
Roberta Cavalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3640766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. International Journal of Pharmaceutics, 2002, 238, 241-245.	5.2	343
2	Cyclodextrin-Based Nanosponges for Delivery of Resveratrol: In Vitro Characterisation, Stability, Cytotoxicity and Permeation Study. AAPS PharmSciTech, 2011, 12, 279-286.	3.3	280
3	Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacological Research, 2000, 42, 337-343.	7.1	275
4	Cyclodextrin-based nanosponges as drug carriers. Beilstein Journal of Organic Chemistry, 2012, 8, 2091-2099.	2.2	275
5	Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 193-201.	4.3	263
6	Cyclodextrin-based Nanosponges for Drug Delivery. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 209-213.	1.6	203
7	Intravenous Administration to Rabbits of Non-stealth and Stealth Doxorubicin-loaded Solid Lipid Nanoparticles at Increasing Concentrations of Stealth Agent: Pharmacokinetics and Distribution of Doxorubicin in Brain and Other Tissues. Journal of Drug Targeting, 2002, 10, 327-335.	4.4	190
8	Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Functionalization for Biomedical Applications in the Central Nervous System. Materials, 2019, 12, 465.	2.9	171
9	Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. International Journal of Pharmaceutics, 2000, 210, 61-67.	5.2	163
10	Nanoparticulate Delivery Systems for Antiviral Drugs. Antiviral Chemistry and Chemotherapy, 2010, 21, 53-70.	0.6	154
11	Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent's antiviral efficacy. International Journal of Pharmaceutics, 2013, 443, 262-272.	5.2	144
12	Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats. Pharmaceutical Research, 1998, 15, 745-750.	3.5	132
13	Evolution of Cyclodextrin Nanosponges. International Journal of Pharmaceutics, 2017, 531, 470-479.	5.2	131
14	Characterization and Applications of New Hyper-Cross-Linked Cyclodextrins. Composite Interfaces, 2009, 16, 39-48.	2.3	127
15	Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opinion on Drug Delivery, 2018, 15, 93-114.	5.0	127
16	Cyclodextrin-based nanosponges: effective nanocarrier for Tamoxifen delivery. Pharmaceutical Development and Technology, 2013, 18, 619-625.	2.4	123
17	Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 109, 214-223.	4.3	121
18	Nanobubbles: a promising efficienft tool for therapeutic delivery. Therapeutic Delivery, 2016, 7, 117-138.	2.2	120

2

#	Article	IF	CITATIONS
19	Cyclodextrinâ€based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 579-601.	6.1	117
20	Pharmacokinetics and Tissue Distribution of Idarubicin-Loaded Solid Lipid Nanoparticles After Duodenal Administration to Rats. Journal of Pharmaceutical Sciences, 2002, 91, 1324-1333.	3.3	116
21	Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Delivery, 2010, 17, 419-425.	5.7	116
22	Preparation and characterization of solid lipid nanospheres containing paclitaxel. European Journal of Pharmaceutical Sciences, 2000, 10, 305-309.	4.0	112
23	Duodenal administration of solid lipid nanoparticles loaded with different percentages of tobramycin. Journal of Pharmaceutical Sciences, 2003, 92, 1085-1094.	3.3	106
24	Nanosponge formulations as oxygen delivery systems. International Journal of Pharmaceutics, 2010, 402, 254-257.	5.2	106
25	The application of nanosponges to cancer drug delivery. Expert Opinion on Drug Delivery, 2014, 11, 931-941.	5.0	98
26	Acute and Repeated Dose Toxicity Studies of Different β-Cyclodextrin-Based Nanosponge Formulations. Journal of Pharmaceutical Sciences, 2015, 104, 1856-1863.	3.3	93
