Voon Wee Yong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3640895/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metalloproteinases in biology and pathology of the nervous system. Nature Reviews Neuroscience, 2001, 2, 502-511.	10.2	946
2	Matrix metalloproteinases and diseases of the CNS. Trends in Neurosciences, 1998, 21, 75-80.	8.6	614
3	Metalloproteinases: Mediators of Pathology and Regeneration in the CNS. Nature Reviews Neuroscience, 2005, 6, 931-944.	10.2	501
4	The promise of minocycline in neurology. Lancet Neurology, The, 2004, 3, 744-751.	10.2	465
5	Inefficient clearance of myelin debris by microglia impairs remyelinating processes. Journal of Experimental Medicine, 2015, 212, 481-495.	8.5	462
6	Targeting leukocyte MMPs and transmigration. Brain, 2002, 125, 1297-1308.	7.6	440
7	Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nature Reviews Neuroscience, 2013, 14, 722-729.	10.2	429
8	Expanding antigen-specific regulatory networks to treat autoimmunity. Nature, 2016, 530, 434-440.	27.8	409
9	Review: Endocrine disrupting chemicals and immune responses: A focus on bisphenol-A and its potential mechanisms. Molecular Immunology, 2013, 53, 421-430.	2.2	374
10	Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain, 2003, 126, 1628-1637.	7.6	350
11	Idiopathic Parkinson's disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neuroscience Letters, 1986, 67, 269-274.	2.1	345
12	Interferon beta in the treatment of multiple sclerosis. Neurology, 1998, 51, 682-689.	1.1	344
13	Human endogenous retrovirus glycoprotein–mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nature Neuroscience, 2004, 7, 1088-1095.	14.8	343
14	Interferon β-1b decreases the migration of T lymphocytes in vitro: Effects on matrix metalloproteinase-9. Annals of Neurology, 1996, 40, 853-863.	5.3	338
15	Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Annals of Neurology, 2003, 53, 731-742.	5.3	334
16	CXCR4 Is a Major Chemokine Receptor on Glioma Cells and Mediates Their Survival. Journal of Biological Chemistry, 2002, 277, 49481-49487.	3.4	327
17	Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain, 2012, 135, 1224-1236.	7.6	305
18	Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain, 2003, 126, 2738-2749.	7.6	300

#	Article	IF	CITATIONS
19	Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nature Communications, 2020, 11, 3406.	12.8	300
20	A1 Adenosine Receptor Upregulation and Activation Attenuates Neuroinflammation and Demyelination in a Model of Multiple Sclerosis. Journal of Neuroscience, 2004, 24, 1521-1529.	3.6	297
21	Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nature Reviews Drug Discovery, 2019, 18, 905-922.	46.4	265
22	Matrix Metalloproteinase-9/Gelatinase B Is Required for Process Outgrowth by Oligodendrocytes. Journal of Neuroscience, 1999, 19, 8464-8475.	3.6	255
23	Differential mechanisms of action of interferon-β and glatiramer acetate in MS. Neurology, 2002, 59, 802-808.	1.1	234
24	Interleukin-1? promotes oligodendrocyte death through glutamate excitotoxicity. Annals of Neurology, 2003, 53, 588-595.	5.3	228
25	Matrix Metalloproteinase-9 Facilitates Remyelination in Part by Processing the Inhibitory NG2 Proteoglycan. Journal of Neuroscience, 2003, 23, 11127-11135.	3.6	228
26	P2X7-Like Receptor Activation in Astrocytes Increases Chemokine Monocyte Chemoattractant Protein-1 Expression via Mitogen-Activated Protein Kinase. Journal of Neuroscience, 2001, 21, 7135-7142.	3.6	212
27	White Matter Plasticity and Enhanced Remyelination in the Maternal CNS. Journal of Neuroscience, 2007, 27, 1812-1823.	3.6	211
28	Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Annals of Neurology, 2012, 72, 419-432.	5.3	205
29	Depletion of Ly6G/Gr-1 Leukocytes after Spinal Cord Injury in Mice Alters Wound Healing and Worsens Neurological Outcome. Journal of Neuroscience, 2009, 29, 753-764.	3.6	203
30	Remyelination therapies: a new direction and challenge in multiple sclerosis. Nature Reviews Drug Discovery, 2017, 16, 617-634.	46.4	201
31	Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. Brain, 2016, 139, 653-661.	7.6	199
32	Vulnerability of Human Neurons to T Cell-Mediated Cytotoxicity. Journal of Immunology, 2003, 171, 368-379.	0.8	198
33	Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro-Oncology, 2010, 12, 351-365.	1.2	197
34	MMPs in the central nervous system: Where the good guys go bad. Seminars in Cell and Developmental Biology, 2008, 19, 42-51.	5.0	191
35	Cortical remyelination: A new target for repair therapies in multiple sclerosis. Annals of Neurology, 2012, 72, 918-926.	5.3	191
36	lron in multiple sclerosis: roles in neurodegeneration and repair. Nature Reviews Neurology, 2014, 10, 459-468.	10.1	187

#	Article	IF	CITATIONS
37	The Benefits and Detriments of Macrophages/Microglia in Models of Multiple Sclerosis. Clinical and Developmental Immunology, 2013, 2013, 1-13.	3.3	186
38	Central Nervous System-Initiated Inflammation and Neurotrophism in Trauma: IL-1Î ² Is Required for the Production of Ciliary Neurotrophic Factor. Journal of Immunology, 2000, 165, 2232-2239.	0.8	182
39	An Adverse Role for Matrix Metalloproteinase 12 after Spinal Cord Injury in Mice. Journal of Neuroscience, 2003, 23, 10107-10115.	3.6	181
40	Partial protection from the dopaminergic neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by four different antioxidants in the mouse. Neuroscience Letters, 1985, 60, 109-114.	2.1	180
41	Attenuation of Astroglial Reactivity by Interleukin-10. Journal of Neuroscience, 1996, 16, 2945-2955.	3.6	176
42	Determinants of Human B Cell Migration Across Brain Endothelial Cells. Journal of Immunology, 2003, 170, 4497-4505.	0.8	175
43	Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. Nature Neuroscience, 2014, 17, 46-55.	14.8	175
44	Interleukin-1 is a key regulator of matrix metalloproteinase-9 expression in human neurons in culture and following mouse brain trauma in vivo. Journal of Neuroscience Research, 2000, 61, 212-224.	2.9	173
45	Glioblastoma-associated microglia and macrophages: targets for therapies to improve prognosis. Brain, 2017, 140, 1548-1560.	7.6	171
46	Hallervorden-Spatz disease: Cysteine accumulation and cysteine dioxygenase deficiency in the globus pallidus. Annals of Neurology, 1985, 18, 482-489.	5.3	169
47	An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination. Nature Communications, 2016, 7, 11312.	12.8	167
48	Exploitation of Astrocytes by Glioma Cells to Facilitate Invasiveness: A Mechanism Involving Matrix Metalloproteinase-2 and the Urokinase-Type Plasminogen Activator–Plasmin Cascade. Journal of Neuroscience, 2003, 23, 4034-4043.	3.6	163
49	Myeloid cells — targets of medication in multiple sclerosis. Nature Reviews Neurology, 2016, 12, 539-551.	10.1	163
50	A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. Carcinogenesis, 2012, 33, 312-319.	2.8	160
51	The Anchoring Protein RACK1 Links Protein Kinase Cε to Integrin β Chains. Journal of Biological Chemistry, 2002, 277, 22073-22084.	3.4	157
52	Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Annals of Neurology, 2004, 55, 756-756.	5.3	156
53	Remyelination after spinal cord injury: Is it a target for repair?. Progress in Neurobiology, 2014, 117, 54-72.	5.7	155
54	Inflammation in Neurological Disorders: A Help or a Hindrance?. Neuroscientist, 2010, 16, 408-420.	3.5	154

