Jeremie Soulestin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/363978/publications.pdf

Version: 2024-02-01

64 papers

2,135 citations

201385 27 h-index 233125 45 g-index

64 all docs 64
docs citations

64 times ranked 2424 citing authors

#	Article	IF	CITATIONS
1	Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties. Composites Science and Technology, 2009, 69, 1756-1763.	3.8	341
2	Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition. EXPRESS Polymer Letters, 2008, 2, 735-745.	1.1	185
3	Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydrate Polymers, 2015, 115, 364-372.	5.1	93
4	Effect of Nanoclay Hydration on Barrier Properties of PLA/Montmorillonite Based Nanocomposites. Journal of Physical Chemistry C, 2013, 117, 12117-12135.	1.5	85
5	Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites. Carbohydrate Polymers, 2012, 89, 920-927.	5.1	84
6	Comparison of the photochemical and thermal degradation of bisphenol-A polycarbonate and trimethylcyclohexane–polycarbonate. Polymer Degradation and Stability, 2002, 75, 17-33.	2.7	81
7	Active pseudo-multilayered films from polycaprolactone and starch based matrix for food-packaging applications. European Polymer Journal, 2013, 49, 1234-1242.	2.6	66
8	Effect of Highly Exfoliated and Oriented Organoclays on the Barrier Properties of Polyamide 6 Based Nanocomposites. Journal of Physical Chemistry C, 2012, 116, 4937-4947.	1.5	61
9	Microstructure and barrier properties of PHBV/organoclays bionanocomposites. Journal of Membrane Science, 2014, 467, 56-66.	4.1	54
10	Plasticized-starch/poly(ethylene oxide) blends prepared by extrusion. Carbohydrate Polymers, 2013, 91, 253-261.	5.1	53
11	Deformation mechanisms of plasticized starch materials. Carbohydrate Polymers, 2014, 114, 450-457.	5.1	43
12	Mechanical and Optical Properties of Polyamide 6/Clay Nanocomposite Cast Films: Influence of the Degree of Exfoliation. Macromolecular Materials and Engineering, 2012, 297, 444-454.	1.7	41
13	Segmental Dynamics of Poly(ethylene oxide) Chains in a Model Polymer/Clay Intercalated Phase: Solid-State NMR Investigation. Macromolecules, 2009, 42, 218-230.	2.2	36
14	Processing of PVDF-based electroactive/ferroelectric films: importance of PMMA and cooling rate from the melt state on the crystallization of PVDF beta-crystals. Soft Matter, 2018, 14, 4591-4602.	1.2	36
15	Taguchi analysis of shrinkage and warpage of injection-moulded polypropylene/multiwall carbon nanotubes nanocomposites. EXPRESS Polymer Letters, 2009, 3, 630-638.	1.1	36
16	Influence of the chemical structure of polycarbonates on the contribution of crosslinking and chain scissions to the photothermal ageing. European Polymer Journal, 2002, 38, 1349-1363.	2.6	35
17	One-step water-assisted melt-compounding of polyamide 6/pristine clay nanocomposites: An efficient way to prevent matrix degradation. Polymer Degradation and Stability, 2011, 96, 1890-1900.	2.7	35
18	Preparation and characterization of plasticized starch/halloysite porous nanocomposites possibly suitable for biomedical applications. Journal of Applied Polymer Science, 2015, 132, .	1.3	34