27	In vitro enhancement of anticancer activity of paclitaxel by a Cremophor free cyclodextrin-based nanosponge formulation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 74, 201-210.	1.6	92
28	Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with Î ² -cyclodextrin and inclusion complexes of ASA with PMDA cross-linked Î ² -cyclodextrin nanosponges. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 74, 447-454.	1.6	91
29	History of Cyclodextrin Nanosponges. Polymers, 2020, 12, 1122.	4.5	91
30	Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (sln) after duodenal administration to rats. Part Il—Tissue distribution. Pharmacological Research, 2001, 43, 497-502.	7.1	90
31	New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization. International Journal of Nanomedicine, 2012, 7, 3309.	6.7	86
32	Loading into Nanoparticles Improves Quercetin's Efficacy in Preventing Neuroinflammation Induced by Oxysterols. PLoS ONE, 2014, 9, e96795.	2.5	80
33	Enhanced antiviral activity of Acyclovir loaded into β-cyclodextrin-poly(4-acryloylmorpholine) conjugate nanoparticles. Journal of Controlled Release, 2009, 137, 116-122.	9.9	78
34	Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-DOPA: perspectives for the treatment of Parkinson's disease. Expert Opinion on Drug Delivery, 2016, 13, 1671-1680.	5.0	77
35	Micro- and nanobubbles: A versatile non-viral platform for gene delivery. International Journal of Pharmaceutics, 2013, 456, 437-445.	5.2	76
36	Cyclodextrin nanosponges as effective gas carriers. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 189-194.	1.6	72

#	Article	IF	CITATIONS
37	Ultrasound-mediated oxygen delivery from chitosan nanobubbles. International Journal of Pharmaceutics, 2009, 378, 215-217.	5.2	71
38	Nanosponges Encapsulating Dexamethasone for Ocular Delivery: Formulation Design, Physicochemical Characterization, Safety and Corneal Permeability Assessment. Journal of Biomedical Nanotechnology, 2013, 9, 998-1007.	1.1	70
39	GSH-targeted nanosponges increase doxorubicin-induced toxicity "in vitro―and "in vivo―in cancer cells with high antioxidant defenses. Free Radical Biology and Medicine, 2016, 97, 24-37.	2.9	70
40	Magnetic Nanoparticles in the Central Nervous System: Targeting Principles, Applications and Safety Issues. Molecules, 2018, 23, 9.	3.8	70
41	Paclitaxel Loaded Nanosponges: In-Vitro Characterization and Cytotoxicity Study on MCF-7 Cell Line Culture. Current Drug Delivery, 2011, 8, 194-202.	1.6	67
42	Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells. European Journal of Pharmaceutical Sciences, 2012, 47, 686-694.	4.0	67
43	<l>ln Vitro</l> and <l>ln Vivo</l> Therapeutic Evaluation of Camptothecin-Encapsulated <l>l²</l> -Cyclodextrin Nanosponges in Prostate Cancer. Journal of Biomedical Nanotechnology, 2016, 12, 114-127.	1.1	67
44	Acyclovir-Loaded Chitosan Nanospheres from Nano-Emulsion Templating for the Topical Treatment of Herpesviruses Infections. Pharmaceutics, 2018, 10, 46.	4.5	65
45	Preparation and in vitro characterization of chitosan nanobubbles as theranostic agents. Colloids and Surfaces B: Biointerfaces, 2015, 129, 39-46.	5.0	62
46	In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 68, 183-191.	1.6	61
47	<p>Overcoming the Blood–Brain Barrier: Successes and Challenges inÂDeveloping Nanoparticle-Mediated Drug Delivery Systems for the Treatment of Brain Tumours</p> . International Journal of Nanomedicine, 2020, Volume 15, 2999-3022.	6.7	61
48	Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 76, 201-211.	1.6	56
49	Comparative Evaluation of Solubility, Cytotoxicity and Photostability Studies of Resveratrol and Oxyresveratrol Loaded Nanosponges. Pharmaceutics, 2019, 11, 545.	4.5	56