#	Article	IF	CITATIONS
55	Biology of Adult Human Microglia in Culture: Comparisons with Peripheral Blood Monocytes and Astrocytes. Journal of Neuropathology and Experimental Neurology, 1992, 51, 538-549.	1.7	153
56	Trial of Minocycline in a Clinically Isolated Syndrome of Multiple Sclerosis. New England Journal of Medicine, 2017, 376, 2122-2133.	27.0	153
57	Taking Advantage of the Systemic Immune System to Cure Brain Diseases. Neuron, 2009, 64, 55-60.	8.1	152
58	Dynamics of the inflammatory response after murine spinal cord injury revealed by flow cytometry. Journal of Neuroscience Research, 2008, 86, 1944-1958.	2.9	151
59	Astrogliosis in the Neonatal and Adult Murine Brain Post-Trauma: Elevation of Inflammatory Cytokines and the Lack of Requirement for Endogenous Interferon-γ. Journal of Neuroscience, 1997, 17, 3664-3674.	3.6	145
60	Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 273-279.	1.9	144
61	Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. Lancet Neurology, The, 2020, 19, 1023-1032.	10.2	144
62	Elevation of matrix metalloproteinases (MMPs) in multiple sclerosis and impact of immunomodulators. Journal of the Neurological Sciences, 2007, 259, 79-84.	0.6	142
63	Nigrostriatal Dopaminergic Neurons Remain Undamaged in Rats Given High Doses of <scp>l</scp> â€ĐOPA and Carbidopa Chronically. Journal of Neurochemistry, 1984, 43, 990-993.	3.9	134
64	Elevated membrane-type matrix metalloproteinases in gliomas revealed by profiling proteases and inhibitors in human cancer cells. Molecular Cancer Research, 2003, 1, 333-45.	3.4	131
65	Depletion of glutathione in brainstem of mice caused by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is prevented by antioxidant pretreatment. Neuroscience Letters, 1986, 63, 56-60.	2.1	130
66	Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Science Advances, 2020, 6, eaay6324.	10.3	130
67	Minocycline attenuates T cell and microglia activity to impair cytokine production in T cell-microglia interaction. Journal of Leukocyte Biology, 2005, 78, 135-143.	3.3	128
68	Oligodendrocytes utilize a matrix metalloproteinase, MMP-9, to extend processes along an astrocyte extracellular matrix. Glia, 1998, 22, 53-63.	4.9	127
69	Tenascin-C Stimulates Glioma Cell Invasion through Matrix Metalloproteinase-12. Cancer Research, 2006, 66, 11771-11780.	0.9	127
70	HIV-1 Tat neurotoxicity is prevented by matrix metalloproteinase inhibitors. Annals of Neurology, 2001, 49, 230-241.	5.3	125
71	An elevated matrix metalloproteinase (MMP) in an animal model of multiple sclerosis is protective by affecting Th1/Th2 polarization. FASEB Journal, 2005, 19, 1668-1670.	0.5	125
72	Mechanisms of lysophosphatidylcholineâ€induced demyelination: A primary lipid disrupting myelinopathy. Glia, 2018, 66, 327-347.	4.9	124

#	Article	IF	CITATIONS
73	Glioma invasionin vitro: regulation by matrix metalloprotease-2 and protein kinase C. Clinical and Experimental Metastasis, 1996, 14, 421-433.	3.3	123
74	The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics. Brain, 2018, 141, 1900-1916.	7.6	121
75	The benefits of neuroinflammation for the repair of the injured central nervous system. Cellular and Molecular Immunology, 2019, 16, 540-546.	10.5	121
76	Interleukin-1β is Required for the Early Evolution of Reactive Astrogliosis Following CNS Lesion. Journal of Neuropathology and Experimental Neurology, 2001, 60, 961-971.	1.7	120
77	Myelin Formation during Development of the CNS Is Delayed in Matrix Metalloproteinase-9 and -12 Null Mice. Journal of Neuroscience, 2006, 26, 2207-2214.	3.6	118
78	Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis. Clia, 2012, 60, 1145-1159.	4.9	118
79	Overexpression of 2′,3′-Cyclic Nucleotide 3′-Phosphodiesterase in Transgenic Mice Alters Oligodendrocyte Development and Produces Aberrant Myelination. Molecular and Cellular Neurosciences, 1996, 7, 453-466.	2.2	116
80	Harmful and beneficial effects of inflammation after spinal cord injury. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 485-502.	1.8	115
81	Amino acids, glutathione, and glutathione transferase activity in the brains of patients with Alzheimer's disease. Annals of Neurology, 1987, 21, 331-336.	5.3	114
82	Predominance of Th2 polarization by Vitamin D through a STAT6-dependent mechanism. Journal of Neuroinflammation, 2011, 8, 56.	7.2	114
83	PTEN/MMAC1/TEP1 in signal transduction and tumorigenesis. FEBS Journal, 1999, 263, 605-611.	0.2	113
84	The clinical response to minocycline in multiple sclerosis is accompanied by beneficial immune changes: a pilot study. Multiple Sclerosis Journal, 2007, 13, 517-526.	3.0	113
85	Protein Kinase C Activity Correlates with the Growth Rate of Malignant Gliomas. Neurosurgery, 1992, 31, 717-724.	1.1	110
86	Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nature Communications, 2020, 11, 4997.	12.8	109
87	Involvement of p21 Waf1/Cip1 in Protein Kinase C Alpha-Induced Cell Cycle Progression. Molecular and Cellular Biology, 2000, 20, 4580-4590.	2.3	107
88	Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17992-17997.	7.1	107
89	Combination of Thrombin and Matrix Metalloproteinase-9 Exacerbates Neurotoxicity in Cell Culture and Intracerebral Hemorrhage in Mice. Journal of Neuroscience, 2006, 26, 10281-10291.	3.6	106
90	T Cell Exhaustion in Glioblastoma: Intricacies of Immune Checkpoints. Trends in Immunology, 2017, 38, 104-115.	6.8	105

