Sebastian Birk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3639640/publications.pdf

Version: 2024-02-01

all docs

59 4,256 31 61 g-index

63 63 63 5595

times ranked

citing authors

docs citations

#	Article	IF	Citations
1	Assessing multiple stressor effects to inform climate change management responses in three European catchments. Inland Waters, 2022, 12, 94-106.	1.1	7
2	The Role of Epiphytic Algae and Grazing Snails in Stable States of Submerged and of Free-Floating Plants. Ecosystems, 2022, 25, 1371-1383.	1.6	5
3	Why wastewater treatment fails to protect stream ecosystems in Europe. Water Research, 2022, 217, 118382.	5.3	15
4	Evaluating the biological validity of European river typology systems with least disturbed benthic macroinvertebrate communities. Science of the Total Environment, 2022, 842, 156689.	3.9	7
5	Environmental ranges discriminating between macrophytes groups in European rivers. PLoS ONE, 2022, 17, e0269744.	1.1	2
6	Multiple stressor effects on benthic macroinvertebrates in very large European rivers – A typology-based evaluation of faunal responses as a basis for future bioassessment. Science of the Total Environment, 2021, 756, 143472.	3.9	12
7	Multiple stressors determine river ecological status at the European scale: Towards an integrated understanding of river status deterioration. Global Change Biology, 2021, 27, 1962-1975.	4.2	114
8	Estimating river nutrient concentrations consistent with good ecological condition: More stringent nutrient thresholds needed. Ecological Indicators, 2021, 121, 107017.	2.6	36
9	Making waves. Bridging theory and practice towards multiple stressor management in freshwater ecosystems. Water Research, 2021, 196, 116981.	5. 3	32
10	A guideline to frame stressor effects in freshwater ecosystems. Science of the Total Environment, 2021, 777, 146112.	3.9	15
11	The interplay of nutrients, dissolved inorganic carbon and algae in determining macrophyte occurrences in rivers. Science of the Total Environment, 2021, 781, 146728.	3.9	13
12	Multiple Stressors in Streams. , 2021, , .		0
13	Anthropogenic Stressors in Upland Rivers: Aquatic Macrophyte Responses. A Case Study from Bulgaria. Plants, 2021, 10, 2708.	1.6	4
14	Making the ecosystem services approach operational: A case study application to the Aarhus River, Denmark. Science of the Total Environment, 2020, 707, 135836.	3.9	12
15	A Synthesis of Marine Monitoring Methods With the Potential to Enhance the Status Assessment of the Baltic Sea. Frontiers in Marine Science, 2020, 7, .	1.2	12
16	European aquatic ecological assessment methods: A critical review of their sensitivity to key pressures. Science of the Total Environment, 2020, 740, 140075.	3.9	71
17	Chemical pollution imposes limitations to the ecological status of European surface waters. Scientific Reports, 2020, 10, 14825.	1.6	72
18	Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology and Evolution, 2020, 4, 1060-1068.	3.4	336

#	Article	IF	Citations
19	Ex uno plures – Defining different types of very large rivers in Europe to foster solid aquatic bio-assessment. Ecological Indicators, 2019, 107, 105599.	2.6	7
20	Catchment properties and the photosynthetic trait composition of freshwater plant communities. Science, 2019, 366, 878-881.	6.0	80
21	A new broad typology for rivers and lakes in Europe: Development and application for large-scale environmental assessments. Science of the Total Environment, 2019, 697, 134043.	3.9	68
22	Pan-European Calculation of Hydrologic Stress Metrics in Rivers: A First Assessment with Potential Connections to Ecological Status. Water (Switzerland), 2019, 11, 703.	1.2	7
23	The future depends on what we do today – Projecting Europe's surface water quality into three different future scenarios. Science of the Total Environment, 2019, 668, 470-484.	3.9	31
24	Detecting and Quantifying the Impact of Multiple Stress on River Ecosystems., 2019,, 235-253.		7
25	Defining ecological status of phytobenthos in very large rivers: a case study in practical implementation of the Water Framework Directive in Romania. Hydrobiologia, 2019, 828, 353-367.	1.0	6
26	Protecting and restoring Europe's waters: An analysis of the future development needs of the Water Framework Directive. Science of the Total Environment, 2019, 658, 1228-1238.	3.9	295
27	Regulations are needed to protect freshwater ecosystems from salinization. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180019.	1.8	100
28	Diagnosing the causes of river deterioration using stressor-specific metrics. Science of the Total Environment, 2019, 651, 1105-1113.	3.9	31
29	Deriving nutrient criteria to support $\hat{E}^{1}/2$ good $\hat{E}^{1}/4$ ecological status in European lakes: An empirically based approach to linking ecology and management. Science of the Total Environment, 2019, 650, 2074-2084.	3.9	53
30	Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment. Environmental Sciences Europe, 2019, 31, .	2.6	7
31	Mixtures of chemicals are important drivers of impacts on ecological status in European surface waters. Environmental Sciences Europe, 2019, 31, .	2.6	24
32	LaRiMo - A simple and efficient GIS-based approach for large-scale morphological assessment of large European rivers. Science of the Total Environment, 2018, 628-629, 1191-1199.	3.9	17
33	Large-scale river restoration pays off: A case study of ecosystem service valuation for the Emscher restoration generation project. Ecosystem Services, 2018, 30, 327-338.	2.3	40
34	Getting into the water with the Ecosystem Services Approach: The DESSIN ESS evaluation framework. Ecosystem Services, 2018, 30, 318-326.	2.3	26
35	Harmonization of the assessment method for classifying the ecological quality status of very large Greek rivers. Knowledge and Management of Aquatic Ecosystems, 2018, , 50.	0.5	10
36	Comparative test of ecological assessment methods of lowland streams based on long-term monitoring data of macrophytes. Science of the Total Environment, 2016, 541, 1269-1281.	3.9	16

