Byron F Brehm-Stecher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3639575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Cell Microbiology: Tools, Technologies, and Applications. Microbiology and Molecular Biology Reviews, 2004, 68, 538-559.	2.9	415
2	Sensitization of Staphylococcus aureus and Escherichia coli to Antibiotics by the Sesquiterpenoids Nerolidol, Farnesol, Bisabolol, and Apritone. Antimicrobial Agents and Chemotherapy, 2003, 47, 3357-3360.	1.4	244
3	Sample Preparation: The Forgotten Beginning. Journal of Food Protection, 2009, 72, 1774-1789.	0.8	117
4	Antibacterial Soybeanâ€Oilâ€Based Cationic Polyurethane Coatings Prepared from Different Amino Polyols. ChemSusChem, 2012, 5, 2221-2227.	3.6	59
5	Capture, Concentration, and Detection of <i>Salmonella</i> in Foods Using Magnetic Ionic Liquids and Recombinase Polymerase Amplification. Analytical Chemistry, 2019, 91, 1113-1120.	3.2	46
6	Enhanced dark field microscopy for rapid artifactâ€free detection of nanoparticle binding to <i>Candida albicans</i> cells and hyphae. Biotechnology Journal, 2009, 4, 871-879.	1.8	44
7	Simple Adhesive-Tape-Based Sampling of Tomato Surfaces Combined with Rapid Fluorescence In Situ Hybridization for <i>Salmonella</i> Detection. Applied and Environmental Microbiology, 2009, 75, 1450-1455.	1.4	42
8	Antilisterial Effects of Gravinol-S Grape Seed Extract at Low Levels in Aqueous Media and Its Potential Application as a Produce Wash. Journal of Food Protection, 2010, 73, 266-273.	0.8	42
9	Thermoâ€Mechanical and Antibacterial Properties of Soybean Oilâ€Based Cationic Polyurethane Coatings: Effects of Amine Ratio and Degree of Crosslinking. Macromolecular Materials and Engineering, 2014, 299, 1042-1051.	1.7	39
10	Design and Evaluation of 16S rRNA-Targeted Peptide Nucleic Acid Probes for Whole-Cell Detection of Members of the Genus Listeria. Applied and Environmental Microbiology, 2005, 71, 5451-5457.	1.4	32
11	Combined capillary electrophoresis and DNAâ€fluorescence <i>in situ</i> hybridization for rapid molecular identification of <i>Salmonella</i> Typhimurium in mixed culture. Electrophoresis, 2008, 29, 2477-2484.	1.3	30
12	Soy Protein Diet, but Not Lactobacillus rhamnosus GC, Decreases Mucin-1, Trefoil Factor-3, and Tumor Necrosis Factor-1± in Colon of Dextran Sodium Sulfate-Treated C57BL/6 Mice,. Journal of Nutrition, 2011, 141, 1239-1246.	1.3	29
13	Value-Added Production of Nisin from Soy Whey. Applied Biochemistry and Biotechnology, 2010, 162, 1819-1833.	1.4	28
14	Rapid identification of <i>Candida albicans</i> in blood by combined capillary electrophoresis and fluorescence <i>in situ</i> hybridization. Electrophoresis, 2010, 31, 2849-2853.	1.3	25
15	Flowâ€ŧhrough imaging cytometry for characterization of <i>Salmonella</i> subpopulations in alfalfa sprouts, a complex food system. Biotechnology Journal, 2009, 4, 880-887.	1.8	21
16	Investigating the control of Listeria monocytogenes on alternatively-cured frankfurters using natural antimicrobial ingredients or post-lethality interventions. Meat Science, 2014, 97, 568-574.	2.7	16
17	Improved DNA-FISH for cytometric detection ofCandidaspp. Journal of Applied Microbiology, 2011, 110, 881-892.	1.4	15
18	Evaluation of the Thin Agar Layer Method for the Recovery of Pressure-Injured and Heat-Injured Listeria monocytogenes. Journal of Food Protection, 2014, 77, 828-831.	0.8	14

#	Article	IF	CITATIONS
19	Rapid Identification of Staphylococcus aureus and Methicillin Resistance by Flow Cytometry Using a Peptide Nucleic Acid Probe. Journal of Clinical Microbiology, 2011, 49, 3383-3385.	1.8	13
20	Ozonation-Based Decolorization of Food Dyes for Recovery of Fruit Leather Wastes. Journal of Agricultural and Food Chemistry, 2013, 61, 8198-8206.	2.4	12
21	Investigating the Control of <i>Listeria monocytogenes</i> on a Ready-to-Eat Ham Product Using Natural Antimicrobial Ingredients and Postlethality Interventions. Foodborne Pathogens and Disease, 2014, 11, 462-467.	0.8	12
22	Combination of Adhesive-tape-based Sampling and Fluorescence in situ Hybridization for Rapid Detection of Salmonella on Fresh Produce. Journal of Visualized Experiments, 2010, , .	0.2	11
23	Design and Evaluation of Peptide Nucleic Acid Probes for Specific Identification of Candida albicans. Journal of Clinical Microbiology, 2015, 53, 511-521.	1.8	10
24	Isolation of Carotenoid Hyperproducing Mutants of Xanthophyllomyces dendrorhous (Phaffia) Tj ETQq0 0 0 rgBT	/Qverlock	19 Tf 50 54
25	Methods for Whole Cell Detection of Microorganisms. ACS Symposium Series, 2008, , 29-51.	0.5	8
26	Magnetic ionic liquids: interactions with bacterial cells, behavior in aqueous suspension, and broader applications. Analytical and Bioanalytical Chemistry, 2020, 412, 1741-1755.	1.9	6
27	Long-Term Survival Phase Cells of <i>Salmonella</i> Typhimurium ATCC 14028 Have Significantly Greater Resistance to Ultraviolet Radiation in 0.85% Saline and Apple Juice. Foodborne Pathogens and Disease, 2018, 15, 538-543.	0.8	5
28	New Technologies for Imaging and Analysis of Individual Microbial Cells. Principles and Practice, 2007, , 313-343.	0.3	4
29	Effects of Different Nitrite Concentrations from a Vegetable Source with and without High Hydrostatic Pressure on the Recovery of Listeria monocytogenes on Ready-to-Eat Restructured Ham. Journal of Food Protection, 2014, 77, 781-787.	0.8	3
30	Advances in Foodborne Pathogen Analysis. Foods, 2020, 9, 1635.	1.9	3
31	4.ÂMicroscopic Methods. , 2015, , .		3
32	Rapid Screening of Natural Plant Extracts with Calcium Diacetate for Differential Effects Against Foodborne Pathogens and a Probiotic Bacterium. Foodborne Pathogens and Disease, 2017, 14, 719-727.	0.8	0
33	Flow cytometry for rapid detection of Salmonella spp. in seed sprouts. ScienceOpen Research, 2014, .	0.6	0
34	Wide-spectrum biomimetic antimicrobial systems. ScienceOpen Research, 2016, .	0.6	0
35	Sodium polyphosphate and polyethylenimine enhance the antimicrobial activities of plant essential oils. ScienceOpen Research, 2016, .	0.6	0