#	Article	IF	CITATIONS
19	Evaluation of rheological properties of non-Newtonian fluids in micro rheology compounder: Experimental procedures for a reliable polymer melt viscosity measurement. Polymer Testing, 2014, 40, 207-217.	2.3	32
20	Structure–barrier property relationship of biodegradable poly(butylene succinate) and poly[(butylene succinate)-co-(butylene adipate)] nanocomposites: influence of the rigid amorphous fraction. Physical Chemistry Chemical Physics, 2015, 17, 29918-29934.	1.3	32
21	Melt-blended halloysite nanotubes/wheat starch nanocomposites as drug delivery system. Polymer Engineering and Science, 2015, 55, 573-580.	1.5	32
22	Polyolefins–biofibre composites: A new way for an industrial production. Polymer Engineering and Science, 2007, 47, 467-476.	1.5	30
23	Present Status and Key Challenges of Carbon Nanotubes Reinforced Polyolefins: A Review on Nanocomposites Manufacturing and Performance Issues. Polymers and Polymer Composites, 2009, 17, 205-245.	1.0	30
24	Compatibilization of Immiscible Polymer Blends by Organoclay: Effect of Nanofiller or Organoâ€Modifier?. Macromolecular Materials and Engineering, 2013, 298, 757-770.	1.7	30
25	How does temperature govern mechanisms of starch changes during extrusion?. Carbohydrate Polymers, 2018, 184, 57-65.	5.1	30
26	Morphology and mechanical properties of PET/PE blends compatibilized by nanoclays: Effect of thermal stability of nanofiller organic modifier. Journal of Applied Polymer Science, 2013, 128, 2766-2778.	1.3	29
27	Improvement of barrier properties of bio-based polyester nanocomposite membranes by water-assisted extrusion. Journal of Membrane Science, 2015, 496, 185-198.	4.1	29
28	Effect of injection molding parameters on nanofillers dispersion in masterbatch based PP-clay nanocomposites. EXPRESS Polymer Letters, 2012, 6, 237-248.	1.1	28
29	Poly[(butylene succinate)- <i>co</i> -(butylene adipate)]-Montmorillonite Nanocomposites Prepared by Water-Assisted Extrusion: Role of the Dispersion Level and of the Structure-Microstructure on the Enhanced Barrier Properties. Journal of Physical Chemistry C, 2016, 120, 13234-13248.	1.5	27
30	Development of nanofibrillar morphologies in poly(<scp> </scp> -lactide)/poly(amide) blends: role of the matrix elasticity and identification of the critical shear rate for the nodular/fibrillar transition. RSC Advances, 2018, 8, 22023-22041.	1.7	25
31	Compatibilization mechanism induced by organoclay in PMMA/PS blends. Journal of Rheology, 2017, 61, 613-626.	1.3	23
32	Efficient one-step melt-compounding of copolyetheramide/pristine clay nanocomposites using water-injection as intercalating/exfoliating aid. EXPRESS Polymer Letters, 2011, 5, 1085-1101.	1.1	22
33	Electrical and Dielectric Properties of Multi-Walled Carbon Nanotube Filled Polypropylene Nanocomposites. Polymers and Polymer Composites, 2010, 18, 489-494.	1.0	21
34	Influence of crystallinity on the dielectric relaxations of poly(butylene succinate) and poly[(butylene) Tj ETQq0 0	0 rgBT /0	Overlock 10 Tf
35	A new elaboration concept of polypropylene/unmodified Montmorillonite nanocomposites by reactive extrusion based on direct injection of polypropylene aqueous suspensions. Polymer Engineering and Science, 2009, 49, 2276-2285.	1.5	19
36	Processing and Characterization of Polypropylene Filled with Multiwalled Carbon Nanotube and Clay Hybrid Nanocomposites. International Journal of Polymer Analysis and Characterization, 2014, 19, 363-371.	0.9	18

