Roberta Cavalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3640766/publications.pdf

Version: 2024-02-01

38742 54911 7,937 135 50 84 citations g-index h-index papers 135 135 135 7308 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanocarriers Loaded with Oxygen to Improve the Protection of the Heart to be Transplanted. Current Pharmaceutical Design, 2022, 28, 468-470.	1.9	2
2	Ultrasound-Responsive Nrf2-Targeting siRNA-Loaded Nanobubbles for Enhancing the Treatment of Melanoma. Pharmaceutics, 2022, 14, 341.	4.5	18
3	Antimicrobial oxygen-loaded nanobubbles as promising tools to promote wound healing in hypoxic human keratinocytes. Toxicology Reports, 2022, 9, 154-162.	3.3	8
4	Antibacterial and Antifungal Efficacy of Medium and Low Weight Chitosan-Shelled Nanodroplets for the Treatment of Infected Chronic Wounds. International Journal of Nanomedicine, 2022, Volume 17, 1725-1739.	6.7	4
5	Cyclodextrin-Based Nanosponges and Proteins. Encyclopedia, 2022, 2, 752-760.	4.5	2
6	Lipid-Coated Nanocrystals as a Tool for Improving the Antioxidant Activity of Resveratrol. Antioxidants, 2022, 11, 1007.	5.1	6
7	Exploring chitosan-shelled nanobubbles to improve HER2 + immunotherapy via dendritic cell targeting. Drug Delivery and Translational Research, 2022, 12, 2007-2018.	5.8	8
8	Chitosan-Shelled Nanobubbles Irreversibly Encapsulate Morpholino Conjugate Antisense Oligonucleotides and Are Ineffective for Phosphorodiamidate Morpholino-Mediated Gene Silencing of <i>DUX4</i> . Nucleic Acid Therapeutics, 2021, 31, 201-207.	3.6	9
9	Enhanced Antimicrobial and Antibiofilm Effect of New Colistin-Loaded Human Albumin Nanoparticles. Antibiotics, 2021, 10, 57.	3.7	26
10	Comparative Evaluation of Different Chitosan Species and Derivatives as Candidate Biomaterials for Oxygen-Loaded Nanodroplet Formulations to Treat Chronic Wounds. Marine Drugs, 2021, 19, 112.	4.6	11
11	Transmucosal Solid Lipid Nanoparticles to Improve Genistein Absorption via Intestinal Lymphatic Transport. Pharmaceutics, 2021, 13, 267.	4.5	23
12	Cyclic Nigerosyl-Nigerose as Oxygen Nanocarrier to Protect Cellular Models from Hypoxia/Reoxygenation Injury: Implications from an In Vitro Model. International Journal of Molecular Sciences, 2021, 22, 4208.	4.1	7
13	Step-by-Step Design of New Theranostic Nanoformulations: Multifunctional Nanovectors for Radio-Chemo-Hyperthermic Therapy under Physical Targeting. Molecules, 2021, 26, 4591.	3.8	1
14	The Interplay between Histamine H4 Receptor and the Kidney Function: The Lesson from H4 Receptor Knockout Mice. Biomolecules, 2021, 11, 1517.	4.0	2
15	Nanotechnology Addressing Cutaneous Melanoma: The Italian Landscape. Pharmaceutics, 2021, 13, 1617.	4.5	11
16	Drug-Encapsulated Cyclodextrin Nanosponges. Methods in Molecular Biology, 2021, 2207, 247-283.	0.9	16
17	Study of oxyresveratrol complexes with insoluble cyclodextrin based nanosponges: Developing a novel way to obtain their complexation constants and application in an anticancer study. Carbohydrate Polymers, 2020, 231, 115763.	10.2	46
18	Carbosilane Dendrimers Loaded with siRNA Targeting Nrf2 as a Tool to Overcome Cisplatin Chemoresistance in Bladder Cancer Cells. Antioxidants, 2020, 9, 993.	5.1	20

#	Article	IF	Citations
19	Nanosponges as protein delivery systems: Insulin, a case study. International Journal of Pharmaceutics, 2020, 590, 119888.	5.2	31
20	Acyclovir-loaded sulfobutyl ether- \hat{l}^2 -cyclodextrin decorated chitosan nanodroplets for the local treatment of HSV-2 infections. International Journal of Pharmaceutics, 2020, 587, 119676.	5.2	30
21	History of Cyclodextrin Nanosponges. Polymers, 2020, 12, 1122.	4.5	91
