 , 12,	17.5	17
105	Screening for inhibitors of microglia to reduce neuroinflammation. <i>CNS and Neurological Disorders - Drug Targets</i> , 2013 , 12, 741-9	2.6	17
104	Central nervous system targeted autoimmunity causes regional atrophy: a 9.4T MRI study of the EAE mouse model of Multiple Sclerosis. <i>Scientific Reports</i> , 2019 , 9, 8488	4.9	16
103	MR Imaging of Tumor-Associated Macrophages: The Next Frontier in Cancer Imaging. <i>Magnetic Resonance Insights</i> , 2018 , 11, 1178623X18771974	5	16
102	Reduction of protein kinase C delta attenuates tenascin-C stimulated glioma invasion in three-dimensional matrix. <i>Carcinogenesis</i> , 2010 , 31, 311-7	4.6	16
101	The promoting effects of bFGF and astrocyte extracellular matrix on process outgrowth by adult human oligodendrocytes are mediated by protein kinase C. <i>Brain Research</i> , 1997 , 757, 236-44	3.7	16

(2013-1993)

100	Staurosporine differentially inhibits glioma versus non-glioma cell lines. <i>Journal of Neuro-Oncology</i> , 1993 , 16, 141-7	4.8	16	
99	Exercise in multiple sclerosis and its models: Focus on the central nervous system outcomes. Journal of Neuroscience Research, 2020 , 98, 509-523	4.4	16	
98	Impact of IVIg on the interaction between activated T cells and microglia. <i>Neurological Research</i> , 2006 , 28, 270-4	2.7	15	
97	Culture of Glial Cells from Human Brain Biopsies 1997 , 157-172		14	
96	Targeting the Chondroitin Sulfate Proteoglycans: Evaluating Fluorinated Glucosamines and Xylosides in Screens Pertinent to Multiple Sclerosis. <i>ACS Central Science</i> , 2019 , 5, 1223-1234	16.8	13	
95	Multi-scale MRI spectrum detects differences in myelin integrity between MS lesion types. <i>Multiple Sclerosis Journal</i> , 2016 , 22, 1569-1577	5	13	
94	Cerebrospinal Fluid Biomarkers in Human Spinal Cord Injury from a Phase II Minocycline Trial. <i>Journal of Neurotrauma</i> , 2018 , 35, 1918-1928	5.4	13	
93	Chronic mild stress exacerbates severity of experimental autoimmune encephalomyelitis in association with altered non-coding RNA and metabolic biomarkers. <i>Neuroscience</i> , 2017 , 359, 299-307	3.9	13	
92	Immune cell infiltrates in atypical teratoid/rhabdoid tumors. <i>Canadian Journal of Neurological Sciences</i> , 2012 , 39, 605-12	1	13	
91	Alterations in myelination in the central nervous system of dystonia musculorum mice. <i>Journal of Neuroscience Research</i> , 2002 , 69, 233-42	4.4	13	
90	Resistance to oncolytic myxoma virus therapy in nf1(-/-)/trp53(-/-) syngeneic mouse glioma models is independent of anti-viral type-I interferon. <i>PLoS ONE</i> , 2013 , 8, e65801	3.7	13	
89	Intracerebral haemorrhage: from clinical settings to animal models. <i>Stroke and Vascular Neurology</i> , 2020 , 5, 388-395	9.1	13	
88	Serum NSE level and disability progression in multiple sclerosis. <i>Journal of the Neurological Sciences</i> , 2015 , 350, 46-50	3.2	12	
87	1,25-Dihydroxyvitamin D3 Protects against Immune-Mediated Killing of Neurons in Culture and in Experimental Autoimmune Encephalomyelitis. <i>PLoS ONE</i> , 2015 , 10, e0144084	3.7	12	
86	Demyelination induces transport of ribosome-containing vesicles from glia to axons: evidence from animal models and MS patient brains. <i>Molecular Biology Reports</i> , 2016 , 43, 495-507	2.8	12	
85	The promise of futility trials in neurological diseases. <i>Nature Reviews Neurology</i> , 2015 , 11, 300-5	15	11	
84	High-resolution fluorescence microscopy of myelin without exogenous probes. <i>NeuroImage</i> , 2014 , 87, 42-54	7.9	11	
83	The regulation of reactive changes around multiple sclerosis lesions by phosphorylated signal transducer and activator of transcription. <i>Journal of Neuropathology and Experimental Neurology</i> , 2013 , 72, 1135-44	3.1	11	

