
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3640202/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interregional nonlinear height–diameter model with random coefficients for stone pine in Spain. Canadian Journal of Forest Research, 2004, 34, 150-163.	0.8	236
2	To grow or to seed: ecotypic variation in reproductive allocation and cone production by young female Aleppo pine (<i>Pinus halepensis</i> , Pinaceae). American Journal of Botany, 2008, 95, 833-842.	0.8	116
3	The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe. Forest Ecology and Management, 2021, 481, 118687.	1.4	104
4	Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): a calibrating approach. Silva Fennica, 2005, 39, .	0.5	94
5	Modelling spatial and temporal variability in a zero-inflated variable: The case of stone pine (Pinus) Tj ETQq1 1 0.7	84314 rgE 1.2	3T ₈ 2 Verlock
6	Intensité d'éclaircie et croissance dans des peuplements de pin sylvestre du sud ouest de l'Europe. Annals of Forest Science, 2008, 65, 308-308.	0.8	70
7	Inter-regional variability in site index models for even-aged stands of stone pine (Pinus pinea L.) in Spain. Annals of Forest Science, 2003, 60, 259-269.	0.8	68
8	Cone and seed production from stone pine (Pinus pinea L.) stands in Central Range (Spain). European Journal of Forest Research, 2006, 126, 23-35.	1.1	56
9	Linking climate, annual growth and competition in a Mediterranean forest: Pinus pinea in the Spanish Northern Plateau. Agricultural and Forest Meteorology, 2019, 264, 309-321.	1.9	50
10	An empirical ecological-type model for predicting stone pine (Pinus pinea L.) cone production in the Northern Plateau (Spain). Forest Ecology and Management, 2008, 255, 660-673.	1.4	46
11	Modelling the influence of light, water and temperature on photosynthesis in young trees of mixed Mediterranean forests. New Forests, 2015, 46, 485-506.	0.7	46
12	Geostatistical prediction of height/diameter models. Forest Ecology and Management, 2004, 195, 221-235.	1.4	45
13	Modeling the environmental response of leaf net photosynthesis in Pinus pinea L. natural regeneration. Ecological Modelling, 2013, 251, 9-21.	1.2	44
14	Is there tree senescence? The fecundity evidence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
15	The effects of thinning on the structural diversity of coppice forests. Annals of Forest Science, 2004, 61, 771-779.	0.8	41
16	Modelling <i>Pinus pinea</i> forest management to attain natural regeneration under present and future climatic scenarios. Canadian Journal of Forest Research, 2014, 44, 250-262.	0.8	37
17	Effect of stand structure on Stone pine (Pinus pinea L.) regeneration dynamics. Forestry, 2008, 81, 617-629.	1.2	32
18	Thinning increases cone production of stone pine (Pinus pinea L.) stands in the Northern Plateau (Spain). Annals of Forest Science, 2013, 70, 761-768.	0.8	29

#	Article	IF	CITATIONS
19	Species coexistence in a mixed Mediterranean pine forest: Spatio-temporal variability in trade-offs between facilitation and competition. Forest Ecology and Management, 2014, 322, 89-97.	1.4	28
20	Growth and yield models in Spain: Historical overview, Contemporary Examples and perspectives. Forest Systems, 2011, 20, 315.	0.1	28
21	Interannual variability in competitive effects in mixed and monospecific forests of Mediterranean stone pine. Forest Ecology and Management, 2015, 358, 230-239.	1.4	27
22	Difference in cuticular transpiration and sclerophylly in juvenile and adult pine needles relates to the species-specific rates of development. Trees - Structure and Function, 2009, 23, 501-508.	0.9	26
23	Modelling seed germination in forest tree species through survival analysis. The Pinus pinea L. case study. Forest Ecology and Management, 2013, 289, 515-524.	1.4	26
24	Variables influencing cork thickness in spanish cork oak forests: A modelling approach. Annals of Forest Science, 2007, 64, 301-312.	0.8	23
25	Modelling the spatio-temporal pattern of primary dispersal in stone pine (Pinus pinea L.) stands in the Northern Plateau (Spain). Ecological Modelling, 2012, 226, 11-21.	1.2	23
26	Ecosystem service provision, management systems and climate change in ValsaÃn forest, central Spain. Regional Environmental Change, 2017, 17, 17-32.	1.4	23
27	Environmental Veto Synchronizes Mast Seeding in Four Contrasting Tree Species. American Naturalist, 2019, 194, 246-259.	1.0	23
28	Resistance of Pinus pinea L. bark to fire. International Journal of Wildland Fire, 2019, 28, 342.	1.0	23
29	Spatiotemporal variability of stone pine (Pinus pinea L.) growth response to climate across the Iberian Peninsula. Dendrochronologia, 2016, 40, 72-84.	1.0	22
30	Spatio-temporal variation of natural regeneration in Pinus pinea and Pinus pinaster Mediterranean forests in Spain. European Journal of Forest Research, 2019, 138, 313-326.	1.1	21
31	The role of developmental stage in frost tolerance of Pinus pinea L. seedlings and saplings. Annals of Forest Science, 2014, 71, 551-562.	0.8	20
32	A model-based analysis of climate change vulnerability of Pinus pinea stands under multiobjective management in the Northern Plateau of Spain. Annals of Forest Science, 2015, 72, 1009-1021.	0.8	20
33	â€~Climatic factors control rodent seed predation in Pinus pinea L. stands in Central Spain'. Annals of Forest Science, 2014, 71, 873-883.	0.8	17
34	Modelling spatiotemporal dynamics of Pinus pinea cone infestation by Dioryctria mendacella. Forest Ecology and Management, 2017, 389, 136-148.	1.4	17
35	Enhanced tools for predicting annual stone pine (Pinus pinea L.) cone production at tree and forest scale in Inner Spain. Forest Systems, 2016, 25, e079.	0.1	17
36	Adapting a model for even-aged Pinus pinea L. stands to complex multi-aged structures. Forest Ecology and Management, 2008, 256, 1390-1399.	1.4	16