#	Article	IF	CITATIONS
37	Optimization of mechanical properties of printed acrylonitrile butadiene styrene using RSM design. International Journal of Advanced Manufacturing Technology, 2019, 100, 1363-1372.	1.5	18
38	Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) based nanocomposites: influence of the microstructure on the barrier properties. Physical Chemistry Chemical Physics, 2015, 17, 11313-11323.	1.3	17
39	Thermal and dielectric behavior of polyamide-6/clay nanocomposites. Materials Chemistry and Physics, 2019, 232, 99-108.	2.0	16
40	Thermal and geometry impacts on the structure and mechanical properties of part produced by polymer additive manufacturing. Journal of Applied Polymer Science, 2020, 137, 49038.	1.3	16
41	Poly(ethylene oxide)/Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) (PEDOT:PSS) Blends: An Efficient Route to Highly Conductive Thermoplastic Materials for Melt-State Extrusion Processing?. ACS Applied Polymer Materials, 2020, 2, 2366-2379.	2.0	16
42	Water Transport Properties of Poly(butylene succinate) and Poly[(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 Extrusion Process. Journal of Physical Chemistry C, 2017, 121, 918-930.	0 547 Td 1.5	(succinate)- <i 15</i
43	New Melting Data of the Two Polymorphs of Prednisolone. Journal of Physical Chemistry B, 2016, 120, 10839-10843.	1.2	14
44	Fused filament fabrication of scaffolds for tissue engineering; how realistic is shape-memory? A review. Polymer, 2021, 217, 123440.	1.8	14
45	Emission of volatile organic compounds during processing and use of organoclay-based nanocomposites. Polymer Degradation and Stability, 2013, 98, 557-565.	2.7	12
46	Beta Phase Crystallization and Ferro- and Piezoelectric Performances of Melt-Processed Poly(vinylidene difluoride) Blends with Poly(methyl methacrylate) Copolymers Containing Ionizable Moieties. ACS Applied Polymer Materials, 2020, 2, 3766-3780.	2.0	12
47	Intumescent Biobased-Polylactide Films to Flame Retard Nonwovens. Journal of Engineered Fibers and Fabrics, 2009, 4, 155892500900400.	0.5	9
48	<i>In situ</i> fibrillation of polypropylene/polyamide 6 blends: Effect of organoclay addition. Journal of Applied Polymer Science, 2015, 132, .	1.3	9
49	Melt compatibility between polyolefins: Evaluation and reliability of interfacial/surface tensions obtained by various techniques. Polymer Testing, 2019, 78, 105995.	2.3	9
50	Tailoring the properties of thermoplastic starch by blending with cinnamyl alcohol and radiation processing: An insight into the competitive grafting and scission reactions. Radiation Physics and Chemistry, 2012, 81, 986-990.	1.4	8
51	Minimise thermo-mechanical batch variations when processing medical grade lactide based copolymers in additive manufacturing. Polymer Degradation and Stability, 2020, 181, 109372.	2.7	8
52	Rheological Considerations in Processing Self-Reinforced Thermoplastic Polymer Nanocomposites: A Review. Polymers, 2022, 14, 637.	2.0	8
53	Fused filament fabrication of polypropylene: Influence of the bead temperature on adhesion and porosity. Additive Manufacturing, 2021, 38, 101838.	1.7	7
54	In-situ nano-fibrillation of poly(butylene succinate-co-adipate) in isosorbide-based polycarbonate matrix. Relationship between rheological parameters and induced morphological and mechanical properties. Polymer, 2021, 217, 123445.	1.8	7

#	Article	IF	CITATIONS
55	Using water to modify the localization of clay in immiscible polymer blends. RSC Advances, 2015, 5, 75311-75324.	1.7	6
56	Influence of the molar masses on compatibilization mechanism induced by two block copolymers in PMMA/PS blends. Journal of Rheology, 2018, 62, 681-693.	1.3	6
57	Effect of clay particles size and location on coalescence in PMMA/PS blends. Journal of Rheology, 2019, 63, 883-893.	1.3	6
58	Biodegradable PLA/PBSA Multinanolayer Nanocomposites: Effect of Nanoclays Incorporation in Multinanolayered Structure on Mechanical and Water Barrier Properties. Nanomaterials, 2020, 10, 2561.	1.9	6
59	Processing and Mechanical Behaviour of Halloysite Filled Starch Based Nanocomposites. Advanced Materials Research, 0, 584, 445-449.	0.3	4
60	Processingâ€induced degradation of nanoclay organic modifier in meltâ€mixed PET/PE blends during twin screw extrusion at industrial scale: Effect on morphology and mechanical behavior. Journal of Applied Polymer Science, 2014, 131, .	1.3	4
61	Structural evolution of poly(lactic acid)/poly(ethylene oxide)/unmodified clay upon ambient ageing. Journal of Applied Polymer Science, 2014, 131, .	1.3	4
62	(Nano)Fibrillar morphology development in biobased poly(butylene <scp>succinateâ€coâ€adipate</scp>)/poly(amideâ€11) blown films. Polymer Engineering and Science, 2021, 61, 1324-1337.	1.5	4
63	Optimization of the UV stabilization of a plasticized PVC film for exterior automotive applications. AIP Conference Proceedings, 2020, , .	0.3	2
64	Water Diffusion Mechanisms in New Bio-Nanocomposites Based on Polyhydroxyalkanoates/Nanoclays. Advanced Materials Research, 2013, 747, 682-685.	0.3	1