22	Beyond Oncological Hyperthermia: Physically Drivable Magnetic Nanobubbles as Novel Multipurpose Theranostic Carriers in the Central Nervous System. Molecules, 2020, 25, 2104.	3.8	12
23	Biological Effect Evaluation of Glutathione-Responsive Cyclodextrin-Based Nanosponges: 2D and 3D Studies. Molecules, 2020, 25, 2775.	3.8	13
24	The Dual Role of the Liver in Nanomedicine as an Actor in the Elimination of Nanostructures or a Therapeutic Target. Journal of Oncology, 2020, 2020, 1-15.	1.3	33
25	Nanosponges for combination drug therapy: state-of-the-art and future directions. Nanomedicine, 2020, 15, 643-646.	3.3	16
26	Glutathione-responsive cyclodextrin-nanosponges as drug delivery systems for doxorubicin: Evaluation of toxicity and transport mechanisms in the liver. Toxicology in Vitro, 2020, 65, 104800.	2.4	37
27	Tetra-(<i>p</i> -tolyl)antimony(III)-Containing Heteropolytungstates, [{(<i>p</i> -tolyl)Sb ^{III} } ₄ (<i>A</i> -î±-XW ₉ O ₃₄) ₂ <td>>]^{<i< td=""><td>>n)n)a^'</td></i<>}</td>	>] ^{<i< td=""><td>>n)n)a^'</td></i<>}	>n)n)a^'
28	Improvement in the Anti-Tumor Efficacy of Doxorubicin Nanosponges in In Vitro and in Mice Bearing Breast Tumor Models. Cancers, 2020, 12, 162.	3.7	47
29	Immunotherapy of experimental melanoma with ICOS-Fc loaded in biocompatible and biodegradable nanoparticles. Journal of Controlled Release, 2020, 320, 112-124.	9.9	30
30	<p>Overcoming the Blood–Brain Barrier: Successes and Challenges inÂDeveloping Nanoparticle-Mediated Drug Delivery Systems for the Treatment of Brain Tumours</p> . International Journal of Nanomedicine, 2020, Volume 15, 2999-3022.	6.7	61
31	Effect of antibiotic-loaded chitosan nanodroplets on Enterococci isolated from chronic ulcers of the lower limbs. Future Microbiology, 2020, 15, 1227-1236.	2.0	7
32	Evaluation of solubility enhancement, antioxidant activity, and cytotoxicity studies of kynurenic acid loaded cyclodextrin nanosponge. Carbohydrate Polymers, 2019, 224, 115168.	10.2	46
33	Paclitaxel-Loaded Nanosponges Inhibit Growth and Angiogenesis in Melanoma Cell Models. Frontiers in Pharmacology, 2019, 10, 776.	3.5	36
34	Comparative Evaluation of Solubility, Cytotoxicity and Photostability Studies of Resveratrol and Oxyresveratrol Loaded Nanosponges. Pharmaceutics, 2019, 11, 545.	4.5	56
35	Bio-Functional Textiles: Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics, 2019, 11, 403.	4.5	32
36	Effect of Bilastine on Diabetic Nephropathy in DBA2/J Mice. International Journal of Molecular Sciences, 2019, 20, 2554.	4.1	5

#	Article	lF	Citations
37	In Vitro Enhanced Skin Permeation and Retention of Imiquimod Loaded in \hat{l}^2 -Cyclodextrin Nanosponge Hydrogel. Pharmaceutics, 2019, 11, 138.	4.5	51
38	Nanostructured ZnO as Multifunctional Carrier for a Green Antibacterial Drug Delivery Systemâ€"A Feasibility Study. Nanomaterials, 2019, 9, 407.	4.1	22
39	Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Functionalization for Biomedical Applications in the Central Nervous System. Materials, 2019, 12, 465.	2.9	171
40	Superparamagnetic Oxygen-Loaded Nanobubbles to Enhance Tumor Oxygenation During Hyperthermia. Frontiers in Pharmacology, 2019, 10, 1001.	3.5	15
41	Anti-zika virus activity of polyoxometalates. Antiviral Research, 2019, 163, 29-33.	4.1	21
42	Ailanthone inhibits cell growth and migration of cisplatin resistant bladder cancer cells through down-regulation of Nrf2, YAP, and c-Myc expression Phytomedicine, 2019, 56, 156-164.	5.3	45
43	Increasing protective activity of genistein by loading into transfersomes: A new potential adjuvant in the oxidative stress-related neurodegenerative diseases?. Phytomedicine, 2019, 52, 23-31.	5.3	38
