Sandra V Verstraeten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/363990/publications.pdf

Version: 2024-02-01

52 papers 3,567 citations

30 h-index 53 g-index

54 all docs

54 docs citations

54 times ranked 4958 citing authors

#	Article	IF	Citations
1	Basic biochemical mechanisms behind the health benefits of polyphenols. Molecular Aspects of Medicine, 2010, 31, 435-445.	2.7	549
2	Aluminium and lead: molecular mechanisms of brain toxicity. Archives of Toxicology, 2008, 82, 789-802.	1.9	479
3	Flavonoid-membrane Interactions: A Protective Role of Flavonoids at the Membrane Surface?. Clinical and Developmental Immunology, 2005, 12, 19-25.	3. 3	298
4	The Interaction of Flavonoids with Membranes: Potential Determinant of Flavonoid Antioxidant Effects. Free Radical Research, 2004, 38, 1311-1320.	1.5	201
5	Antioxidant actions of flavonoids: Thermodynamic and kinetic analysis. Archives of Biochemistry and Biophysics, 2010, 501, 23-30.	1.4	190
6	Flavan-3-ols and procyanidins protect liposomes against lipid oxidation and disruption of the bilayer structure. Free Radical Biology and Medicine, 2003, 34, 84-92.	1.3	172
7	Effect of Trivalent Metal Ions on Phase Separation and Membrane Lipid Packing: Role in Lipid Peroxidation. Archives of Biochemistry and Biophysics, 1997, 338, 121-127.	1.4	107
8	Antioxidant and Membrane Effects of Procyanidin Dimers and Trimers Isolated from Peanut and Cocoa. Journal of Agricultural and Food Chemistry, 2005, 53, 5041-5048.	2.4	97
9	Thallium induces hydrogen peroxide generation by impairing mitochondrial function. Toxicology and Applied Pharmacology, 2006, 216, 485-492.	1.3	87
10	Zinc in the prevention of Fe2initiated lipid and protein oxidation. Biological Research, 2000, 33, 143-50.	1.5	77
11	Metals in neurodegeneration: involvement of oxidants and oxidant-sensitive transcription factors. Molecular Aspects of Medicine, 2004, 25, 103-115.	2.7	72
12	Myelin Is a Preferential Target of Aluminum-Mediated Oxidative Damage. Archives of Biochemistry and Biophysics, 1997, 344, 289-294.	1.4	64
13	Large procyanidins prevent bile-acid-induced oxidant production and membrane-initiated ERK1/2, p38, and Akt activation in Caco-2 cells. Free Radical Biology and Medicine, 2012, 52, 151-159.	1.3	62
14	Anthocyanins inhibit tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity. Food and Function, 2017, 8, 2915-2923.	2.1	60
15	ESR characterization of thallium(III)-mediated nitrones oxidation. Inorganica Chimica Acta, 2009, 362, 2305-2310.	1.2	59
16	High Cholesterol Content and Decreased Membrane Fluidity in Human Spermatozoa Are Associated With Protein Tyrosine Phosphorylation and Functional Deficiencies. Journal of Andrology, 2009, 30, 552-558.	2.0	56
17	Tl(I) and Tl(III) activate both mitochondrial and extrinsic pathways of apoptosis in rat pheochromocytoma (PC12) cells. Toxicology and Applied Pharmacology, 2009, 236, 59-70.	1.3	55
18	Interactions of flavan-3-ols and procyanidins with membranes: mechanisms and the physiological relevance. Food and Function, 2015, 6, 32-40.	2.1	55