82	Response of astrocytes and oligodendrocytes to injury. <i>Mental Retardation and Developmental Disabilities Research Reviews</i> , 1998 , 4, 193-199		11
81	IVIg attenuates T cell-mediated killing of human neurons. <i>Journal of Neuroimmunology</i> , 2006 , 177, 181-	· 8 3.5	11
80	MRI monitoring of monocytes to detect immune stimulating treatment response in brain tumor. <i>Neuro-Oncology</i> , 2017 , 19, 364-371	1	11
79	Beyond barrier functions: Roles of pericytes in homeostasis and regulation of neuroinflammation. Journal of Neuroscience Research, 2020 , 98, 2390-2405	4.4	10
78	Microglia induces Gas1 expression in human brain tumor-initiating cells to reduce tumorigenecity. <i>Scientific Reports</i> , 2018 , 8, 15286	4.9	10
77	Gestational bisphenol-A exposure lowers the threshold for autoimmunity in a model of multiple sclerosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 49	99-500	04 ⁹
76	Using magnetic resonance imaging in animal models to guide drug development in multiple sclerosis. <i>Multiple Sclerosis Journal</i> , 2014 , 20, 3-11	5	9
75	Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. <i>Annals of Neurosciences</i> , 2013 , 20, 154	1.1	9
74	Malignant glioma-derived soluble factors regulate proliferation of normal adult human astrocytes. Journal of Neuropathology and Experimental Neurology, 1992 , 51, 506-13	3.1	9
73	Detecting deoxyhemoglobin in spinal cord vasculature of the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis using susceptibility MRI and hyperoxygenation. <i>PLoS ONE</i> , 2015 , 10, e0127033	3.7	8
72	Reduction of PrP(C) in human cerebrospinal fluid after spinal cord injury. Prion, 2010, 4, 80-6	2.3	8
71	Minocycline for axonal regeneration after nerve injury: a double-edged sword. <i>Experimental Neurology</i> , 2008 , 213, 245-8	5.7	8
70	The glycosyltransferase EXTL2 promotes proteoglycan deposition and injurious neuroinflammation following demyelination. <i>Journal of Neuroinflammation</i> , 2020 , 17, 220	10.1	8
69	A novel MRI texture analysis of demyelination and inflammation in relapsing-remitting experimental allergic encephalomyelitis. <i>Lecture Notes in Computer Science</i> , 2006 , 9, 760-7	0.9	8
68	Microglial modulation as a mechanism behind the promotion of central nervous system well-being by physical exercise. <i>Clinical and Experimental Neuroimmunology</i> , 2014 , 5, 188-201	0.4	7
67	The astrocyte mitogen, tumor necrosis factor-alpha, inhibits the proliferative effect of more potent adult human astrocyte mitogens, gamma-interferon and activated T-lymphocyte supernatants. Brain Research, 1994 , 653, 297-304	3.7	7
66	Major histocompatibility complex molecules on glial cells. <i>Seminars in Neuroscience</i> , 1992 , 4, 231-240		7
65	Neuregulin-1 beta 1 is implicated in pathogenesis of multiple sclerosis. <i>Brain</i> , 2021 , 144, 162-185	11.2	7

(2021-2014)

64	Active inflammation increases the heterogeneity of MRI texture in mice with relapsing experimental allergic encephalomyelitis. <i>Magnetic Resonance Imaging</i> , 2014 , 32, 168-74	3.3	6
63	Exercise and the brain in multiple sclerosis. <i>Multiple Sclerosis Journal</i> , 2020 , 1352458520969099	5	6
62	The combination of deferoxamine and minocycline strengthens neuroprotective effect on acute intracerebral hemorrhage in rats. <i>Neurological Research</i> , 2021 , 43, 854-864	2.7	6
61	The battle for the brain: Brain tumor-initiating cells vs. microglia/macrophages. <i>OncoImmunology</i> , 2014 , 3, e28047	7.2	5
60	[14] Cytokines as mediators of reactive astrogliosis. <i>Methods in Neurosciences</i> , 1995 , 220-235		5
59	Inability to produce a model of dialysis encephalopathy in the rat by aluminum administration. <i>Neurochemical Research</i> , 1987 , 12, 369-75	4.6	5
58	Neuroprotection of minocycline by inhibition of extracellular matrix metalloproteinase inducer expression following intracerebral hemorrhage in mice. <i>Neuroscience Letters</i> , 2021 , 764, 136297	3.3	5
57	Hydroxychloroquine for Primary Progressive Multiple Sclerosis. <i>Annals of Neurology</i> , 2021 , 90, 940-948	9.4	5
56	Combination of Hydroxychloroquine and Indapamide Attenuates Neurodegeneration in Models Relevant to Multiple Sclerosis. <i>Neurotherapeutics</i> , 2021 , 18, 387-400	6.4	5
55	Human Glial Cells and Growth Factors 1989 , 29-48		5
54	Oxidized phospholipids as novel mediators of neurodegeneration Trends in Neurosciences, 2022,	13.3	5
53	Domperidone-induced elevation of serum prolactin levels and immune response in multiple sclerosis. <i>Journal of Neuroimmunology</i> , 2019 , 334, 576974	3.5	4
52	Changes in tissue directionality reflect differences in myelin content after demyelination in mice spinal cords. <i>Journal of Structural Biology</i> , 2014 , 188, 116-22	3.4	4
52		3·4 6.1	4
	spinal cords. <i>Journal of Structural Biology</i> , 2014 , 188, 116-22 Modes of Brain Cell Death Following Intracerebral Hemorrhage <i>Frontiers in Cellular Neuroscience</i> ,		
51	spinal cords. <i>Journal of Structural Biology</i> , 2014 , 188, 116-22 Modes of Brain Cell Death Following Intracerebral Hemorrhage <i>Frontiers in Cellular Neuroscience</i> , 2022 , 16, 799753 Gap Junctions and Hemichannels Composed of Connexins and Pannexins Mediate the Secondary	6.1	4
50	spinal cords. <i>Journal of Structural Biology</i> , 2014 , 188, 116-22 Modes of Brain Cell Death Following Intracerebral Hemorrhage <i>Frontiers in Cellular Neuroscience</i> , 2022 , 16, 799753 Gap Junctions and Hemichannels Composed of Connexins and Pannexins Mediate the Secondary Brain Injury Following Intracerebral Hemorrhage <i>Biology</i> , 2021 , 11, Evaluating Soluble EMMPRIN as a Marker of Disease Activity in Multiple Sclerosis: Studies of Serum	6.1 4.9	4