#	Article	IF	CITATIONS
91	Chemokine-enhanced migration of human peripheral blood mononuclear cells is antagonized by interferon beta-1b through an effect on matrix metalloproteinase-9. Journal of Neuroimmunology, 1997, 80, 38-46.	2.3	102
92	Additive effect of the combination of glatiramer acetate and minocycline in a model of MS. Journal of Neuroimmunology, 2005, 158, 213-221.	2.3	102
93	Enhanced Protein Kinase C Activity Correlates with the Growth Rate of Malignant Gliomas in Vitro. Neurosurgery, 1991, 29, 880-887.	1.1	101
94	Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities. Brain, 2020, 143, 1297-1314.	7.6	101
95	When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nature Reviews Neurology, 2019, 15, 704-717.	10.1	100
96	Glatiramer acetate in combination with minocycline in patients with relapsing—remitting multiple sclerosis: results of a Canadian, multicenter, double-blind, placebo-controlled trial. Multiple Sclerosis Journal, 2009, 15, 1183-1194.	3.0	99
97	Analysis of the mitochondrial proteome in multiple sclerosis cortex. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 630-641.	3.8	98
98	Human Astrocytes Are Resistant to Fas Ligand and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis. Journal of Neuroscience, 2006, 26, 3299-3308.	3.6	96
99	Protein Kinase C Activity Correlates with the Growth Rate of Malignant Gliomas. Neurosurgery, 1992, 31, 717-724.	1.1	94
100	Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury. Brain, 2014, 137, 707-723.	7.6	92
101	EMMPRIN: A Novel Regulator of Leukocyte Transmigration into the CNS in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2011, 31, 669-677.	3.6	89
102	Multiexponential T2 and magnetization transfer MRI of demyelination and remyelination in murine spinal cord. NeuroImage, 2009, 45, 1173-1182.	4.2	88
103	Metalloproteinases are enriched in microglia compared with leukocytes and they regulate cytokine levels in activated microglia. Glia, 2007, 55, 516-526.	4.9	87
104	Differing roles for members of the phospholipase A2 superfamily in experimental autoimmune encephalomyelitis. Brain, 2009, 132, 1221-1235.	7.6	87
105	Interferonâ€Ĥ² Is a Potent Promoter of Nerve Growth Factor Production by Astrocytes. Journal of Neurochemistry, 1997, 69, 939-946.	3.9	86
106	The chemokine stromal cell derived factor-1 (CXCL12) promotes glioma invasiveness through MT2-matrix metalloproteinase. Carcinogenesis, 2005, 26, 2069-2077.	2.8	86
107	Brain tumor-initiating cells export tenascin-C associated with exosomes to suppress T cell activity. Oncolmmunology, 2018, 7, e1478647.	4.6	86
108	Characterization of the Early Neuroinflammation After Spinal Cord Injury in Mice. Journal of Neuropathology and Experimental Neurology, 2007, 66, 184-195.	1.7	85

#	Article	IF	CITATIONS
109	Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neuralized by microglia. Nature Neuroscience, 2021, 24, 489-503.	14.8	85
110	Differential activation of ERKs to focal adhesions by PKC ε is required for PMA-induced adhesion and migration of human glioma cells. Oncogene, 2001, 20, 7398-7407.	5.9	84
111	Differential proliferative response of human and mouse astrocytes to gamma-interferon. Glia, 1992, 6, 269-280.	4.9	83
112	Biochemically altered myelin triggers autoimmune demyelination. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5528-5533.	7.1	83
113	Protein Kinase C Inhibitors Suppress Cell Growth in Established and Low-Passage Glioma Cell Lines. A Comparison between Staurosporine and Tamoxifen. Neurosurgery, 1993, 33, 495-501.	1.1	83
114	Neurodegeneration and neuroprotection in multiple sclerosis and other neurodegenerative diseases. Journal of Neuroimmunology, 2006, 176, 198-215.	2.3	80
115	Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system. Acta Neuropathologica, 2020, 139, 893-909.	7.7	80
116	Multi-target-directed phenol–triazole ligands as therapeutic agents for Alzheimer's disease. Chemical Science, 2017, 8, 5636-5643.	7.4	79
117	A new double labelling immunofluorescence technique for the determination of proliferation of human astrocytes in culture. Journal of Neuroscience Methods, 1987, 21, 9-16.	2.5	78
118	Effective combination of minocycline and interferon-Î ² in a model of multiple sclerosis. Journal of Neuroimmunology, 2005, 165, 83-91.	2.3	78
119	Laquinimod reduces neuroaxonal injury through inhibiting microglial activation. Annals of Clinical and Translational Neurology, 2014, 1, 409-422.	3.7	77
120	Stimulation of Monocytes, Macrophages, and Microglia by Amphotericin B and Macrophage Colony-Stimulating Factor Promotes Remyelination. Journal of Neuroscience, 2015, 35, 1136-1148.	3.6	76
121	Overcoming neuriteâ€inhibitory chondroitin sulfate proteoglycans in the astrocyte matrix. Glia, 2013, 61, 972-984.	4.9	75
122	Enhanced glycolytic metabolism supports transmigration of brain-infiltrating macrophages in multiple sclerosis. Journal of Clinical Investigation, 2019, 129, 3277-3292.	8.2	75
123	Matrix metalloproteinase (MMP)â€12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. European Journal of Neuroscience, 2005, 21, 187-196.	2.6	74
124	Inhibition of growth of established human glioma cell lines by modulators of the protein kinase-C system. Journal of Neurosurgery, 1990, 73, 594-600.	1.6	73
125	Astrocytes attenuate oligodendrocyte death in vitro through an ?6 integrin-laminin-dependent mechanism. Glia, 2001, 36, 281-294.	4.9	73
126	Kinetics of Proinflammatory Monocytes in a Model of Multiple Sclerosis and Its Perturbation by Laquinimod. American Journal of Pathology, 2012, 181, 642-651.	3.8	72

#	Article	IF	CITATIONS
127	Differential microglia and macrophage profiles in human IDH-mutant and -wild type glioblastoma. Oncotarget, 2019, 10, 3129-3143.	1.8	71
128	The extracellular matrix as modifier of neuroinflammation and remyelination in multiple sclerosis. Brain, 2021, 144, 1958-1973.	7.6	71
129	Increased invasive capacity of connexin43-overexpressing malignant glioma cells. Journal of Neurosurgery, 2003, 99, 1039-1046.	1.6	70
130	Growth factors for human glial cells in culture. Glia, 1988, 1, 113-123.	4.9	69
131	Multimodal Enhancement of Remyelination by Exercise with a Pivotal Role for Oligodendroglial PGC1α. Cell Reports, 2018, 24, 3167-3179.	6.4	68
132	Astrocytes and catalase prevent the toxicity of catecholamines to oligodendrocytes. Brain Research, 1994, 633, 83-90.	2.2	67
133	Chondroitin sulfate proteoglycans as novel drivers of leucocyte infiltration in multiple sclerosis. Brain, 2018, 141, 1094-1110.	7.6	67
134	Migratory behavior of lymphocytes isolated from multiple sclerosis patients: Effects of interferon ?-1b therapy. Annals of Neurology, 1999, 46, 319-324.	5.3	66
135	Pilot Study of Minocycline in Relapsing-Remitting Multiple Sclerosis. Canadian Journal of Neurological Sciences, 2008, 35, 185-191.	0.5	66
136	Astrocyte reactivity in neonatal mice: apparent dependence on the presence of reactive microglia/macrophages. Glia, 1996, 18, 11-26.	4.9	64
137	Biomarkers of intestinal barrier function in multiple sclerosis are associated with disease activity. Multiple Sclerosis Journal, 2020, 26, 1340-1350.	3.0	64
138	Improving Outcomes of Neuroprotection by Minocycline. American Journal of Pathology, 2010, 176, 1193-1202.	3.8	63
139	The many faces of EMMPRIN—Roles in neuroinflammation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 213-219.	3.8	63
140	Reduced inflammation accompanies diminished myelin damage and repair in the NG2 null mouse spinal cord. Journal of Neuroinflammation, 2011, 8, 158.	7.2	63
141	Protein Kinase C Inhibitors Suppress Cell Growth in Established and Low-Passage Glioma Cell Lines. A Comparison between Staurosporine and Tamoxifen. Neurosurgery, 1993, 33, 495-501.	1.1	62
142	Astrocytes promote process outgrowth by adult human oligodendrocytes in vitro through interaction between bFGF and astrocyte extracellular matrix. , 1996, 17, 237-253.		62
143	Activation of NOTCH Signaling by Tenascin-C Promotes Growth of Human Brain Tumor-Initiating Cells. Cancer Research, 2017, 77, 3231-3243.	0.9	61
144	Mechanism-based criteria to improve therapeutic outcomes in progressive multiple sclerosis. Nature Reviews Neurology, 2022, 18, 40-55.	10.1	61