50	Transmucosal transport of tobramycin incorporated in SLN after duodenal administration to rats. Part I—A pharmacokinetic study. Pharmacological Research, 2000, 42, 541-545.	7.1	54
51	In Vitro Enhanced Skin Permeation and Retention of Imiquimod Loaded in β-Cyclodextrin Nanosponge Hydrogel. Pharmaceutics, 2019, 11, 138.	4.5	51
52	Doxorubicin-Loaded Nanobubbles Combined with Extracorporeal Shock Waves: Basis for a New Drug Delivery Tool in Anaplastic Thyroid Cancer. Thyroid, 2016, 26, 705-716.	4.5	48
53	Recent studies on the delivery of hydrophilic drugs in nanoparticulate systems. Journal of Drug Delivery Science and Technology, 2016, 32, 298-312.	3.0	48
54	Vancomycin-loaded nanobubbles: A new platform for controlled antibiotic delivery against methicillin-resistant Staphylococcus aureus infections. International Journal of Pharmaceutics, 2017, 523, 176-188.	5.2	48

#	Article	IF	CITATIONS
55	Improvement in the Anti-Tumor Efficacy of Doxorubicin Nanosponges in In Vitro and in Mice Bearing Breast Tumor Models. Cancers, 2020, 12, 162.	3.7	47
56	Evaluation of solubility enhancement, antioxidant activity, and cytotoxicity studies of kynurenic acid loaded cyclodextrin nanosponge. Carbohydrate Polymers, 2019, 224, 115168.	10.2	46
57	Study of oxyresveratrol complexes with insoluble cyclodextrin based nanosponges: Developing a novel way to obtain their complexation constants and application in an anticancer study. Carbohydrate Polymers, 2020, 231, 115763.	10.2	46
58	Amphoteric Agmatine Containing Polyamidoamines as Carriers for Plasmid DNA In Vitro and In Vivo Delivery. Biomacromolecules, 2010, 11, 2667-2674.	5.4	45
59	Ailanthone inhibits cell growth and migration of cisplatin resistant bladder cancer cells through down-regulation of Nrf2, YAP, and c-Myc expression Phytomedicine, 2019, 56, 156-164.	5.3	45
60	Preparation and in vitro evaluation of the antiviral activity of the Acyclovir complex of a β-cyclodextrin/poly(amidoamine) copolymer. Journal of Controlled Release, 2008, 126, 17-25.	9.9	42
61	Drug nanosuspensions: a ZIP tool between traditional and innovative pharmaceutical formulations. Expert Opinion on Drug Delivery, 2015, 12, 1607-1625.	5.0	42
62	Glutathione Bioresponsive Cyclodextrin Nanosponges. ChemPlusChem, 2016, 81, 439-443.	2.8	42
63	Enhanced cytotoxic effect of camptothecin nanosponges in anaplastic thyroid cancer cells <i>in vitro</i> and <i>in vivo</i> on orthotopic xenograft tumors. Drug Delivery, 2017, 24, 670-680.	5.7	41
64	Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: preclinical study in a xenograft mouse model. Endocrine-Related Cancer, 2017, 24, 275-286.	3.1	40
65	Ultrasound-activated decafluoropentane-cored and chitosan-shelled nanodroplets for oxygen delivery to hypoxic cutaneous tissues. RSC Advances, 2014, 4, 38433-38441.	3.6	39
66	2H,3H-Decafluoropentane-Based Nanodroplets: New Perspectives for Oxygen Delivery to Hypoxic Cutaneous Tissues. PLoS ONE, 2015, 10, e0119769.	2.5	39
67	Increasing protective activity of genistein by loading into transfersomes: A new potential adjuvant in the oxidative stress-related neurodegenerative diseases?. Phytomedicine, 2019, 52, 23-31.	5.3	38
68	Glutathione-responsive cyclodextrin-nanosponges as drug delivery systems for doxorubicin: Evaluation of toxicity and transport mechanisms in the liver. Toxicology in Vitro, 2020, 65, 104800.	2.4	37
69	Cyclodextrin-based Polymeric Nanoparticles as Efficient Carriers for Anticancer Drugs. Current Pharmaceutical Biotechnology, 2016, 17, 248-255.	1.6	37