46	Repurposing Domperidone in Secondary Progressive Multiple Sclerosis: A Simon 2-Stage Phase 2 Futility Trial. <i>Neurology</i> , 2021 , 96, e2313-e2322	6.5	4
45	Fibrinogen in the glioblastoma microenvironment contributes to the invasiveness of brain tumor-initiating cells. <i>Brain Pathology</i> , 2021 , 31, e12947	6	4
44	Central Nervous System Tissue Regeneration after Intracerebral Hemorrhage: The Next Frontier. <i>Cells</i> , 2021 , 10,	7.9	4
43	Intracerebral hemorrhage in translational research. <i>Brain Hemorrhages</i> , 2020 , 1, 13-18	2.1	3
42	Expanding the Potential Therapeutic Options for Remote Ischemic Preconditioning: Use in Multiple Sclerosis. <i>Frontiers in Neurology</i> , 2018 , 9, 475	4.1	3
41	IMMUNOPATHOGENESIS OF MULTIPLE SCLEROSIS. <i>CONTINUUM Lifelong Learning in Neurology</i> , 2004 , 10, 11-27	3	3
40	Is a circulating neurotoxin involved in the pathogenesis of Huntington@chorea?. <i>Journal of the Neurological Sciences</i> , 1985 , 67, 351-8	3.2	3
39	Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. <i>Nature Reviews Neurology</i> , 2021 ,	15	3
38	Aging-Exacerbated Acute Axon and Myelin Injury Is Associated with Microglia-Derived Reactive Oxygen Species and Is Alleviated by the Generic Medication Indapamide. <i>Journal of Neuroscience</i> , 2020 , 40, 8587-8600	6.6	3
37	Exercise rapidly alters proteomes in mice following spinal cord demyelination. <i>Scientific Reports</i> , 2021 , 11, 7239	4.9	3
36	Harnessing the Benefits of Neuroinflammation: Generation of Macrophages/Microglia with Prominent Remyelinating Properties. <i>Journal of Neuroscience</i> , 2021 , 41, 3366-3385	6.6	3
35	B cells in central nervous system disease: diversity, locations and pathophysiology <i>Nature Reviews Immunology</i> , 2021 ,	36.5	3
34	Culture of Glial Cells from Human Brain Biopsies 2001 , 129-138		2
33	Tissue culture evidence for a circulating neurotoxin in Huntington@chorea. <i>Journal of the Neurological Sciences</i> , 1987 , 78, 139-50	3.2	2
32	Metabolic needs of brain-infiltrating leukocytes and microglia in multiple sclerosis. <i>Journal of Neurochemistry</i> , 2021 , 158, 14-24	6	2
31	Small functionalized iron oxide nanoparticles for dual brain magnetic resonance imaging and fluorescence imaging. <i>RSC Advances</i> , 2021 , 11, 12867-12875	3.7	2
30	Circadian disruption in mice through chronic jet lag-like conditions modulates molecular profiles of cancer in nucleus accumbens and prefrontal cortex. <i>Carcinogenesis</i> , 2021 , 42, 864-873	4.6	2
29	Oxidative Stress Following Intracerebral Hemorrhage: From Molecular Mechanisms to Therapeutic Targets <i>Frontiers in Immunology</i> , 2022 , 13, 847246	8.4	2