#	Article	lF	CITATIONS
145	Monoamine oxidase B, smoking, and Parkinson's disease. Journal of the Neurological Sciences, 1986, 72, 265-272.	0.6	59
146	Growth factors for fetal and adult human astrocytes in culture. Brain Research, 1988, 444, 59-66.	2.2	59
147	Environmental factors and their regulation of immunity in multiple sclerosis. Journal of the Neurological Sciences, 2013, 324, 10-16.	0.6	59
148	Immune modulatory therapies for spinal cord injury – Past, present and future. Experimental Neurology, 2014, 258, 91-104.	4.1	59
149	ADAM-9 is a novel mediator of tenascin-C-stimulated invasiveness of brain tumor–initiating cells. Neuro-Oncology, 2015, 17, 1095-1105.	1.2	59
150	<scp>T</scp> he extracellular matrix: <scp>F</scp> ocus on oligodendrocyte biology and targeting <scp>CSPG</scp> s for remyelination therapies. Glia, 2018, 66, 1809-1825.	4.9	59
151	Paraquat and two endogenous analogues of the neurotoxic substance N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine do not damage dopaminergic nigrostriatal neurons in the mouse. Neuroscience Letters, 1986, 69, 285-289.	2.1	58
152	Contributions of multiple proteases to neurotoxicity in a mouse model of intracerebral haemorrhage. Brain, 2009, 132, 26-36.	7.6	58
153	Early Life Exposure to Lipopolysaccharide Suppresses Experimental Autoimmune Encephalomyelitis by Promoting Tolerogenic Dendritic Cells and Regulatory T Cells. Journal of Immunology, 2009, 183, 298-309.	0.8	58
154	B cells in central nervous system disease: diversity, locations and pathophysiology. Nature Reviews Immunology, 2022, 22, 513-524.	22.7	57
155	Inflammatory and structural biomarkers in acute traumatic spinal cord injury. Clinical Chemistry and Laboratory Medicine, 2011, 49, 425-433.	2.3	56
156	The Expression of Matrix Metalloproteinase-12 by Oligodendrocytes Regulates Their Maturation and Morphological Differentiation. Journal of Neuroscience, 2004, 24, 7597-7603.	3.6	55
157	Targeting MMPs in Acute and Chronic Neurological Conditions. Neurotherapeutics, 2007, 4, 580-589.	4.4	55
158	The role of EMMPRIN in T cell biology and immunological diseases. Journal of Leukocyte Biology, 2015, 98, 33-48.	3.3	55
159	Focus on the gut-brain axis: Multiple sclerosis, the intestinal barrier and the microbiome. World Journal of Gastroenterology, 2018, 24, 4217-4223.	3.3	55
160	Unique spectral signatures of the nucleic acid dye acridine orange can distinguish cell death by apoptosis and necroptosis. Journal of Cell Biology, 2017, 216, 1163-1181.	5.2	54
161	Origin of contralateral reactive gliosis in surgically injured rat cerebral cortex. Brain Research, 1991, 547, 223-228.	2.2	53
162	Monocytes increase human cardiac myofibroblast-mediated extracellular matrix remodeling through TGF-Ĵ² ₁ . American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H716-H724.	3.2	53

#	Article	IF	CITATIONS
163	Relative Importance of Proteinase-Activated Receptor-1 Versus Matrix Metalloproteinases in Intracerebral Hemorrhage-Mediated Neurotoxicity in Mice. Stroke, 2009, 40, 2199-2204.	2.0	52
164	Transplantation of human sympathetic neurons and adrenal chromaffin cells into parkinsonian monkeys: no reversal of clinical symptoms. Journal of the Neurological Sciences, 1989, 94, 51-67.	0.6	51
165	Magnetic resonance imaging of blood–spinal cord barrier disruption in mice with experimental autoimmune encephalomyelitis. Magnetic Resonance in Medicine, 2007, 58, 298-305.	3.0	51
166	Remyelination Therapy for Multiple Sclerosis. Neurotherapeutics, 2013, 10, 44-54.	4.4	51
167	α-Tocopherol and β-carotene do not protect marmosets against the dopaminergic neurotoxicity of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Journal of the Neurological Sciences, 1987, 81, 321-331.	0.6	50
168	Systematic screening of generic drugs for progressive multiple sclerosis identifies clomipramine as a promising therapeutic. Nature Communications, 2017, 8, 1990.	12.8	50
169	Effects of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and its metabolite, N-methyl-4-phenylpyridinium ion, on dopaminergic nigrostriatal neurons in the mouse. Neuroscience Letters, 1985, 58, 321-326.	2.1	49
170	Association between the Cerebral Inflammatory and Matrix Metalloproteinase Responses after Severe Traumatic Brain Injury in Humans. Journal of Neurotrauma, 2013, 30, 1727-1736.	3.4	48
171	Proliferation of human and mouse astrocytes in vitro: signalling through the protein kinase C pathway. Journal of the Neurological Sciences, 1992, 111, 92-103.	0.6	47
172	Matrix metalloproteinases in intracerebral hemorrhage. Neurological Research, 2008, 30, 775-782.	1.3	47
173	The chemokine GRO-Î \pm (CXCL1) confers increased tumorigenicity to glioma cells. Carcinogenesis, 2005, 26, 2058-2068.	2.8	46
174	A Quantitative Analysis of Suspected Environmental Causes of MS. Canadian Journal of Neurological Sciences, 2011, 38, 98-105.	0.5	46
175	Experimental Demyelination and Remyelination of Murine Spinal Cord by Focal Injection of Lysolecithin. Journal of Visualized Experiments, 2015, , .	0.3	46
176	Age-dependent decrease of process formation by cultured oligodendrocytes is augmented by protein kinase C stimulation. Journal of Neuroscience Research, 1991, 29, 87-99.	2.9	45
177	Chondroitin sulphate proteoglycans: Extracellular matrix proteins that regulate immunity of the central nervous system. Autoimmunity Reviews, 2011, 10, 766-772.	5.8	45
178	Hydroxychloroquine reduces microglial activity and attenuates experimental autoimmune encephalomyelitis. Journal of the Neurological Sciences, 2015, 358, 131-137.	0.6	45
179	Regenerative Capacity of Macrophages for Remyelination. Frontiers in Cell and Developmental Biology, 2016, 4, 47.	3.7	45
180	Activity-Dependent and Experience-Driven Myelination Provide New Directions for the Management of Multiple Sclerosis. Trends in Neurosciences, 2016, 39, 356-365.	8.6	45