44	†În Vitro', †În Vivo' and †În Silico' Investigation of the Anticancer Effectiveness of Oxygen-Load Chitosan-Shelled Nanodroplets as Potential Drug Vector. Pharmaceutical Research, 2018, 35, 75.	ed 3.5	16
45	Cyclic nigerosyl-1,6-nigerose-based nanosponges: An innovative pH and time-controlled nanocarrier for improving cancer treatment. Carbohydrate Polymers, 2018, 194, 111-121.	10.2	26
46	Cyclodextrin-based nanosponges as vehicles for antiviral drugs: challenges and perspectives. Nanomedicine, 2018, 13, 477-480.	3.3	24
47	Histamine H 4 receptor antagonism prevents the progression of diabetic nephropathy in male DBA2/J mice. Pharmacological Research, 2018, 128, 18-28.	7.1	18
48	A green organic-solvent-free route to prepare nanostructured zinc oxide carriers of clotrimazole for pharmaceutical applications. Journal of Cleaner Production, 2018, 172, 1433-1439.	9.3	16
49	Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opinion on Drug Delivery, 2018, 15, 93-114.	5.0	127
50	Nanodiagnostics and Nanodelivery Applications in Genetic Alterations. Current Pharmaceutical Design, 2018, 24, 1717-1726.	1.9	8
51	Glutathione/pH-responsive nanosponges enhance strigolactone delivery to prostate cancer cells. Oncotarget, 2018, 9, 35813-35829.	1.8	36
52	From Micro- to Nano-Multifunctional Theranostic Platform: Effective Ultrasound Imaging Is Not Just a Matter of Scale. Molecular Imaging, 2018, 17, 153601211877821.	1.4	27
53	Acyclovir-Loaded Chitosan Nanospheres from Nano-Emulsion Templating for the Topical Treatment of Herpesviruses Infections. Pharmaceutics, 2018, 10, 46.	4.5	65
54	Magnetic Nanoparticles in the Central Nervous System: Targeting Principles, Applications and Safety Issues. Molecules, 2018, 23, 9.	3.8	70

#	Article	IF	CITATIONS
55	α-Cyclodextrin and α-Cyclodextrin Polymers as Oxygen Nanocarriers to Limit Hypoxia/Reoxygenation Injury: Implications from an In Vitro Model. Polymers, 2018, 10, 211.	4.5	31
56	Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: preclinical study in a xenograft mouse model. Endocrine-Related Cancer, 2017, 24, 275-286.	3.1	40
57	Enhanced cytotoxic effect of camptothecin nanosponges in anaplastic thyroid cancer cells <i>in vitro</i> and <i>in vivo</i> on orthotopic xenograft tumors. Drug Delivery, 2017, 24, 670-680.	5.7	41
58	Vancomycin-loaded nanobubbles: A new platform for controlled antibiotic delivery against methicillin-resistant Staphylococcus aureus infections. International Journal of Pharmaceutics, 2017, 523, 176-188.	5.2	48
59	<i>In vitro</i> release and permeation kinetics of <i>Melaleuca alternifolia</i> (tea tree) essential oil bioactive compounds from topical formulations. Flavour and Fragrance Journal, 2017, 32, 354-361.	2.6	11
60	Evolution of Cyclodextrin Nanosponges. International Journal of Pharmaceutics, 2017, 531, 470-479.	5.2	131
61	Cyclodextrin-Based Nanohydrogels Containing Polyamidoamine Units: A New Dexamethasone Delivery System for Inflammatory Diseases. Gels, 2017, 3, 22.	4.5	14
62	<l>In Vitro</l> and <l>In Vivo</l> Therapeutic Evaluation of Camptothecin-Encapsulated <l>l^2</l> -Cyclodextrin Nanosponges in Prostate Cancer. Journal of Biomedical Nanotechnology, 2016, 12, 114-127.	1.1	67
63	Cyclodextrinâ€based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 579-601.	6.1	117
64	Glutathione Bioresponsive Cyclodextrin Nanosponges. ChemPlusChem, 2016, 81, 439-443.	2.8	42
65	GSH-targeted nanosponges increase doxorubicin-induced toxicity "in vitro―and "in vivo―in cancer cells with high antioxidant defenses. Free Radical Biology and Medicine, 2016, 97, 24-37.	2.9	70
