Vishal Garg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3640363/publications.pdf

Version: 2024-02-01

39	1,078	17 h-index	32
papers	citations		g-index
41	41	41	1078
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Smart occupancy sensors to reduce energy consumption. Energy and Buildings, 2000, 32, 81-87.	3.1	160
2	Quantifying the direct benefits of cool roofs in an urban setting: Reduced cooling energy use and lowered greenhouse gas emissions. Building and Environment, 2012, 48, 1-6.	3.0	113
3	A review of open loop control strategies for shades, blinds and integrated lighting by use of real-time daylight prediction methods. Building and Environment, 2018, 135, 352-364.	3.0	68
4	Evaluating assumptions of scales for subjective assessment of thermal environments $\hat{a} \in 0$ 0 laypersons perceive them the way, we researchers believe?. Energy and Buildings, 2020, 211, 109761.	3.1	68
5	Evaluation of "Autotune―calibration against manual calibration of building energy models. Applied Energy, 2016, 182, 115-134.	5.1	65
6	Evaluation of thermal environmental conditions and thermal perception at naturally ventilated hostels of undergraduate studentsÂin composite climate. Building and Environment, 2013, 66, 42-53.	3.0	56
7	Determining base temperature for heating and cooling degree-days for India. Journal of Building Engineering, 2018, 18, 270-280.	1.6	49
8	Combined effect of energy efficiency measures and thermal adaptation on air conditioned building in warm climatic conditions of India. Energy and Buildings, 2012, 55, 351-360.	3.1	45
9	Optimizing roof insulation for roofs with high albedo coating and radiant barriers in India. Journal of Building Engineering, 2015, 2, 52-58.	1.6	37
10	A review of advances for thermal and visual comfort controls in personal environmental control (PEC) systems. Intelligent Buildings International, 2019, 11, 75-104.	1.3	37
11	Assessment of the impact of cool roofs in rural buildings in India. Energy and Buildings, 2016, 114, 156-163.	3.1	32
12	Impact of urban heat island formation on energy consumption in Delhi. Urban Climate, 2021, 36, 100763.	2.4	31
13	Calibrated simulation for estimating energy savings by the use of cool roof in five Indian climatic zones. Journal of Renewable and Sustainable Energy, 2011, 3, .	0.8	30
14	Development of reference building models for India. Journal of Building Engineering, 2019, 21, 267-277.	1.6	30
15	Review of studies on thermal comfort in Indian residential buildings. Science and Technology for the Built Environment, 2020, 26, 727-748.	0.8	30
16	Adaptive thermal comfort model based on field studies in five climate zones across India. Building and Environment, 2022, 219, 109187.	3.0	22
17	Machine Learning-Based Occupancy Estimation Using Multivariate Sensor Nodes. , 2018, , .		20
18	The Scales Project, a cross-national dataset on the interpretation of thermal perception scales. Scientific Data, 2019, 6, 289.	2.4	19

#	Article	IF	CITATIONS
19	Development for cool roof calculator for India. Energy and Buildings, 2016, 114, 136-142.	3.1	18
20	An approach to calculate the equivalent solar heat gain coefficient of glass windows with fixed and dynamic shading in tropical climates. Journal of Building Engineering, 2019, 22, 90-100.	1.6	18
21	Development of a surrogate model by extracting top characteristic feature vectors for building energy prediction. Journal of Building Engineering, 2019, 23, 38-52.	1.6	17
22	Experimental determination of comfort benefits from cool-roof application to an un-conditioned building in India. Advances in Building Energy Research, 2014, 8, 14-27.	1.1	14
23	Effect of building envelope on thermal environmental conditions of a naturally ventilated building block in tropical climate. Building Services Engineering Research and Technology, 2014, 35, 280-295.	0.9	13
24	Effect of Surface Temperature on Energy Consumption in a Calibrated Building: A Case Study of Delhi. Climate, 2020, 8, 71.	1.2	13
25	Thermal Comfort Analysis of Personalized Conditioning System and Performance Assessment with Different Radiant Cooling Systems. Energy and Built Environment, 2023, 4, 111-121.	2.9	12
26	Development and performance evaluation of a methodology, based on distributed computing, for speeding EnergyPlus simulation. Journal of Building Performance Simulation, 2011, 4, 257-270.	1.0	11
27	EnergyPlus Simulation Speedup Using Data Parallelization Concept. , 2010, , .		10
28	Top-of-atmosphere radiative cooling with white roofs: experimental verification and model-based evaluation. Environmental Research Letters, 2012, 7, 044007.	2.2	9
29	Development and analysis of a tool for speed up of EnergyPlus through parallelization. Journal of Building Performance Simulation, 2014, 7, 179-191.	1.0	6
30	Explainable Clustering Using Hyper-Rectangles for Building Energy Simulation Data. IOP Conference Series: Earth and Environmental Science, 2019, 238, 012068.	0.2	4
31	Evaluation of thermally activated furniture on thermal comfort and energy consumption: An experimental study. Energy and Buildings, 2020, 223, 110154.	3.1	4
32	Very Short-Term HVAC Cooling Energy Forecasting for an Educational Building in Real-Time IOP Conference Series: Earth and Environmental Science, 2019, 238, 012069.	0.2	3
33	Optimal Control of Operable Windows for Mixed Mode Building Simulation in EnergyPlus. IOP Conference Series: Earth and Environmental Science, 2019, 238, 012052.	0.2	3
34	SMEO: A Platform for Smart Classrooms with Enhanced Information Access and Operations Automation. Lecture Notes in Computer Science, 2010, , 123-134.	1.0	3
35	Thermal performance analysis of solar clothes dryer. Journal of Renewable and Sustainable Energy, 2013, 5, .	0.8	2
36	Meta-study of residential energy studies in India. IOP Conference Series: Earth and Environmental Science, 2020, 410, 012017.	0.2	2

#	Article	IF	CITATIONS
37	Energy Conservation Building Code in India: Status, Issues and Opportunities. , 2010, , .		0
38	Circadian lighting in a space daylit by a tubular daylight device. IOP Conference Series: Earth and Environmental Science, 2019, 238, 012030.	0.2	0
39	Predicting Impact of Cooling Set-Point Change on Demand Reduction in Real-time. , 2019, , .		0