#	Article	IF	CITATIONS
181	Pro-inflammatory roles of chondroitin sulfate proteoglycans in disorders of the central nervous system. Matrix Biology, 2018, 71-72, 432-442.	3.6	45
182	Protein kinase C isoform ? overexpression in C6 glioma cells and its role in cell proliferation. Journal of Neuro-Oncology, 1995, 24, 241-250.	2.9	44
183	Quetiapine Fumarate for the Treatment of Multiple Sclerosis: Focus on Myelin Repair. CNS Neuroscience and Therapeutics, 2013, 19, 737-744.	3.9	44
184	Extracellular matrix metalloproteinase inducer shows active perivascular cuffs in multiple sclerosis. Brain, 2013, 136, 1760-1777.	7.6	43
185	Immunopathogenesis of Multiple Sclerosis. International Review of Neurobiology, 2007, 79, 99-126.	2.0	42
186	Matrix Metalloproteinase-12 Deficiency Worsens Relapsing-Remitting Experimental Autoimmune Encephalomyelitis in Association with Cytokine and Chemokine Dysregulation. American Journal of Pathology, 2009, 174, 898-909.	3.8	42
187	Interactions Between Microglia and T Cells in Multiple Sclerosis Pathobiology. Journal of Interferon and Cytokine Research, 2014, 34, 615-622.	1.2	42
188	Oligodendrocytes and Myelin. Neurologic Clinics, 1995, 13, 23-49.	1.8	41
189	The interplay between the immune and central nervous systems in neuronal injury. Neurology, 2010, 74, S9-S16.	1.1	41
190	Treatment trials in progressive MS—current challenges and future directions. Nature Reviews Neurology, 2013, 9, 496-503.	10.1	40
191	Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models. NeuroImage: Clinical, 2014, 4, 743-756.	2.7	40
192	Deficient Surveillance and Phagocytic Activity of Myeloid Cells Within Demyelinated Lesions in Aging Mice Visualized by <i>Ex Vivo</i> Live Multiphoton Imaging. Journal of Neuroscience, 2018, 38, 1973-1988.	3.6	40
193	Expression and regulation of matrix metalloproteinase-12 in experimental autoimmune encephalomyelitis and by bone marrow derived macrophages in vitro. Journal of Neuroimmunology, 2008, 199, 24-34.	2.3	39
194	Fibronectin attenuates process outgrowth in oligodendrocytes by mislocalizing MMP-9 activity. Molecular and Cellular Neurosciences, 2009, 42, 234-242.	2.2	39
195	Reduction of microglial activity in a model of multiple sclerosis by dipyridamole. Journal of Neuroinflammation, 2013, 10, 89.	7.2	39
196	Mitogenic signaling and the relationship to cell cycle regulation in astrocytomas. Journal of Neuro-Oncology, 2001, 51, 245-264.	2.9	38
197	EMMPRIN, an upstream regulator of MMPs, in CNS biology. Matrix Biology, 2015, 44-46, 138-146.	3.6	38
198	Neurochemical Abnormalities in Brains of Renal Failure Patients Treated by Repeated Hemodialysis. Journal of Neurochemistry, 1985, 45, 1043-1048.	3.9	37

#	Article	IF	CITATIONS
199	1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) does not destroy nigrostriatal neurons in the scorbutic guinea pig. Life Sciences, 1985, 36, 1233-1238.	4.3	37
200	Cytokine production in T lymphocyte–microglia interaction is attenuated by glatiramer acetate: a mechanism for therapeutic efficacy in multiple sclerosis. Multiple Sclerosis Journal, 2002, 8, 299-306.	3.0	37
201	Prolactin in multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 15-23.	3.0	37
202	Susceptibility-weighted imaging in the experimental autoimmune encephalomyelitis model of multiple sclerosis indicates elevated deoxyhemoglobin, iron deposition and demyelination. Multiple Sclerosis Journal, 2013, 19, 721-731.	3.0	37
203	Expression and Modulation of HLA-DR on Cultured Human Adult Astrocytes. Journal of Neuropathology and Experimental Neurology, 1991, 50, 16-28.	1.7	36
204	Neuroinflammation and Demyelination in Multiple Sclerosis After Allogeneic Hematopoietic Stem Cell Transplantation. Archives of Neurology, 2010, 67, 716-22.	4.5	36
205	A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis. Journal of Neuroinflammation, 2012, 9, 64.	7.2	35
206	Control of brain tumor growth by reactivating myeloid cells with niacin. Science Translational Medicine, 2020, 12, .	12.4	35
207	Oxidative Stress Following Intracerebral Hemorrhage: From Molecular Mechanisms to Therapeutic Targets. Frontiers in Immunology, 2022, 13, 847246.	4.8	35
208	Signal transduction for proliferation of glioma cells in vitro occurs predominantly through a protein kinase C-mediated pathway. Brain Research, 1996, 710, 143-149.	2.2	34
209	The potential use of MMP inhibitors to treat CNS diseases. Expert Opinion on Investigational Drugs, 1999, 8, 255-268.	4.1	34
210	Association of α-Synuclein Immunoreactivity With Inflammatory Activity in Multiple Sclerosis Lesions. Journal of Neuropathology and Experimental Neurology, 2009, 68, 179-189.	1.7	34
211	Prospects of repair in multiple sclerosis. Journal of the Neurological Sciences, 2009, 277, S16-S18.	0.6	33
212	A Prospective Evaluation of the Temporal Matrix Metalloproteinase Response after Severe Traumatic Brain Injury in Humans. Journal of Neurotrauma, 2013, 30, 1717-1726.	3.4	33
213	Unexpected additive effects of minocycline and hydroxychloroquine in models of multiple sclerosis: Prospective combination treatment for progressive disease?. Multiple Sclerosis Journal, 2018, 24, 1543-1556.	3.0	33
214	Efficacy of Minocycline in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis of Rodent and Clinical Studies. Frontiers in Neurology, 2018, 9, 1103.	2.4	33
215	Production of soluble autocrine inhibitory factors by human glioma cell lines. Journal of the Neurological Sciences, 1992, 110, 178-185.	0.6	32
216	Prospects for neuroprotection in multiple sclerosis. Frontiers in Bioscience - Landmark, 2004, 9, 864.	3.0	32