#	Article	IF	Citations
37	Redundancy in the ecological assessment of lakes: Are phytoplankton, macrophytes and phytobenthos all necessary?. Science of the Total Environment, 2016, 568, 594-602.	3.9	40
38	Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. Science of the Total Environment, 2016, 540, 43-52.	3.9	175
39	Disentangling the effects of land use and geo-climatic factors on diversity in European freshwater ecosystems. Ecological Indicators, 2016, 60, 71-83.	2.6	66
40	Plant trait characteristics vary with size and eutrophication in <scp>E</scp> uropean lowland streams. Journal of Applied Ecology, 2015, 52, 1617-1628.	1.9	31
41	FORUM: Effective management of ecological resilience – are we there yet?. Journal of Applied Ecology, 2015, 52, 1311-1315.	1.9	39
42	A hitchhiker's guide to European lake ecological assessment and intercalibration. Ecological Indicators, 2015, 52, 533-544.	2.6	96
43	Managing aquatic ecosystems and water resources under multiple stress — An introduction to the MARS project. Science of the Total Environment, 2015, 503-504, 10-21.	3.9	231
44	Intercalibration of aquatic ecological assessment methods in the European Union: Lessons learned and way forward. Environmental Science and Policy, 2014, 44, 237-246.	2.4	102
45	The potential of remote sensing in ecological status assessment of coloured lakes using aquatic plants. Ecological Indicators, 2014, 46, 398-406.	2.6	23
46	Intercalibrating classifications of ecological status: Europe's quest for common management objectives for aquatic ecosystems. Science of the Total Environment, 2013, 454-455, 490-499.	3.9	103
47	Ecological status assessment of European lakes: a comparison of metrics for phytoplankton, macrophytes, benthic invertebrates and fish. Hydrobiologia, 2013, 704, 57-74.	1.0	123
48	Diversity of European seagrass indicators: patterns within and across regions. Hydrobiologia, 2013, 704, 265-278.	1.0	110
49	Biological assessment of <scp>E</scp> uropean lakes: ecological rationale and human impacts. Freshwater Biology, 2013, 58, 1106-1115.	1.2	42
50	Three hundred ways to assess Europe's surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators, 2012, 18, 31-41.	2.6	801
51	Harmonising the bioassessment of large rivers in the absence of nearâ€natural reference conditions – a case study of the Danube River. Freshwater Biology, 2012, 57, 1716-1732.	1.2	45
52	The European reference condition concept: A scientific and technical approach to identify minimally-impacted river ecosystems. Science of the Total Environment, 2012, 420, 33-42.	3.9	143
53	From Natural to Degraded Rivers and Back Again. Advances in Ecological Research, 2011, 44, 119-209.	1.4	207
54	Bringing European river quality into line: an exercise to intercalibrate macro-invertebrate classification methods. Hydrobiologia, 2011, 667, 31-48.	1.0	55

#	Article	IF	CITATIONS
55	The role of land use, nutrients, and other stressors in shaping benthic invertebrate assemblages in Slovenian rivers. Hydrobiologia, 2011, 678, 137-153.	1.0	21
56	Towards harmonization of ecological quality classification: establishing common grounds in European macrophyte assessment for rivers. Hydrobiologia, 2010, 652, 149-163.	1.0	70
57	A new procedure for comparing class boundaries of biological assessment methods: A case study from the Danube Basin. Ecological Indicators, 2009, 9, 528-539.	2.6	27
58	Intercalibration of assessment methods for macrophytes in lowland streams: direct comparison and analysis of common metrics. Hydrobiologia, 2006, 566, 417-430.	1.0	35
59	Direct comparison of assessment methods using benthic macroinvertebrates: a contribution to the EU Water Framework Directive intercalibration exercise. Hydrobiologia, 2006, 566, 401-415.	1.0	70