Michelle T H Van Vliet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3639626/publications.pdf

Version: 2024-02-01

59 papers

7,096 citations

39 h-index 59 g-index

64 all docs

64 docs citations

times ranked

64

8450 citing authors

#	Article	IF	CITATIONS
1	The state of desalination and brine production: A global outlook. Science of the Total Environment, 2019, 657, 1343-1356.	8.0	1,052
2	Global river discharge and water temperature under climate change. Global Environmental Change, 2013, 23, 450-464.	7.8	689
3	Vulnerability of US and European electricity supply to climate change. Nature Climate Change, 2012, 2, 676-681.	18.8	444
4	Power-generation system vulnerability and adaptation to changes in climate and waterÂresources. Nature Climate Change, 2016, 6, 375-380.	18.8	436
5	Assessing the impacts of 1.5â€-°C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development, 2017, 10, 4321-4345.	3.6	410
6	Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geoscientific Model Development, 2016, 9, 175-222.	3.6	379
7	Impact of summer droughts on the water quality of the Meuse river. Journal of Hydrology, 2008, 353, 1-17.	5.4	267
8	Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth System Science Data, 2021, 13, 237-254.	9.9	233
9	Global water scarcity including surface water quality and expansions of clean water technologies. Environmental Research Letters, 2021, 16, 024020.	5.2	192
10	Quality matters for water scarcity. Nature Geoscience, 2017, 10, 800-802.	12.9	181
11	Impacts of climate change on energy systems in global and regional scenarios. Nature Energy, 2020, 5, 794-802.	39.5	180
12	State-of-the-art global models underestimate impacts from climate extremes. Nature Communications, 2019, 10, 1005.	12.8	168
13	Mekong River flow and hydrological extremes under climate change. Hydrology and Earth System Sciences, 2016, 20, 3027-3041.	4.9	154
14	Climate Impacts in Europe Under +1.5°C Global Warming. Earth's Future, 2018, 6, 264-285.	6.3	130
15	Coupled daily streamflow and water temperature modelling in large river basins. Hydrology and Earth System Sciences, 2012, 16, 4303-4321.	4.9	127
16	Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Global Environmental Change, 2016, 40, 156-170.	7.8	103
17	The Mekong's future flows under multiple drivers: How climate change, hydropower developments and irrigation expansions drive hydrological changes. Science of the Total Environment, 2019, 649, 601-609.	8.0	98
18	Water constraints on European power supply under climate change: impacts on electricity prices. Environmental Research Letters, 2013, 8, 035010.	5.2	93

#	Article	IF	Citations
19	Global thermal pollution of rivers from thermoelectric power plants. Environmental Research Letters, 2016, 11, 104011.	5.2	89
20	Impacts of recent drought and warm years on water resources and electricity supply worldwide. Environmental Research Letters, 2016, 11, 124021.	5.2	85
21	Urbanization: an increasing source of multiple pollutants to rivers in the 21st century. Npj Urban Sustainability, 2021, 1, .	8.0	84
22	China's coal-fired power plants impose pressure on water resources. Journal of Cleaner Production, 2017, 161, 1171-1179.	9.3	82
23	Global multi-pollutant modelling of water quality: scientific challenges and future directions. Current Opinion in Environmental Sustainability, 2019, 36, 116-125.	6.3	80
24	Climate change and the vulnerability of electricity generation to water stress in the European Union. Nature Energy, $2017, 2, .$	39 . 5	78
25	Multi-scale Modeling of Nutrient Pollution in the Rivers of China. Environmental Science & Eamp; Technology, 2019, 53, 9614-9625.	10.0	76
26	Energy sector water use implications of a 2 $\hat{A}^{\circ}C$ climate policy. Environmental Research Letters, 2016, 11, 034011.	5.2	72
27	Highâ€Resolution Global Water Temperature Modeling. Water Resources Research, 2019, 55, 2760-2778.	4.2	70
28	Global streamflow and thermal habitats of freshwater fishes under climate change. Climatic Change, 2013, 121, 739-754.	3.6	64
29	Preserving the world second largest hypersaline lake under future irrigation and climate change. Science of the Total Environment, 2016, 559, 317-325.	8.0	64
30	Common irrigation drivers of freshwater salinisation in river basins worldwide. Nature Communications, 2021, 12, 4232.	12.8	63
31	Climate change impacts on the leaching of a heavy metal contamination in a small lowland catchment. Journal of Contaminant Hydrology, 2012, 127, 47-64.	3.3	58
32	Drought impacts on river salinity in the southern US: Implications for water scarcity. Science of the Total Environment, 2018, 644, 844-853.	8.0	58
33	Global modelling of surface water quality: a multi-pollutant approach. Current Opinion in Environmental Sustainability, 2016, 23, 35-45.	6.3	50
34	Managing flood risks in the Mekong Delta: How to address emerging challenges under climate change and socioeconomic developments. Ambio, 2018, 47, 635-649.	5.5	49
35	Analysing trade-offs between SDGs related to water quality using salinity as a marker. Current Opinion in Environmental Sustainability, 2019, 36, 96-104.	6.3	49
36	A global dataset of surface water and groundwater salinity measurements from 1980–2019. Scientific Data, 2020, 7, 231.	5.3	47