#	Article	IF	CITATIONS
217	Impact of Minocycline on Extracellular Matrix Metalloproteinase Inducer, a Factor Implicated in Multiple Sclerosis Immunopathogenesis. Journal of Immunology, 2016, 197, 3850-3860.	0.8	32
218	Intracerebral haemorrhage: from clinical settings to animal models. Stroke and Vascular Neurology, 2020, 5, 388-395.	3.3	32
219	Adenovirus-mediated Wild-type p53 Gene Transfer and Overexpression Induces Apoptosis of Human Glioma Cells Independent of Endogenous p53 Status. Journal of Neuropathology and Experimental Neurology, 1997, 56, 872-878.	1.7	31
220	Fluorescent Phosphorus Dendrimer as a Spectral Nanosensor for Macrophage Polarization and Fate Tracking in Spinal Cord Injury. Macromolecular Bioscience, 2015, 15, 1523-1534.	4.1	31
221	Modes of Brain Cell Death Following Intracerebral Hemorrhage. Frontiers in Cellular Neuroscience, 2022, 16, 799753.	3.7	31
222	Manipulation of glutathione contents fails to alter dopaminergic nigrostriatal neurotoxicity of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. Neuroscience Letters, 1986, 70, 261-265.	2.1	30
223	Protein Kinase C and Growth Regulation of Malignant Gliomas. Canadian Journal of Neurological Sciences, 1995, 22, 264-271.	0.5	29
224	Inflammatory cytokine modulation of matrix metalloproteinase expression and invasiveness of glioma cells in a 3-dimensional collagen matrix. Journal of Neuro-Oncology, 2009, 91, 157-164.	2.9	29
225	Patrolling monocytes play a critical role in CX3CR1-mediated neuroprotection during excitotoxicity. Brain Structure and Function, 2015, 220, 1759-1776.	2.3	29
226	Targeting the Chondroitin Sulfate Proteoglycans: Evaluating Fluorinated Glucosamines and Xylosides in Screens Pertinent to Multiple Sclerosis. ACS Central Science, 2019, 5, 1223-1234.	11.3	29
227	α2,3-Sialyltransferase mRNA and α2,3-linked glycoprotein sialylation are increased in malignant gliomas. Brain Research, 1997, 755, 175-179.	2.2	28
228	Central nervous system targeted autoimmunity causes regional atrophy: a 9.4T MRI study of the EAE mouse model of Multiple Sclerosis. Scientific Reports, 2019, 9, 8488.	3.3	28
229	Gray Matter Hypoxia in the Brain of the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. PLoS ONE, 2016, 11, e0167196.	2.5	28
230	Cleavage of Osteopontin by Matrix Metalloproteinase-12 Modulates Experimental Autoimmune Encephalomyelitis Disease in C57BL/6 Mice. American Journal of Pathology, 2010, 177, 1448-1458.	3.8	27
231	The good, the bad and the ugly. Macrophages/microglia with a focus on myelin repair. Frontiers in Bioscience - Scholar, 2011, S3, 846.	2.1	27
232	Exercise in multiple sclerosis and its models: Focus on the central nervous system outcomes. Journal of Neuroscience Research, 2020, 98, 509-523.	2.9	27
233	Continued Disease Activity in a Patient With Multiple Sclerosis After Allogeneic Hematopoietic Cell Transplantation. Archives of Neurology, 2009, 66, 116-20.	4.5	26
234	3T deep gray matter T2 hypointensity correlates with disability over time in stable relapsing–remitting multiple sclerosis: A 3-year pilot study. Journal of the Neurological Sciences, 2010, 297, 76-81.	0.6	26

#	Article	IF	CITATIONS
235	Cellular Factors Promoting Resistance to Effective Treatment of Glioma with Oncolytic Myxoma Virus. Cancer Research, 2014, 74, 7260-7273.	0.9	26
236	Apoptosis is induced in glioma cells by antisense oligonucleotides to protein kinase Cα and is enhanced by cycloheximide. NeuroReport, 1998, 9, 1727-1733.	1.2	25
237	Targeting Progressive Neuroaxonal Injury. CNS Drugs, 2011, 25, 783-799.	5.9	25
238	Prolactin in combination with interferon-β reduces disease severity in an animal model of multiple sclerosis. Journal of Neuroinflammation, 2015, 12, 55.	7.2	24
239	Cerebrospinal Fluid Biomarkers in Human Spinal Cord Injury from a Phase II Minocycline Trial. Journal of Neurotrauma, 2018, 35, 1918-1928.	3.4	24
240	Beyond barrier functions: Roles of pericytes in homeostasis and regulation of neuroinflammation. Journal of Neuroscience Research, 2020, 98, 2390-2405.	2.9	24
241	Chronic mild stress exacerbates severity of experimental autoimmune encephalomyelitis in association with altered non-coding RNA and metabolic biomarkers. Neuroscience, 2017, 359, 299-307.	2.3	23
242	Hydroxychloroquine for Primary Progressive Multiple Sclerosis. Annals of Neurology, 2021, 90, 940-948.	5.3	23
243	Culture of Glial Cells from Human Brain Biopsies. , 1997, , 157-172.		23
244	Oxidized phospholipids as novel mediators of neurodegeneration. Trends in Neurosciences, 2022, 45, 419-429.	8.6	22
245	Versican promotes T helper 17 cytotoxic inflammation and impedes oligodendrocyte precursor cell remyelination. Nature Communications, 2022, 13, 2445.	12.8	22
246	Reduction of protein kinase C delta attenuates tenascin-C stimulated glioma invasion in three-dimensional matrix. Carcinogenesis, 2010, 31, 311-317.	2.8	21
247	Screening for Inhibitors of Microglia to Reduce Neuroinflammation. CNS and Neurological Disorders - Drug Targets, 2013, 12, 741-749.	1.4	21
248	Neuroprotection of minocycline by inhibition of extracellular matrix metalloproteinase inducer expression following intracerebral hemorrhage in mice. Neuroscience Letters, 2021, 764, 136297.	2.1	21
249	Immune Cell Infiltrates in Atypical Teratoid/Rhabdoid Tumors. Canadian Journal of Neurological Sciences, 2012, 39, 605-612.	0.5	20
250	<i>In Vivo</i> MR Imaging of Tumor-Associated Macrophages: The Next Frontier in Cancer Imaging. Magnetic Resonance Insights, 2018, 11, 1178623X1877197.	2.5	20
251	Gap Junctions and Hemichannels Composed of Connexins and Pannexins Mediate the Secondary Brain Injury Following Intracerebral Hemorrhage. Biology, 2022, 11, 27.	2.8	19
252	Vildagliptin improves neurological function by inhibiting apoptosis and ferroptosis following intracerebral hemorrhage in mice. Neuroscience Letters, 2022, 776, 136579.	2.1	19