70	Glutathione/pH-responsive nanosponges enhance strigolactone delivery to prostate cancer cells. Oncotarget, 2018, 9, 35813-35829.	1.8	36
71	Paclitaxel-Loaded Nanosponges Inhibit Growth and Angiogenesis in Melanoma Cell Models. Frontiers in Pharmacology, 2019, 10, 776.	3.5	36
72	Functionalized nanosponges for controlled antibacterial and antihypocalcemic actions. Biomedicine and Pharmacotherapy, 2016, 84, 485-494.	5.6	35

5

#	Article	IF	CITATIONS
73	Antimicrobial chitosan nanodroplets: new insights for ultrasound-mediated adjuvant treatment of skin infection. Future Microbiology, 2015, 10, 929-939.	2.0	33
74	The Dual Role of the Liver in Nanomedicine as an Actor in the Elimination of Nanostructures or a Therapeutic Target. Journal of Oncology, 2020, 2020, 1-15.	1.3	33
75	Bio-Functional Textiles: Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics, 2019, 11, 403.	4.5	32
76	α-Cyclodextrin and α-Cyclodextrin Polymers as Oxygen Nanocarriers to Limit Hypoxia/Reoxygenation Injury: Implications from an In Vitro Model. Polymers, 2018, 10, 211.	4.5	31
77	Nanosponges as protein delivery systems: Insulin, a case study. International Journal of Pharmaceutics, 2020, 590, 119888.	5.2	31
78	Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing. Toxicology and Applied Pharmacology, 2015, 286, 198-206.	2.8	30
79	The AGMA1 poly(amidoamine) inhibits the infectivity of herpes simplex virus in cell lines, in human cervicovaginal histocultures, and in vaginally infected mice. Biomaterials, 2016, 85, 40-53.	11.4	30
80	Acyclovir-loaded sulfobutyl ether-Î ² -cyclodextrin decorated chitosan nanodroplets for the local treatment of HSV-2 infections. International Journal of Pharmaceutics, 2020, 587, 119676.	5.2	30
81	Immunotherapy of experimental melanoma with ICOS-Fc loaded in biocompatible and biodegradable nanoparticles. Journal of Controlled Release, 2020, 320, 112-124.	9.9	30
82	Poly(4â€acryloylmorpholine) oligomers carrying a β yclodextrin residue at one terminus. Journal of Polymer Science Part A, 2008, 46, 1607-1617.	2.3	29
83	Propolis as lipid bioactive nano-carrier for topical nasal drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 136, 908-917.	5.0	29
84	Enhanced Antiviral Activity of Acyclovir Loaded into Nanoparticles. Methods in Enzymology, 2012, 509, 1-19.	1.0	28
85	Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer. Beilstein Journal of Organic Chemistry, 2014, 10, 2586-2593.	2.2	28
86	Dextran-shelled oxygen-loaded nanodroplets reestablish a normoxia-like pro-angiogenic phenotype and behavior in hypoxic human dermal microvascular endothelium. Toxicology and Applied Pharmacology, 2015, 288, 330-338.	2.8	27
87	From Micro- to Nano-Multifunctional Theranostic Platform: Effective Ultrasound Imaging Is Not Just a Matter of Scale. Molecular Imaging, 2018, 17, 153601211877821.	1.4	27
88	Cyclic nigerosyl-1,6-nigerose-based nanosponges: An innovative pH and time-controlled nanocarrier for improving cancer treatment. Carbohydrate Polymers, 2018, 194, 111-121.	10.2	26
89	Enhanced Antimicrobial and Antibiofilm Effect of New Colistin-Loaded Human Albumin Nanoparticles. Antibiotics, 2021, 10, 57.	3.7	26
90	New Chitosan Nanospheres for the Delivery of 5-Fluorouracil: Preparation, Characterization and in vitro Studies. Current Drug Delivery, 2014, 11, 270-278.	1.6	25

#	Article	IF	CITATIONS
91	Cyclodextrin-based nanosponges as vehicles for antiviral drugs: challenges and perspectives. Nanomedicine, 2018, 13, 477-480.	3.3	24
92	Transmucosal Solid Lipid Nanoparticles to Improve Genistein Absorption via Intestinal Lymphatic Transport. Pharmaceutics, 2021, 13, 267.	4.5	23