#	Article	IF	Citations
19	Capacitation-associated protein tyrosine phosphorylation and membrane fluidity changes are impaired in the spermatozoa of asthenozoospermic patients. Reproduction, 2005, 129, 697-705.	1.1	52
20	Procyanidins can interact with Caco-2 cell membrane lipid rafts: Involvement of cholesterol. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2646-2653.	1.4	51
21	Effects of Al3+ and Related Metals on Membrane Phase State and Hydration: Correlation with Lipid Oxidation. Archives of Biochemistry and Biophysics, 2000, 375, 340-346.	1.4	48
22	Sc3+, Ga3+, In3+, Y3+, and Be2+ Promote Changes in Membrane Physical Properties and Facilitate Fe2+-Initiated Lipid Peroxidation. Archives of Biochemistry and Biophysics, 1995, 322, 284-290.	1.4	45
23	Membrane composition can influence the rate of Al3+-mediated lipid oxidation: effect of galactolipids. Biochemical Journal, 1998, 333, 833-838.	1.7	41
24	Influence of zinc deficiency on cell-membrane fluidity in Jurkat, 3T3 and IMR-32 cells. Biochemical Journal, 2004, 378, 579-587.	1.7	41
25	The plasma membrane plays a central role in cells response to mechanical stress. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1739-1749.	1.4	37
26	Glutathione metabolism is impaired in vitro by thallium(III) hydroxide. Toxicology, 2005, 207, 501-510.	2.0	36
27	Membrane effects of Cocoa Procyanidins in Liposomes and Jurkat T Cells. Biological Research, 2004, 37, 293-300.	1.5	34
28	Effects of polyamines on cadmium- and copper-mediated alterations in wheat (Triticum aestivum L) and sunflower (Helianthus annuus L) seedling membrane fluidity. Archives of Biochemistry and Biophysics, 2018, 654, 27-39.	1.4	34
29	Kinetics of extracellular ATP in mastoparan 7-activated human erythrocytes. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4692-4707.	1.1	32
30	Effects of thallium(I) and thallium(III) on liposome membrane physical properties. Archives of Biochemistry and Biophysics, 2003, 417, 235-243.	1.4	31
31	Relationship between thallium(I)-mediated plasma membrane fluidification and cell oxidants production in Jurkat T cells. Toxicology, 2006, 222, 95-102.	2.0	28
32	In vitro Interactions of Thallium with Components of the Glutathione-dependent Antioxidant Defence System. Free Radical Research, 2004, 38, 977-984.	1.5	25
33	Capacitationâ€essociated changes in membrane fluidity in asthenozoospermic human spermatozoa. Journal of Developmental and Physical Disabilities, 2009, 32, 360-375.	3.6	25
34	Al3+-mediated changes in membrane physical properties participate in the inhibition of polyphosphoinositide hydrolysis. Archives of Biochemistry and Biophysics, 2002, 408, 263-271.	1.4	24
35	(-)-Epicatechin and related procyanidins modulate intracellular calcium and prevent oxidation in Jurkat T cells. Free Radical Research, 2008, 42, 864-872.	1.5	23
36	Regulation of Extracellular ATP in Human Erythrocytes Infected with Plasmodium falciparum. PLoS ONE, 2014, 9, e96216.	1.1	23

3

#	Article	IF	CITATIONS
37	Thallium(III)-mediated changes in membrane physical properties and lipid oxidation affect cardiolipin–cytochrome c interactions. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2157-2164.	1.4	22
38	Decreased protein tyrosine phosphorylation and membrane fluidity in spermatozoa from infertile men with varicocele. Molecular Reproduction and Development, 2006, 73, 1591-1599.	1.0	19
39	Aluminum Affects Membrane Physical Properties in Human Neuroblastoma (IMR-32) Cells Both before and after Differentiation. Archives of Biochemistry and Biophysics, 2002, 399, 167-173.	1.4	17
40	Endosomes and lysosomes are involved in early steps of Tl(III)-mediated apoptosis in rat pheochromocytoma (PC12) cells. Archives of Toxicology, 2012, 86, 1667-1680.	1.9	16
41	Extracellular vesicles containing the transferrin receptor as nanocarriers of apotransferrin. Journal of Neurochemistry, 2020, 155, 327-338.	2.1	16
42	Relevance of lipid polar headgroups on boron-mediated changes in membrane physical properties. Archives of Biochemistry and Biophysics, 2005, 438, 103-110.	1.4	15
43	Early response of glutathione- and thioredoxin-dependent antioxidant defense systems to Tl(I)- and Tl(III)-mediated oxidative stress in adherent pheochromocytoma (PC12adh) cells. Archives of Toxicology, 2018, 92, 195-211.	1.9	15
44	Al3+-mediated changes on membrane fluidity affects the activity of PI-PLC but not of PLC. Chemistry and Physics of Lipids, 2003, 122, 159-163.	1.5	13
45	Epidermal growth factor prevents thallium(I)- and thallium(III)-mediated rat pheochromocytoma (PC12) cell apoptosis. Archives of Toxicology, 2017, 91, 1157-1174.	1.9	10
46	Thallium Toxicity in Caenorhabditis elegans: Involvement of the SKN-1 Pathway and Protection by S-Allylcysteine. Neurotoxicity Research, 2020, 38, 287-298.	1.3	10
47	Chapter 3: Interactions of Al and Related Metals with Membrane Phospholipids: Consequences on Membrane Physical Properties. Behavior Research Methods, 2006, , 79-106.	2.3	9
48	Concentration-dependent effects of sodium cholate and deoxycholate bile salts on breast cancer cells proliferation and survival. Molecular Biology Reports, 2020, 47, 3521-3539.	1.0	9
49	Prunin- and hesperetin glucoside-alkyl (C4–C18) esters interaction with Jurkat cells plasma membrane: Consequences on membrane physical properties and antioxidant capacity. Food and Chemical Toxicology, 2013, 55, 411-423.	1.8	8
50	Tl(I) and Tl(III) alter the expression of EGFâ€dependent signals and cyclins required for pheochromocytoma (PC12) cellâ€cycle resumption and progression. Journal of Applied Toxicology, 2015, 35, 952-969.	1.4	6
51	Selectivity of plasma membrane calcium ATPase (PMCA)-mediated extrusion of toxic divalent cations in vitro and in cultured cells. Archives of Toxicology, 2018, 92, 273-288.	1.9	6
52	Detection of Tl(III) with luminol at physiological pH requires hydrogen peroxide as co-oxidant. Journal of Luminescence, 2013, 137, 191-197.	1.5	5