Xiaoxue Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3639909/publications.pdf

Version: 2024-02-01

XIAOXUE XII

#	Article	IF	CITATIONS
1	Feasibility evaluation of a Cu-38 Zn alloy for intrauterine devices: In vitro and in vivo studies. Acta Biomaterialia, 2022, 138, 561-575.	8.3	4
2	Feasibility evaluation of a Zn-Cu alloy for intrauterine devices: In vitro and in vivo studies. Acta Biomaterialia, 2022, 142, 374-387.	8.3	10
3	Highly Sensitive H2 Sensors Based on Co3O4/PEI-CNTs at Room Temperature. Journal of Nanomaterials, 2022, 2022, 1-8.	2.7	0
4	Recent advances in electrochemical analysis of hydrogen peroxide towards in vivo detection. Process Biochemistry, 2022, 115, 57-69.	3.7	20
5	Topical hemostatic materials for coagulopathy. Journal of Materials Chemistry B, 2022, 10, 1946-1959.	5.8	11
6	Preparation and properties of electrospun <scp>NaYF₄</scp> : <scp>Yb³⁺, Er³</scp> ⁺ â€ <scp>PLGA</scp> â€gelatin nanofibers. Journal of Applied Polymer Science, 2022, 139, .	2.6	3
7	Analysis of Ti- and Pb-based particles in the aqueous environment of Melbourne (Australia) via singleÂparticle ICP-MS. Analytical and Bioanalytical Chemistry, 2022, 414, 5671-5681.	3.7	15
8	Effect of protein adsorption on electrospun hemoglobin/gelatin-MWCNTs microbelts modified electrode: Toward electrochemical measurement of hydrogen peroxide. Materials Chemistry and Physics, 2021, 257, 123827.	4.0	7
9	Bottomâ€Up Synthesis of Hexagonal Boron Nitride Nanoparticles with Intensityâ€Stabilized Quantum Emitters. Small, 2021, 17, e2008062.	10.0	13
10	Reconstructing the Surface Structure of NaREF ₄ Upconversion Nanocrystals with a Novel K ⁺ Treatment. Chemistry of Materials, 2021, 33, 2548-2556.	6.7	5
11	A Flexible Implantable Polyimide Catheter Device for Targeted Treatment of Cardiovascular Diseases by Aggregating Magnetic Nanoparticles. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 911-917.	2.5	4
12	Effective easing of the side effects of copper intrauterine devices using ultra-fine-grained Cu-0.4Mg alloy. Acta Biomaterialia, 2021, 128, 523-539.	8.3	11
13	Metrology of convex-shaped nanoparticles <i>via</i> soft classification machine learning of TEM images. Nanoscale Advances, 2021, 3, 6956-6964.	4.6	6
14	Optimization of the Discrete Structure in a Pressure Sensor Based on a Multiple-Contact Mechanism to Improve Sensitivity and Nonlinearity. IEEE Sensors Journal, 2021, 21, 21259-21267.	4.7	3
15	Mono- to few-layer non-van der Waals 2D lanthanide-doped NaYF ₄ nanosheets with upconversion luminescence. 2D Materials, 2021, 8, 015005.	4.4	3
16	Surface defect-abundant one-dimensional graphitic carbon nitride nanorods boost photocatalytic nitrogen fixation. New Journal of Chemistry, 2020, 44, 20651-20658.	2.8	55
17	Characterization of Upconversion Nanoparticles by Single-Particle ICP-MS Employing a Quadrupole Mass Filter with Increased Bandpass. Analytical Chemistry, 2020, 92, 15007-15016.	6.5	23
18	Porous Upconversion Nanostructures as Bimodal Biomedical Imaging Contrast Agents. Journal of Physical Chemistry C, 2020, 124, 12168-12174.	3.1	18

XIAOXUE XU

#	Article	IF	CITATIONS
19	Video-rate upconversion display from optimized lanthanide ion doped upconversion nanoparticles. Nanoscale, 2020, 12, 18595-18599.	5.6	28
20	Near Infrared Light Triggered Photo/Immuno-Therapy Toward Cancers. Frontiers in Bioengineering and Biotechnology, 2020, 8, 488.	4.1	54
21	Photonic Nanobeam Cavities with Nanopockets for Efficient Integration of Fluorescent Nanoparticles. Nano Letters, 2020, 20, 2784-2790.	9.1	16
22	Superâ€Resolution Mapping of Single Nanoparticles inside Tumor Spheroids. Small, 2020, 16, e1905572.	10.0	32
23	A Heterogeneous Integrated MEMS Inertial Switch With Compliant Cantilevers Fixed Electrode and Electrostatic Locking to Realize Stable On-State. Journal of Microelectromechanical Systems, 2019, 28, 977-986.	2.5	11
24	Optimising passivation shell thickness of single upconversion nanoparticles using a time-resolved spectrometer. APL Photonics, 2019, 4, 026104.	5.7	25
25	Large-scale dewetting assembly of gold nanoparticles for plasmonic enhanced upconversion nanoparticles. Nanoscale, 2018, 10, 6270-6276.	5.6	39
26	A supramolecular self-assembly strategy for upconversion nanoparticle bioconjugation. Chemical Communications, 2018, 54, 3851-3854.	4.1	33
27	Surface Functionalisation of Upconversion Nanoparticles with Different Moieties for Biomedical Applications. Surfaces, 2018, 1, 96-121.	2.3	27
28	A micro electromagnetically-driven scanner by 2-DOF second-order resonance to extend scanning scale for ultra-thin single-fiber endoscope application. , 2018, , .		0
29	Optimal Sensitizer Concentration in Single Upconversion Nanocrystals. Nano Letters, 2017, 17, 2858-2864.	9.1	159
30	Depth-profiling of Yb ³⁺ sensitizer ions in NaYF ₄ upconversion nanoparticles. Nanoscale, 2017, 9, 7719-7726.	5.6	36
31	Enhanced energy transfer in heterogeneous nanocrystals for near infrared upconversion photocurrent generation. Nanoscale, 2017, 9, 18661-18667.	5.6	14
32	Seed mediated one-pot growth of versatile heterogeneous upconversion nanocrystals for multimodal bioimaging. , 2016, , .		1
33	Emission stability and reversibility of upconversion nanocrystals. Journal of Materials Chemistry C, 2016, 4, 9227-9234.	5.5	27
34	Probing the Interior Crystal Quality in the Development of More Efficient and Smaller Upconversion Nanoparticles. Journal of Physical Chemistry Letters, 2016, 7, 3252-3258.	4.6	42
35	Aligned Nanofibers from Polypyrrole/Graphene as Electrodes for Regeneration of Optic Nerve via Electrical Stimulation. ACS Applied Materials & amp; Interfaces, 2016, 8, 6834-6840.	8.0	102
36	Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nature Communications, 2016, 7, 10254.	12.8	267