#	Article	IF	CITATIONS
253	Alterations in myelination in the central nervous system of dystonia musculorum mice. Journal of Neuroscience Research, 2002, 69, 233-242.	2.9	18
254	The glycosyltransferase EXTL2 promotes proteoglycan deposition and injurious neuroinflammation following demyelination. Journal of Neuroinflammation, 2020, 17, 220.	7.2	18
255	PD-1 independent of PD-L1 ligation promotes glioblastoma growth through the NFκB pathway. Science Advances, 2021, 7, eabh2148.	10.3	18
256	Staurosporine differentially inhibits glioma versus non-glioma cell lines. Journal of Neuro-Oncology, 1993, 16, 141-147.	2.9	17
257	Multi-scale MRI spectrum detects differences in myelin integrity between MS lesion types. Multiple Sclerosis Journal, 2016, 22, 1569-1577.	3.0	17
258	Gestational bisphenol-A exposure lowers the threshold for autoimmunity in a model of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4999-5004.	7.1	17
259	Microglia in multiple sclerosis – pathogenesis and imaging. Current Opinion in Neurology, 2022, 35, 299-306.	3.6	17
260	The promoting effects of bFGF and astrocyte extracellular matrix on process outgrowth by adult human oligodendrocytes are mediated by protein kinase C. Brain Research, 1997, 757, 236-244.	2.2	16
261	Impact of IVIg on the interaction between activated T cells and microglia. Neurological Research, 2006, 28, 270-274.	1.3	16
262	The promise of futility trials in neurological diseases. Nature Reviews Neurology, 2015, 11, 300-305.	10.1	16
263	Fibrinogen in the glioblastoma microenvironment contributes to the invasiveness of brain tumorâ€initiating cells. Brain Pathology, 2021, 31, e12947.	4.1	16
264	The combination of deferoxamine and minocycline strengthens neuroprotective effect on acute intracerebral hemorrhage in rats. Neurological Research, 2021, 43, 854-864.	1.3	16
265	Resistance to Oncolytic Myxoma Virus Therapy in Nf1â^'/â^'/Trp53â^'/â^' Syngeneic Mouse Glioma Models Is Independent of Anti-Viral Type-I Interferon. PLoS ONE, 2013, 8, e65801.	2.5	16
266	Matrix Metalloproteinase-9 as an Important Contributor to the Pathophysiology of Depression. Frontiers in Neurology, 2022, 13, 861843.	2.4	16
267	1,25-Dihydroxyvitamin D3 Protects against Immune-Mediated Killing of Neurons in Culture and in Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2015, 10, e0144084.	2.5	15
268	Exercise rapidly alters proteomes in mice following spinal cord demyelination. Scientific Reports, 2021, 11, 7239.	3.3	15
269	Central Nervous System Tissue Regeneration after Intracerebral Hemorrhage: The Next Frontier. Cells, 2021, 10, 2513.	4.1	15
270	High-resolution fluorescence microscopy of myelin without exogenous probes. Neurolmage, 2014, 87, 42-54.	4.2	14

#	Article	IF	CITATIONS
271	Demyelination induces transport of ribosome-containing vesicles from glia to axons: evidence from animal models and MS patient brains. Molecular Biology Reports, 2016, 43, 495-507.	2.3	14
272	Harnessing the Benefits of Neuroinflammation: Generation of Macrophages/Microglia with Prominent Remyelinating Properties. Journal of Neuroscience, 2021, 41, 3366-3385.	3.6	14
273	Pericytes as mediators of infiltration of macrophages in multiple sclerosis. Journal of Neuroinflammation, 2021, 18, 301.	7.2	14
274	Serum NSE level and disability progression in multiple sclerosis. Journal of the Neurological Sciences, 2015, 350, 46-50.	0.6	13
275	MRI monitoring of monocytes to detect immune stimulating treatment response in brain tumor. Neuro-Oncology, 2016, 19, now180.	1.2	13
276	Microglia induces Gas1 expression in human brain tumor-initiating cells to reduce tumorigenecity. Scientific Reports, 2018, 8, 15286.	3.3	13
277	2â€arachidonoylglycerol reduces chondroitin sulphate proteoglycan production by astrocytes and enhances oligodendrocyte differentiation under inhibitory conditions. Glia, 2020, 68, 1255-1273.	4.9	13
278	Exercise and the brain in multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 1167-1172.	3.0	13
279	Aging-Exacerbated Acute Axon and Myelin Injury Is Associated with Microglia-Derived Reactive Oxygen Species and Is Alleviated by the Generic Medication Indapamide. Journal of Neuroscience, 2020, 40, 8587-8600.	3.6	13
280	Repurposing Domperidone in Secondary Progressive Multiple Sclerosis. Neurology, 2021, 96, e2313-e2322.	1.1	13
281	Response of astrocytes and oligodendrocytes to injury. Mental Retardation and Developmental Disabilities Research Reviews, 1998, 4, 193-199.	3.6	12
282	IVIg attenuates T cell-mediated killing of human neurons. Journal of Neuroimmunology, 2006, 177, 181-188.	2.3	12
283	The Regulation of Reactive Changes Around Multiple Sclerosis Lesions by Phosphorylated Signal Transducer and Activator of Transcription. Journal of Neuropathology and Experimental Neurology, 2013, 72, 1135-1144.	1.7	12
284	Combination of Hydroxychloroquine and Indapamide Attenuates Neurodegeneration in Models Relevant to Multiple Sclerosis. Neurotherapeutics, 2021, 18, 387-400.	4.4	12
285	Necrosulfonamide Alleviates Acute Brain Injury of Intracerebral Hemorrhage via Inhibiting Inflammation and Necroptosis. Frontiers in Molecular Neuroscience, 2022, 15, .	2.9	12
286	Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. Annals of Neurosciences, 2013, 20, 154.	1.7	11
287	Microglial modulation as a mechanism behind the promotion of central nervous system wellâ€being by physical exercise. Clinical and Experimental Neuroimmunology, 2014, 5, 188-201.	1.0	11
288	Neuregulin-1 beta 1 is implicated in pathogenesis of multiple sclerosis. Brain, 2021, 144, 162-185.	7.6	11

#	Article	IF	CITATIONS
289	Single-cell and spatial RNA sequencing identify perturbators of microglial functions with aging. Nature Aging, 2022, 2, 508-525.	11.6	11
290	EMMPRIN Promotes the Expression of MMP-9 and Exacerbates Neurological Dysfunction in a Mouse Model of Intracerebral Hemorrhage. Neurochemical Research, 2022, 47, 2383-2395.	3.3	11
291	Major histocompatibility complex molecules on glial cells. Seminars in Neuroscience, 1992, 4, 231-240.	2.2	10
292	Reduction of PrPC in human cerebrospinal fluid after spinal cord injury. Prion, 2010, 4, 80-86.	1.8	10
293	Using magnetic resonance imaging in animal models to guide drug development in multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 3-11.	3.0	10
294	Revisiting Minocycline in Intracerebral Hemorrhage: Mechanisms and Clinical Translation. Frontiers in Immunology, 2022, 13, 844163.	4.8	10
295	Malignant Glioma-Derived Soluble Factors Regulate Proliferation of Normal Adult Human Astrocytes. Journal of Neuropathology and Experimental Neurology, 1992, 51, 506-513.	1.7	9
296	Detecting Deoxyhemoglobin in Spinal Cord Vasculature of the Experimental Autoimmune Encephalomyelitis Mouse Model of Multiple Sclerosis Using Susceptibility MRI and Hyperoxygenation. PLoS ONE, 2015, 10, e0127033.	2.5	9
297	Circadian disruption in mice through chronic jet lag-like conditions modulates molecular profiles of cancer in nucleus accumbens and prefrontal cortex. Carcinogenesis, 2021, 42, 864-873.	2.8	9
298	Iron Neurotoxicity and Protection by Deferoxamine in Intracerebral Hemorrhage. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	9
299	The astrocyte mitogen, tumor necrosis factor-α, inhibits the proliferative effect of more potent adult human astrocute mitogens, γ-interferon and activated T-lymphocyte supernatants. Brain Research, 1994, 653, 297-304.	2.2	8
300	Minocycline for axonal regeneration after nerve injury: A double-edged sword. Experimental Neurology, 2008, 213, 245-248.	4.1	8
301	Active inflammation increases the heterogeneity of MRI texture in mice with relapsing experimental allergic encephalomyelitis. Magnetic Resonance Imaging, 2014, 32, 168-174.	1.8	8
302	Domperidone-induced elevation of serum prolactin levels and immune response in multiple sclerosis. Journal of Neuroimmunology, 2019, 334, 576974.	2.3	8
303	Metabolic needs of brainâ€infiltrating leukocytes and microglia in multiple sclerosis. Journal of Neurochemistry, 2021, 158, 14-24.	3.9	8
304	Small functionalized iron oxide nanoparticles for dual brain magnetic resonance imaging and fluorescence imaging. RSC Advances, 2021, 11, 12867-12875.	3.6	8
305	A Novel MRI Texture Analysis of Demyelination and Inflammation in Relapsing-Remitting Experimental Allergic Encephalomyelitis. Lecture Notes in Computer Science, 2006, 9, 760-767.	1.3	8
306	Neuroprotection by Ozanimod Following Intracerebral Hemorrhage in Mice. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	8