93	Nanoparticles derived from amphiphilic $\hat{1}^3$ -cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 657-661.	1.6	22
94	Nanostructured ZnO as Multifunctional Carrier for a Green Antibacterial Drug Delivery System—A Feasibility Study. Nanomaterials, 2019, 9, 407.	4.1	22
95	Anti-zika virus activity of polyoxometalates. Antiviral Research, 2019, 163, 29-33.	4.1	21
96	Carbosilane Dendrimers Loaded with siRNA Targeting Nrf2 as a Tool to Overcome Cisplatin Chemoresistance in Bladder Cancer Cells. Antioxidants, 2020, 9, 993.	5.1	20
97	A general strategy for obtaining biodegradable polymer shelled microbubbles as theranostic devices. Chemical Communications, 2013, 49, 5763.	4.1	19
98	Histamine H 4 receptor antagonism prevents the progression of diabetic nephropathy in male DBA2/J mice. Pharmacological Research, 2018, 128, 18-28.	7.1	18
99	Ultrasound-Responsive Nrf2-Targeting siRNA-Loaded Nanobubbles for Enhancing the Treatment of Melanoma. Pharmaceutics, 2022, 14, 341.	4.5	18
100	The in vitro characterization of dextran-based nanobubbles as possible DNA transfection agents. Soft Matter, 2011, 7, 10590.	2.7	17
101	Oxygen-Loaded Nanodroplets Effectively Abrogate Hypoxia Dysregulating Effects on Secretion of MMP-9 and TIMP-1 by Human Monocytes. Mediators of Inflammation, 2015, 2015, 1-11.	3.0	16
102	â€~In Vitro', â€~In Vivo' and â€~In Silico' Investigation of the Anticancer Effectiveness of Oxygen-Load Chitosan-Shelled Nanodroplets as Potential Drug Vector. Pharmaceutical Research, 2018, 35, 75.	ed _{3.5}	16
103	A green organic-solvent-free route to prepare nanostructured zinc oxide carriers of clotrimazole for pharmaceutical applications. Journal of Cleaner Production, 2018, 172, 1433-1439.	9.3	16
104	Nanosponges for combination drug therapy: state-of-the-art and future directions. Nanomedicine, 2020, 15, 643-646.	3.3	16
105	Drug-Encapsulated Cyclodextrin Nanosponges. Methods in Molecular Biology, 2021, 2207, 247-283.	0.9	16
106	Effect of alkylcarbonates of Î ³ -cyclodextrins with different chain lengths on drug complexation and release characteristics. International Journal of Pharmaceutics, 2007, 339, 197-204.	5.2	15
107	Superparamagnetic Oxygen-Loaded Nanobubbles to Enhance Tumor Oxygenation During Hyperthermia. Frontiers in Pharmacology, 2019, 10, 1001.	3.5	15
108	Tetra-(<i>p</i> -tolyl)antimony(III)-Containing Heteropolytungstates, [{(<i>p</i> -tolyl)Sb ^{III} } ₄ (<i>A</i> -α-XW ₉ O ₃₄) ₂ (X = P, As, or Ge): Synthesis, Structure, and Study of Antibacterial and Antitumor Activity. Inorganic Chemistry, 2020, 59, 2978-2987.] ^{<i>4.0</i>}	>n∢/i>â^'15

7

#	Article	IF	CITATIONS
109	The inclusion complex of 4-hydroxynonenal with a polymeric derivative of Î ² -cyclodextrin enhances the antitumoral efficacy of the aldehyde in several tumor cell lines and in a three-dimensional human melanoma model. Free Radical Biology and Medicine, 2013, 65, 765-777.	2.9	14
110	Cyclodextrin-Based Nanohydrogels Containing Polyamidoamine Units: A New Dexamethasone Delivery System for Inflammatory Diseases. Gels, 2017, 3, 22.	4.5	14
111	Biological Effect Evaluation of Glutathione-Responsive Cyclodextrin-Based Nanosponges: 2D and 3D Studies. Molecules, 2020, 25, 2775.	3.8	13
112	Microbubble-mediated oxygen delivery to hypoxic tissues as a new therapeutic device. , 2008, 2008, 2067-70.		12
113	Beyond Oncological Hyperthermia: Physically Drivable Magnetic Nanobubbles as Novel Multipurpose Theranostic Carriers in the Central Nervous System. Molecules, 2020, 25, 2104.	3.8	12
114	<i>In vitro</i> release and permeation kinetics of <i>Melaleuca alternifolia</i> (tea tree) essential oil bioactive compounds from topical formulations. Flavour and Fragrance Journal, 2017, 32, 354-361.	2.6	11