#	Article	IF	CITATIONS
37	A physically based model of global freshwater surface temperature. Water Resources Research, 2012, 48, .	4.2	45
38	Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide. Current Opinion in Environmental Sustainability, 2019, 36, 39-48.	6.3	41
39	Cryptosporidium concentrations in rivers worldwide. Water Research, 2019, 149, 202-214.	11.3	39
40	Continental Runoff into the Oceans (1950–2008). Journal of Hydrometeorology, 2015, 16, 1502-1520.	1.9	37
41	Global Change Can Make Coastal Eutrophication Control in China More Difficult. Earth's Future, 2020, 8, e2019EF001280.	6.3	35
42	Model inter-comparison design for large-scale water quality models. Current Opinion in Environmental Sustainability, 2019, 36, 59-67.	6.3	34
43	European scale climate information services for water use sectors. Journal of Hydrology, 2015, 528, 503-513.	5.4	26
44	Climate and human development impacts on municipal water demand: A spatially-explicit global modeling framework. Environmental Modelling and Software, 2016, 85, 266-278.	4.5	24
45	Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?. Water (Switzerland), 2019, 11, 2223.	2.7	24
46	Adaptation Turning Points in River Restoration? The Rhine Salmon Case. Sustainability, 2013, 5, 2288-2304.	3.2	22
47	Balancing indicators for sustainable intensification of crop production at field and river basin levels. Science of the Total Environment, 2020, 705, 135925.	8.0	21
48	Editorial overview: Water quality: A new challenge for global scale model development and application. Current Opinion in Environmental Sustainability, 2019, 36, A1-A5.	6.3	18
49	Impact of the 2018 drought on pharmaceutical concentrations and general water quality of the Rhine and Meuse rivers. Science of the Total Environment, 2021, 778, 146182.	8.0	17
50	The future of the Rhine: stranded ships and no more salmon?. Regional Environmental Change, 2016, 16, 31-41.	2.9	16
51	Simulating human impacts on global water resources using VIC-5. Geoscientific Model Development, 2020, 13, 5029-5052.	3.6	16
52	A multi-model ensemble of downscaled spatial climate change scenarios for the Dommel catchment, Western Europe. Climatic Change, 2012, 111, 249-277.	3.6	14
53	Adaptation of thermal power plants: The (ir)relevance of climate (change) information. Energy Economics, 2017, 62, 1-18.	12.1	12
54	Worldwide water constraints on attainable irrigated production for major crops. Environmental Research Letters, 2021, 16, 055016.	5.2	11

#	Article	IF	CITATIONS
55	In-stream surface water quality in China: A spatially-explicit modelling approach for nutrients. Journal of Cleaner Production, 2022, 334, 130208.	9.3	6
56	Salinity impacts on irrigation water-scarcity in food bowl regions of the US and Australia. Environmental Research Letters, 2022, 17, 084002.	5.2	3
57	Comments on "Effects of Environmental Temperature Change on the Efficiency of Coal- and Natural Gas-Fired Power Plants― Environmental Science & Environmental Environment	10.0	2
58	Reply to Comment on "Multi-Scale Modeling of Nutrient Pollution in the Rivers of China― Environmental Science & Technology, 2020, 54, 2046-2047.	10.0	2
59	Global carbon sequestration through continental chemical weathering in a climatic change context. Scientific Reports, 2021, 11, 23588.	3.3	0