#	Article	IF	CITATIONS
307	Demeclocycline Reduces the Growth of Human Brain Tumor-Initiating Cells: Direct Activity and Through Monocytes. Frontiers in Immunology, 2020, 11, 272.	4.8	7
308	The battle for the brain. Oncolmmunology, 2014, 3, e28047.	4.6	6
309	Intracerebral hemorrhage in translational research. Brain Hemorrhages, 2020, 1, 13-18.	1.0	6
310	Evaluating Soluble EMMPRIN as a Marker of Disease Activity in Multiple Sclerosis: Studies of Serum and Cerebrospinal Fluid. PLoS ONE, 2016, 11, e0163802.	2.5	6
311	Exercise training in multiple sclerosis. Lancet Neurology, The, 2022, 21, 313.	10.2	6
312	Inability to produce a model of dialysis encephalopathy in the rat by aluminum administration. Neurochemical Research, 1987, 12, 369-375.	3.3	5
313	[14] Cytokines as mediators of reactive astrogliosis. Methods in Neurosciences, 1995, , 220-235.	0.5	5
314	Obesity in acute ischaemic stroke patients treated with intravenous thrombolysis therapy. Neurological Research, 2021, , 1-8.	1.3	5
315	Human Glial Cells and Growth Factors. , 1989, , 29-48.		5
316	The Canadian prospective cohort study to understand progression in multiple sclerosis (CanProCo): rationale, aims, and study design. BMC Neurology, 2021, 21, 418.	1.8	5
317	A Distinct Hibiscus sabdariffa Extract Prevents Iron Neurotoxicity, a Driver of Multiple Sclerosis Pathology. Cells, 2022, 11, 440.	4.1	5
318	Changes in tissue directionality reflect differences in myelin content after demyelination in mice spinal cords. Journal of Structural Biology, 2014, 188, 116-122.	2.8	4
319	Quantitative analysis of spinal cord neuropathology in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2022, 362, 577777.	2.3	4
320	Remyelination trial failures: Repercussions of ignoring neurorehabilitation and exercise in repair. Multiple Sclerosis and Related Disorders, 2022, 58, 103539.	2.0	4
321	Is a circulating neurotoxin involved in the pathogenesis of Huntington's chorea?. Journal of the Neurological Sciences, 1985, 67, 351-358.	0.6	3
322	Tissue culture evidence for a circulating neurotoxin in Huntington's chorea. Journal of the Neurological Sciences, 1987, 78, 139-150.	0.6	3
323	IMMUNOPATHOGENESIS OF MULTIPLE SCLEROSIS. CONTINUUM Lifelong Learning in Neurology, 2004, 10, 11-27.	0.8	3
324	Expanding the Potential Therapeutic Options for Remote Ischemic Preconditioning: Use in Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 475.	2.4	3

#	Article	IF	CITATIONS
325	Multimodal peripheral fluid biomarker analysis in clinically isolated syndrome and early multiple sclerosis and Related Disorders, 2021, 50, 102809.	2.0	3
326	MedXercise: a promising strategy to promote remyelination. Current Opinion in Pharmacology, 2021, 61, 120-126.	3.5	3
327	Thermoregulatory dynamics reveal sex-specific inflammatory responses to experimental autoimmune encephalomyelitis in mice: Implications for multiple sclerosis-induced fatigue in females. Brain, Behavior, & Immunity - Health, 2022, 23, 100477.	2.5	3
328	Culture of Glial Cells from Human Brain Biopsies. , 2001, , 129-138.		2
329	Stop inflammation and you stop neurodegeneration in MS – YES. Multiple Sclerosis Journal, 2017, 23, 1320-1321.	3.0	2
330	Studying the microglia response to oxidized phosphatidylcholine in primary mouse neuron culture and mouse spinal cord. STAR Protocols, 2021, 2, 100853.	1.2	2
331	Minocycline treatment in clinically isolated syndrome and serum NfL, GFAP, and metalloproteinase levels. Multiple Sclerosis Journal, 2022, 28, 2081-2089.	3.0	2
332	Automated Slide Scanning and Segmentation in Fluorescently-labeled Tissues Using a Widefield High-content Analysis System. Journal of Visualized Experiments, 2018, , .	0.3	1
333	An X-ray for myelin. Trends in Neurosciences, 2021, 44, 600-601.	8.6	1
334	Does chronic jet lag increase risk of cancer?. Aging, 2021, 13, 21810-21811.	3.1	1
335	Interleukin-1 is a key regulator of matrix metalloproteinase-9 expression in human neurons in culture and following mouse brain trauma in vivo. , 2000, 61, 212.		1
336	Macrophages and Microglia in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. , 2013, , 177-195.		1
337	Inflammatory cytokines in CNS trauma. , 2001, , 181-191.		1
338	The good the bad and the ugly Macrophages microglia with a focus on myelin repair. Frontiers in Bioscience - Scholar, 2011, S3, 846-856.	2.1	0
339	Reply: When is the time right for a phase III clinical study in spinal cord injury (P = 0.05)?. Brain, 2012, 135, e221-e221.	7.6	Ο
340	Reply. Annals of Neurology, 2013, 73, 316-317.	5.3	0
341	Susceptibility weighted imaging detects prominent veins that precede or coincide with maximal motor disability in a model of multiple sclerosis: A pilot study. Multiple Sclerosis and Related Disorders, 2021, 54, 103124.	2.0	0

Expression, Functions and Interactions of Chemokines in CNS Trauma., 2002, , 151-158.

0

#	Article	IF	CITATIONS
343	Transplantation of Human Sympathetic Neurons and Adrenal Chromaffin Cells into Parkinsonian Monkeys. Methods in Neurosciences, 1991, , 362-378.	0.5	0