66	Effects of oxygen tension and dextran-shelled/2H,3H-decafluoropentane-cored oxygen-loaded nanodroplets on secretion of gelatinases and their inhibitors in term human placenta. Bioscience, Biotechnology and Biochemistry, 2016, 80, 466-472.	1.3	7
67	Functionalized nanosponges for controlled antibacterial and antihypocalcemic actions. Biomedicine and Pharmacotherapy, 2016, 84, 485-494.	5.6	35
68	Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-DOPA: perspectives for the treatment of Parkinson's disease. Expert Opinion on Drug Delivery, 2016, 13, 1671-1680.	5.0	77
69	Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 109, 214-223.	4.3	121
70	Nanobubbles: a promising efficienft tool for therapeutic delivery. Therapeutic Delivery, 2016, 7, 117-138.	2.2	120
71	The AGMA1 poly(amidoamine) inhibits the infectivity of herpes simplex virus in cell lines, in human cervicovaginal histocultures, and in vaginally infected mice. Biomaterials, 2016, 85, 40-53.	11.4	30
72	Doxorubicin-Loaded Nanobubbles Combined with Extracorporeal Shock Waves: Basis for a New Drug Delivery Tool in Anaplastic Thyroid Cancer. Thyroid, 2016, 26, 705-716.	4.5	48

#	Article	lF	Citations
73	Recent studies on the delivery of hydrophilic drugs in nanoparticulate systems. Journal of Drug Delivery Science and Technology, 2016, 32, 298-312.	3.0	48
74	Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves. PLoS ONE, 2016, 11, e0168553.	2.5	10
75	Cyclodextrin-based Polymeric Nanoparticles as Efficient Carriers for Anticancer Drugs. Current Pharmaceutical Biotechnology, 2016, 17, 248-255.	1.6	37
76	Oxygen-Loaded Nanodroplets Effectively Abrogate Hypoxia Dysregulating Effects on Secretion of MMP-9 and TIMP-1 by Human Monocytes. Mediators of Inflammation, 2015, 2015, 1-11.	3.0	16
77	Antimicrobial chitosan nanodroplets: new insights for ultrasound-mediated adjuvant treatment of skin infection. Future Microbiology, 2015, 10, 929-939.	2.0	33
78	Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing. Toxicology and Applied Pharmacology, 2015, 286, 198-206.	2.8	30
79	In Vitro Stability Evaluation of Different Pharmaceutical Products Containing Meropenem. Hospital Pharmacy, 2015, 50, 296-303.	1.0	8
80	Acute and Repeated Dose Toxicity Studies of Different \hat{l}^2 -Cyclodextrin-Based Nanosponge Formulations. Journal of Pharmaceutical Sciences, 2015, 104, 1856-1863.	3.3	93
81	Preparation and in vitro characterization of chitosan nanobubbles as theranostic agents. Colloids and Surfaces B: Biointerfaces, 2015, 129, 39-46.	5.0	62
82	Drug nanosuspensions: a ZIP tool between traditional and innovative pharmaceutical formulations. Expert Opinion on Drug Delivery, 2015, 12, 1607-1625.	5.0	42
83	Propolis as lipid bioactive nano-carrier for topical nasal drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 136, 908-917.	5.0	29
84	Dextran-shelled oxygen-loaded nanodroplets reestablish a normoxia-like pro-angiogenic phenotype and behavior in hypoxic human dermal microvascular endothelium. Toxicology and Applied Pharmacology, 2015, 288, 330-338.	2.8	27
85	2H,3H-Decafluoropentane-Based Nanodroplets: New Perspectives for Oxygen Delivery to Hypoxic Cutaneous Tissues. PLoS ONE, 2015, 10, e0119769.	2.5	39
86	The application of nanosponges to cancer drug delivery. Expert Opinion on Drug Delivery, 2014, 11, 931-941.	5.0	98
87	Ultrasound-activated decafluoropentane-cored and chitosan-shelled nanodroplets for oxygen delivery to hypoxic cutaneous tissues. RSC Advances, 2014, 4, 38433-38441.	3.6	39
88	Ethyl 1,8-Naphthyridone-3-carboxylates Downregulate Human Papillomavirus-16 E6 and E7 Oncogene Expression. Journal of Medicinal Chemistry, 2014, 57, 5649-5663.	6.4	9
89	Synthesis and characterization of a hyper-branched water-soluble \hat{I}^2 -cyclodextrin polymer. Beilstein Journal of Organic Chemistry, 2014, 10, 2586-2593.	2.2	28