115	Comparative Evaluation of Different Chitosan Species and Derivatives as Candidate Biomaterials for Oxygen-Loaded Nanodroplet Formulations to Treat Chronic Wounds. Marine Drugs, 2021, 19, 112.	4.6	11
116	Cyclodextrin-Based Nanosponges as a Nanotechnology Strategy for Imiquimod Delivery in Pathological Scarring Prevention and Treatment. Journal of Nanopharmaceutics and Drug Delivery, 2014, 2, 311-324.	0.3	11
117	Nanotechnology Addressing Cutaneous Melanoma: The Italian Landscape. Pharmaceutics, 2021, 13, 1617.	4.5	11
118	Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves. PLoS ONE, 2016, 11, e0168553.	2.5	10
119	Ethyl 1,8-Naphthyridone-3-carboxylates Downregulate Human Papillomavirus-16 E6 and E7 Oncogene Expression. Journal of Medicinal Chemistry, 2014, 57, 5649-5663.	6.4	9
120	Chitosan-Shelled Nanobubbles Irreversibly Encapsulate Morpholino Conjugate Antisense Oligonucleotides and Are Ineffective for Phosphorodiamidate Morpholino-Mediated Gene Silencing of <i>DUX4</i> . Nucleic Acid Therapeutics, 2021, 31, 201-207.	3.6	9
121	In Vitro Stability Evaluation of Different Pharmaceutical Products Containing Meropenem. Hospital Pharmacy, 2015, 50, 296-303.	1.0	8
122	Nanodiagnostics and Nanodelivery Applications in Genetic Alterations. Current Pharmaceutical Design, 2018, 24, 1717-1726.	1.9	8
123	Antimicrobial oxygen-loaded nanobubbles as promising tools to promote wound healing in hypoxic human keratinocytes. Toxicology Reports, 2022, 9, 154-162.	3.3	8
124	Exploring chitosan-shelled nanobubbles to improve HER2 + immunotherapy via dendritic cell targeting. Drug Delivery and Translational Research, 2022, 12, 2007-2018.	5.8	8
125	Investigation of Haemolytic and Complexation Properties of γ-Cyclodextrin Carbonate Derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44, 345-346.	1.6	7
126	Effects of oxygen tension and dextran-shelled/2H,3H-decafluoropentane-cored oxygen-loaded nanodroplets on secretion of gelatinases and their inhibitors in term human placenta. Bioscience, Biotechnology and Biochemistry, 2016, 80, 466-472.	1.3	7

#	Article	IF	CITATIONS
127	Cyclic Nigerosyl-Nigerose as Oxygen Nanocarrier to Protect Cellular Models from Hypoxia/Reoxygenation Injury: Implications from an In Vitro Model. International Journal of Molecular Sciences, 2021, 22, 4208.	4.1	7
128	Effect of antibiotic-loaded chitosan nanodroplets on Enterococci isolated from chronic ulcers of the lower limbs. Future Microbiology, 2020, 15, 1227-1236.	2.0	7
129	Lipid-Coated Nanocrystals as a Tool for Improving the Antioxidant Activity of Resveratrol. Antioxidants, 2022, 11, 1007.	5.1	6
130	Effect of Bilastine on Diabetic Nephropathy in DBA2/J Mice. International Journal of Molecular Sciences, 2019, 20, 2554.	4.1	5
131	Antibacterial and Antifungal Efficacy of Medium and Low Weight Chitosan-Shelled Nanodroplets for the Treatment of Infected Chronic Wounds. International Journal of Nanomedicine, 2022, Volume 17, 1725-1739.	6.7	4
132	The Interplay between Histamine H4 Receptor and the Kidney Function: The Lesson from H4 Receptor Knockout Mice. Biomolecules, 2021, 11, 1517.	4.0	2
133	Nanocarriers Loaded with Oxygen to Improve the Protection of the Heart to be Transplanted. Current Pharmaceutical Design, 2022, 28, 468-470.	1.9	2
134	Cyclodextrin-Based Nanosponges and Proteins. Encyclopedia, 2022, 2, 752-760.	4.5	2
135	Step-by-Step Design of New Theranostic Nanoformulations: Multifunctional Nanovectors for Radio-Chemo-Hyperthermic Therapy under Physical Targeting. Molecules, 2021, 26, 4591.	3.8	1