28	Vildagliptin improves neurological function by inhibiting apoptosis and ferroptosis following intracerebral hemorrhage in mice <i>Neuroscience Letters</i> , 2022 , 776, 136579	3.3	2
27	Stop inflammation and you stop neurodegeneration in MS - YES. Multiple Sclerosis Journal, 2017, 23, 1	32 9 -132	211
26	Demeclocycline Reduces the Growth of Human Brain Tumor-Initiating Cells: Direct Activity and Through Monocytes. <i>Frontiers in Immunology</i> , 2020 , 11, 272	8.4	1
25	Remyelination trial failures: Repercussions of ignoring neurorehabilitation and exercise in repair <i>Multiple Sclerosis and Related Disorders</i> , 2022 , 58, 103539	4	1
24	Quantitative analysis of spinal cord neuropathology in experimental autoimmune encephalomyelitis. <i>Journal of Neuroimmunology</i> , 2021 , 362, 577777	3.5	1
23	Single-cell RNA-seq reveals that glioblastoma recapitulates normal brain development		1
22	The Canadian prospective cohort study to understand progression in multiple sclerosis (CanProCo): rationale, aims, and study design. <i>BMC Neurology</i> , 2021 , 21, 418	3.1	1
21	Inflammatory cytokines in CNS trauma 2001 , 181-191		1
20	Automated Slide Scanning and Segmentation in Fluorescently-labeled Tissues Using a Widefield High-content Analysis System. <i>Journal of Visualized Experiments</i> , 2018 ,	1.6	1
19	Interleukin-1 is a key regulator of matrix metalloproteinase-9 expression in human neurons in culture and following mouse brain trauma in vivo 2000 , 61, 212		1
18	Macrophages and Microglia in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis 2013 , 177-195		1
17	Exercise training in multiple sclerosis <i>Lancet Neurology, The</i> , 2022 , 21, 313	24.1	1
16	Pericytes as mediators of infiltration of macrophages in multiple sclerosis <i>Journal of Neuroinflammation</i> , 2021 , 18, 301	10.1	1
15	PD-1 independent of PD-L1 ligation promotes glioblastoma growth through the NF B pathway. <i>Science Advances</i> , 2021 , 7, eabh2148	14.3	O
14	Multimodal peripheral fluid biomarker analysis in clinically isolated syndrome and early multiple sclerosis. <i>Multiple Sclerosis and Related Disorders</i> , 2021 , 50, 102809	4	0
13	Matrix Metalloproteinase-9 as an Important Contributor to the Pathophysiology of Depression <i>Frontiers in Neurology</i> , 2022 , 13, 861843	4.1	O
12	Revisiting Minocycline in Intracerebral Hemorrhage: Mechanisms and Clinical Translation <i>Frontiers in Immunology</i> , 2022 , 13, 844163	8.4	0
11	Versican promotes T helper 17 cytotoxic inflammation and impedes oligodendrocyte precursor cell remyelination <i>Nature Communications</i> , 2022 , 13, 2445	17.4	0

10	Reply: To PMID 23034914. <i>Annals of Neurology</i> , 2013 , 73, 316-7	9.4
9	The good the bad and the ugly Macrophages microglia with a focus on myelin repair. <i>Frontiers in Bioscience - Scholar</i> , 2011 , S3, 846-856	2.4
8	Reply: When is the time right for a phase III clinical study in spinal cord injury ($P = 0.05$)?. Brain, 2012 , 135, e221-e221	11.2
7	MedXercise: a promising strategy to promote remyelination. <i>Current Opinion in Pharmacology</i> , 2021 , 61, 120-126	5.1
6	Expression, Functions and Interactions of Chemokines in CNS Trauma 2002, 151-158	
5	Transplantation of Human Sympathetic Neurons and Adrenal Chromaffin Cells into Parkinsonian Monkeys. <i>Methods in Neurosciences</i> , 1991 , 362-378	
4	An X-ray for myelin. <i>Trends in Neurosciences</i> , 2021 , 44, 600-601	13.3
3	Susceptibility weighted imaging detects prominent veins that precede or coincide with maximal motor disability in a model of multiple sclerosis: A pilot study. <i>Multiple Sclerosis and Related Disorders</i> , 2021 , 54, 103124	4
2	Studying the microglia response to oxidized phosphatidylcholine in primary mouse neuron culture and mouse spinal cord. <i>STAR Protocols</i> , 2021 , 2, 100853	1.4
1	Thermoregulatory dynamics reveal sex-specific inflammatory responses to experimental autoimmune encephalomyelitis in mice: Implications for multiple sclerosis-induced fatigue in females. Brain. Behavior. & Immunity - Health. 2022, 23, 100477	5.1