90	Cyclodextrin-Based Nanosponges as a Nanotechnology Strategy for Imiquimod Delivery in Pathological Scarring Prevention and Treatment. Journal of Nanopharmaceutics and Drug Delivery, 2014, 2, 311-324.	0.3	11

#	Article	IF	Citations
91	Loading into Nanoparticles Improves Quercetin's Efficacy in Preventing Neuroinflammation Induced by Oxysterols. PLoS ONE, 2014, 9, e96795.	2.5	80
92	New Chitosan Nanospheres for the Delivery of 5-Fluorouracil: Preparation, Characterization and in vitro Studies. Current Drug Delivery, 2014, 11, 270-278.	1.6	25
93	Cyclodextrin-based nanosponges: effective nanocarrier for Tamoxifen delivery. Pharmaceutical Development and Technology, 2013, 18, 619-625.	2.4	123
94	Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 76, 201-211.	1.6	56
95	The inclusion complex of 4-hydroxynonenal with a polymeric derivative of \hat{I}^2 -cyclodextrin enhances the antitumoral efficacy of the aldehyde in several tumor cell lines and in a three-dimensional human melanoma model. Free Radical Biology and Medicine, 2013, 65, 765-777.	2.9	14
96	A general strategy for obtaining biodegradable polymer shelled microbubbles as theranostic devices. Chemical Communications, 2013, 49, 5763.	4.1	19
97	Micro- and nanobubbles: A versatile non-viral platform for gene delivery. International Journal of Pharmaceutics, 2013, 456, 437-445.	5.2	76
98	Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent's antiviral efficacy. International Journal of Pharmaceutics, 2013, 443, 262-272.	5.2	144
99	Nanosponges Encapsulating Dexamethasone for Ocular Delivery: Formulation Design, Physicochemical Characterization, Safety and Corneal Permeability Assessment. Journal of Biomedical Nanotechnology, 2013, 9, 998-1007.	1.1	70
100	New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization. International Journal of Nanomedicine, 2012, 7, 3309.	6.7	86
101	Cyclodextrin-based nanosponges as drug carriers. Beilstein Journal of Organic Chemistry, 2012, 8, 2091-2099.	2.2	275
102	In vitro enhancement of anticancer activity of paclitaxel by a Cremophor free cyclodextrin-based nanosponge formulation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 74, 201-210.	1.6	92
103	Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells. European Journal of Pharmaceutical Sciences, 2012, 47, 686-694.	4.0	67
104	Enhanced Antiviral Activity of Acyclovir Loaded into Nanoparticles. Methods in Enzymology, 2012, 509, 1-19.	1.0	28
105	Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with \hat{I}^2 -cyclodextrin and inclusion complexes of ASA with PMDA cross-linked \hat{I}^2 -cyclodextrin nanosponges. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 74, 447-454.	1.6	91
106	The in vitro characterization of dextran-based nanobubbles as possible DNA transfection agents. Soft Matter, 2011, 7, 10590.	2.7	17
107	Paclitaxel Loaded Nanosponges: In-Vitro Characterization and Cytotoxicity Study on MCF-7 Cell Line Culture. Current Drug Delivery, 2011, 8, 194-202.	1.6	67
108	Cyclodextrin-Based Nanosponges for Delivery of Resveratrol: In Vitro Characterisation, Stability, Cytotoxicity and Permeation Study. AAPS PharmSciTech, 2011, 12, 279-286.	3.3	280

#	Article	IF	Citations
109	Cyclodextrin nanosponges as effective gas carriers. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 189-194.	1.6	72
110	In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of \hat{l}^2 -cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 68, 183-191.	1.6	61
111	Nanosponge formulations as oxygen delivery systems. International Journal of Pharmaceutics, 2010, 402, 254-257.	5.2	106