#	Article	IF	CITATIONS
37	Landowner net benefit from Stone pine (Pinus pinea L.) afforestation of dry-land cereal fields in Valladolid, Spain. Journal of Forest Economics, 2010, 16, 83-100.	0.1	16
38	Regeneration of Mediterranean Pinus sylvestris under two alternative shelterwood systems within a multiscale framework. Canadian Journal of Forest Research, 2011, 41, 341-351.	0.8	16
39	A silviculture-oriented spatio-temporal model for germination in Pinus pinea L. in the Spanish Northern Plateau based on a direct seeding experiment. European Journal of Forest Research, 2013, 132, 969-982.	1.1	16
40	Seasonal changes in the physiological activity of regeneration under a natural light gradient in a Pinus pinea regular stand. Forest Systems, 2010, 19, 367.	0.1	16
41	A new multifactorial approach for studying intra-annual secondary growth dynamics in Mediterranean mixed forests: integrating biotic and abiotic interactions. Canadian Journal of Forest Research, 2018, 48, 333-344.	0.8	15
42	Climate-mediated regeneration occurrence in Mediterranean pine forests: A modeling approach. Forest Ecology and Management, 2019, 446, 10-19.	1.4	15
43	Hybrid estimation based on mixed-effects models in forest inventories. Canadian Journal of Forest Research, 2016, 46, 1310-1319.	0.8	14
44	Defining the optimal regeneration niche for Pinus pinea L. through physiology-based models for seedling survival and carbon assimilation. Trees - Structure and Function, 2015, 29, 1761-1771.	0.9	12
45	Responses of Pinus pinea seedlings to moderate drought and shade: is the provenance a differential factor?. Photosynthetica, 2018, 56, 786-798.	0.9	12
46	Inter-annual variability in Prosopis caldenia pod production in the Argentinean semiarid pampas: A modelling approach. Journal of Arid Environments, 2016, 131, 59-66.	1.2	10
47	Addressing post-transplant summer water stress in Pinus pinea and Quercus ilex seedlings. IForest, 2015, 8, 348-358.	0.5	10
48	Short- and long-term growth response to climate in mixed and monospecific forests of Pinus pinea and Pinus pinaster. European Journal of Forest Research, 2021, 140, 387-402.	1.1	9
49	Improving tree biomass models through crown ratio patterns and incomplete data sources. European Journal of Forest Research, 2021, 140, 675-689.	1.1	8
50	New approaches to modelling cross-sectional area to height allometry in four Mediterranean pine species. Forestry, 2014, 87, 399-406.	1.2	7
51	Dynamics of frost tolerance during regeneration in a mixed (pine–oak–juniper) Mediterranean forest. Trees - Structure and Function, 2015, 29, 1893-1906.	0.9	6
52	Mixture mitigates the effect of climate change on the provision of relevant ecosystem services in managed Pinus pinea L. forests. Forest Ecology and Management, 2021, 481, 118782.	1.4	6
53	Growth of Container-grown Cork Oak Seedlings as Affected by Foliar and Soil Application of Paclobutrazol. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1773-1776.	0.5	5
54	Sapling recruitment in mixed stands in the Northern Plateau of Spain: a patch model approach. Trees - Structure and Function, 2021, 35, 2043-2058.	0.9	3

#	Article	IF	CITATIONS
55	Towards the sustainable management of thuya (Tetraclinis articulata (Vahl.) Mast.) forests in Tunisia: models for main tree attributes. Forest Systems, 2012, 21, 210.	0.1	3
56	Distance-independent individual tree diameter-increment model for Thuya [Tetraclinis articulata (VAHL) MAST.] stands in Tunisia. Forest Systems, 2013, 22, 433.	0.1	3
57	Extended length rotation to integrate timber and pine nut production with the conservation of structural diversity in aPinus pinea(L.) forest. Annals of Forest Science, 2006, 63, 773-781.	0.8	2
58	Spatial stochastic modelling of cone production from stone pine (<i>Pinus pinea</i> L.) stands in the Spanish Northern Plateau , 2003, , 131-141.		0