XIAOXUE XU

#	Article	IF	CITATIONS
37	Failure modes in high strength and stiffness to weight scaffolds produced by Selective Laser Melting. Materials & Design, 2015, 67, 501-508.	5.1	76
38	Functionalized ZnO@TiO2nanorod array film loaded with ZnIn0.25Cu0.02S1.395solid-solution: synthesis, characterization and enhanced visible light driven water splitting. Nanoscale, 2015, 7, 11082-11092.	5.6	18
39	A novel biofuel cell based on electrospun collagen-carbon nanotube nanofibres. Bio-Medical Materials and Engineering, 2014, 24, 229-235.	0.6	8
40	High specific strength and stiffness structures produced using selective laser melting. Materials & Design, 2014, 63, 783-788.	5.1	127
41	A novel hydrogen peroxide biosensor based on hemoglobin-collagen-CNTs composite nanofibers. Colloids and Surfaces B: Biointerfaces, 2014, 118, 77-82.	5.0	38
42	Electrospun Chitosan-graft-PLGA nanofibres with significantly enhanced hydrophilicity and improved mechanical property. Colloids and Surfaces B: Biointerfaces, 2013, 102, 674-681.	5.0	58
43	A novel copper/polydimethiylsiloxane nanocomposite for copperâ€containing intrauterine contraceptive devices. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101, 1428-1436.	3.4	18
44	Self-assembled structures of CuO primary crystals synthesized from Cu(CH3COO)2–NaOH aqueous systems. CrystEngComm, 2012, 14, 5289.	2.6	44
45	Effective inhibition of the early copper ion burst release with ultra-fine grained copper and single crystal copper for intrauterine device application. Acta Biomaterialia, 2012, 8, 886-896.	8.3	37
46	Immobilizing natural macromolecule on PLGA electrospun nanofiber with surface entrapment and entrapment-graft techniques. Colloids and Surfaces B: Biointerfaces, 2012, 94, 44-50.	5.0	28
47	Formation mechanism of novel two-dimensional single crystalline dendritic copper plates in an aqueous environment. Acta Materialia, 2011, 59, 7177-7188.	7.9	6
48	A novel amperometric hydrogen peroxide biosensor based on immobilized Hb in Pluronic P123-nanographene platelets composite. Colloids and Surfaces B: Biointerfaces, 2011, 84, 427-432.	5.0	41
49	Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids and Surfaces B: Biointerfaces, 2011, 84, 97-102.	5.0	191
50	A novel amperometric hydrogen peroxide biosensor based on electrospun Hb–collagen composite. Colloids and Surfaces B: Biointerfaces, 2011, 86, 140-145.	5.0	36
51	Carbon nanotube–hydroxyapatite–hemoglobin nanocomposites with high bioelectrocatalytic activity. Bioelectrochemistry, 2010, 78, 124-129.	4.6	33
52	Electrochemistry of bilirubin oxidase at carbon nanotubes. Journal of Solid State Electrochemistry, 2010, 14, 249-254.	2.5	17
53	Corrosion and ion release behavior of ultra-fine grained bulk pure copper fabricated by ECAP in Hanks solution as potential biomaterial for contraception. Materials Letters, 2010, 64, 524-527.	2.6	38
54	Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochemistry Communications, 2010, 12, 847-850.	4.7	216

XIAOXUE XU

#	ARTICLE	IF	CITATIONS
55	A glucose/O2 biofuel cell base on nanographene platelet-modified electrodes. Electrochemistry Communications, 2010, 12, 869-871.	4.7	55
56	A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of Materials Science, 2009, 44, 5713-5724.	3.7	529
57	Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film. Biosensors and Bioelectronics, 2009, 24, 2352-2357.	10.1	140
58	Analysis and elimination of the †skip contact' phenomenon in an inertial micro-switch for prolonging its contact time. Journal of Micromechanics and Microengineering, 2009, 19, 045017.	2.6	32
59	Phase formation of Ni–Ti via solid state reaction. Physica Scripta, 2007, T129, 250-254.	2.5	58
60	Analysis on the Relationship Between Carbon Emission Reduction and Company Market Value Using Resource-Based Theory. International Journal of Simulation: Systems, Science and Technology, 0, , .	0.0	0