112	Nanoparticulate Delivery Systems for Antiviral Drugs. Antiviral Chemistry and Chemotherapy, 2010, 21, 53-70.	0.6	154
113	Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Delivery, 2010, 17, 419-425.	5.7	116
114	Amphoteric Agmatine Containing Polyamidoamines as Carriers for Plasmid DNA In Vitro and In Vivo Delivery. Biomacromolecules, $2010,11,2667-2674.$	5.4	45
115	Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 193-201.	4.3	263
116	Enhanced antiviral activity of Acyclovir loaded into \hat{l}^2 -cyclodextrin-poly(4-acryloylmorpholine) conjugate nanoparticles. Journal of Controlled Release, 2009, 137, 116-122.	9.9	78
117	Ultrasound-mediated oxygen delivery from chitosan nanobubbles. International Journal of Pharmaceutics, 2009, 378, 215-217.	5.2	71
118	Characterization and Applications of New Hyper-Cross-Linked Cyclodextrins. Composite Interfaces, 2009, 16, 39-48.	2.3	127
119	Poly(4â€acryloylmorpholine) oligomers carrying a β yclodextrin residue at one terminus. Journal of Polymer Science Part A, 2008, 46, 1607-1617.	2.3	29
120	Preparation and in vitro evaluation of the antiviral activity of the Acyclovir complex of a \hat{l}^2 -cyclodextrin/poly(amidoamine) copolymer. Journal of Controlled Release, 2008, 126, 17-25.	9.9	42
121	Microbubble-mediated oxygen delivery to hypoxic tissues as a new therapeutic device. , 2008, 2008, 2067-70.		12
122	Effect of alkylcarbonates of \hat{l}^3 -cyclodextrins with different chain lengths on drug complexation and release characteristics. International Journal of Pharmaceutics, 2007, 339, 197-204.	5.2	15
123	Nanoparticles derived from amphiphilic \hat{I}^3 -cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 657-661.	1.6	22
124	Cyclodextrin-based Nanosponges for Drug Delivery. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 209-213.	1.6	203
125	Duodenal administration of solid lipid nanoparticles loaded with different percentages of tobramycin. Journal of Pharmaceutical Sciences, 2003, 92, 1085-1094.	3.3	106
126	Intravenous Administration to Rabbits of Non-stealth and Stealth Doxorubicin-loaded Solid Lipid Nanoparticles at Increasing Concentrations of Stealth Agent: Pharmacokinetics and Distribution of Doxorubicin in Brain and Other Tissues. Journal of Drug Targeting, 2002, 10, 327-335.	4.4	190

#	Article	IF	CITATIONS
127	Pharmacokinetics and Tissue Distribution of Idarubicin-Loaded Solid Lipid Nanoparticles After Duodenal Administration to Rats. Journal of Pharmaceutical Sciences, 2002, 91, 1324-1333.	3.3	116
128	Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. International Journal of Pharmaceutics, 2002, 238, 241-245.	5.2	343
129	Investigation of Haemolytic and Complexation Properties of \hat{I}^3 -Cyclodextrin Carbonate Derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44, 345-346.	1.6	7
130	Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (sln) after duodenal administration to rats. Part Il—Tissue distribution. Pharmacological Research, 2001, 43, 497-502.	7.1	90
131	Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. International Journal of Pharmaceutics, 2000, 210, 61-67.	5. 2	163
132	Preparation and characterization of solid lipid nanospheres containing paclitaxel. European Journal of Pharmaceutical Sciences, 2000, 10, 305-309.	4.0	112
133	Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacological Research, 2000, 42, 337-343.	7.1	275
134	Transmucosal transport of tobramycin incorporated in SLN after duodenal administration to rats. Part lâ€"A pharmacokinetic study. Pharmacological Research, 2000, 42, 541-545.	7.1	54
135	Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats. Pharmaceutical Research, 1998, 15, 745-750.	3. 5	132