Yonggen Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3639308/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene oxide: the mechanisms of oxidation and exfoliation. Journal of Materials Science, 2012, 47, 4400-4409.	1.7	326
2	A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers. Carbon, 2012, 50, 4459-4469.	5.4	153
3	Effect of gamma-irradiation on the mechanical properties of polyacrylonitrile-based carbon fiber. Carbon, 2013, 52, 427-439.	5.4	66
4	Contrastive study of anodic oxidation on carbon fibers and graphite fibers. Applied Surface Science, 2012, 258, 4268-4275.	3.1	50
5	Effect of graphene oxide on the solution rheology and the film structure and properties of cellulose carbamate. Carbon, 2014, 69, 552-562.	5.4	45
6	Improving preferred orientation and mechanical properties of PAN-based carbon fibers by pretreating precursor fibers in nitrogen. Carbon, 2011, 49, 4598-4600.	5.4	44
7	Preparation of polyacrylonitrile/graphene oxide by <i>in situ</i> polymerization. Polymer International, 2012, 61, 1394-1399.	1.6	43
8	The effect of heat treatment temperature and time on the microstructure and mechanical properties of PAN-based carbon fibers. Journal of Materials Science, 2014, 49, 794-804.	1.7	40
9	Improving stabilization degree of stabilized fibers by pretreating polyacrylonitrile precursor fibers in nitrogen. Materials Letters, 2012, 76, 162-164.	1.3	38
10	Improving crosslinking of stabilized polyacrylonitrile fibers and mechanical properties of carbon fibers by irradiating with Î ³ -ray. Polymer Degradation and Stability, 2016, 133, 16-26.	2.7	36
11	Further investigation on boric acid catalytic graphitization of polyacrylonitrile carbon fibers: Mechanism and mechanical properties. Materials & Design, 2012, 36, 728-734.	5.1	33
12	Effect of hot stretching graphitization on the structure and mechanical properties of rayon-based carbon fibers. Journal of Materials Science, 2014, 49, 673-684.	1.7	32
13	Effects of oxygen content in the atmosphere on thermal oxidative stabilization of polyacrylonitrile fibers. RSC Advances, 2016, 6, 73404-73411.	1.7	31
14	Effect of heating and stretching polyacrylonitrile precursor fibers in steam on the properties of stabilized fibers and carbon fibers. Polymer Engineering and Science, 2013, 53, 827-832.	1.5	29
15	A comparison of the effect of hot stretching on microstructures and properties of polyacrylonitrile and rayon-based carbon fibers. Journal of Materials Science, 2014, 49, 5017-5029.	1.7	27
16	Comparison of microwave and conventional heating methods in carbonization of polyacrylonitrile-based stabilized fibers at different temperature measured by an in-situ process temperature control ring. Polymer Degradation and Stability, 2017, 140, 32-41.	2.7	27
17	One-pot hydrothermal synthesis of rod-like FeOOH/reduced graphene oxide composites for supercapacitor. Journal of Materials Science: Materials in Electronics, 2014, 25, 3364-3374.	1.1	26
18	The effect of Î ³ -ray irradiation on the microstructure and thermal properties of polyacrylonitrile fibers. RSC Advances, 2015, 5, 23508-23518.	1.7	22

Yonggen Lu

#	Article	IF	CITATIONS
19	Preparation of mesocarbon microbeads from coal tar. Journal of Materials Science, 1999, 34, 4043-4050.	1.7	18
20	Effects on the oriented structure and mechanical properties of carbon fibers by pre-irradiating polyacrylonitrile fibers with Î ³ ray. Journal of Materials Science, 2016, 51, 7073-7084.	1.7	18
21	On Porosity of Carbon Aerogels from Sol-Gel Polymerization of Phenolic Novolak and Furfural. Journal of Porous Materials, 2003, 10, 57-68.	1.3	16
22	Effects of gamma ray irradiation on poly(acrylonitrile-co-methyl acrylate) fibers. Polymer Degradation and Stability, 2016, 128, 149-157.	2.7	16
23	Effect of polyurethane sizing agent on interface properties of carbon fiber reinforced polycarbonate composites. Journal of Applied Polymer Science, 2019, 136, 47982.	1.3	15
24	Stripping mechanism of PAN-based carbon fiber during anodic oxidation in NaOH electrolyte. Applied Surface Science, 2019, 486, 128-136.	3.1	14
25	The catalytic effect of boron nitride on the mechanical properties of polyacrylonitrile-based carbon fiber. Journal of Materials Science, 2016, 51, 10690-10700.	1.7	13
26	Effect of sizing on interfacial adhesion property of glass fiber-reinforced polyurethane composites. Journal of Reinforced Plastics and Composites, 2018, 37, 321-330.	1.6	13
27	Weak layer exfoliation and an attempt for modification in anodic oxidation of PAN-based carbon fiber. Journal of Materials Science, 2020, 55, 2372-2379.	1.7	11
28	Evolution of the crystalline structure and cyclization with changing tension during the stabilization of polyacrylonitrile fibers. Journal of Applied Polymer Science, 2015, 132, .	1.3	9
29	Doping boric acid into polyacrylonitrile fibers prior to drying process and the effects on stabilization. Journal of Materials Science, 2017, 52, 9452-9464.	1.7	9
30	Effect of carbonization temperature on microwave absorbing properties of polyacrylonitrile-based carbon fibers. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 637-641.	1.0	9
31	Preparation of porous carbon microspheres. Journal of Applied Polymer Science, 2006, 102, 798-803.	1.3	6
32	A new polyacrylonitrile fiber for direct carbonization without oxidation. Journal of Materials Science, 2018, 53, 8232-8240.	1.7	6
33	Preparation and properties of lightweight carbon/carbon fiber composite thermal field insulation materials for high-temperature furnace. Journal of Engineered Fibers and Fabrics, 2019, 14, 155892501988469.	0.5	6
34	Analysis of carbon fiber structure based on dynamic laser Raman spectroscopy. Journal of Applied Polymer Science, 2021, 138, 50247.	1.3	6
35	Interface Properties of Epoxy and Polyurethane Mutually Sized Carbon Fiber Reinforced Composites. Fibers and Polymers, 2022, 23, 775-783.	1.1	3
36	Sizing carbon fiber by in situ polymerization of maleic acid and glycerol for reinforcing polyamide 66. Journal of Applied Polymer Science, 0, , 52328.	1.3	3

Yonggen Lu

#	Article	IF	CITATIONS
37	Electrophoretic deposition of graphene oxide on graphite fiber cloth and the electrochemical performance as electrode of supercapacitor. Journal of Materials Science: Materials in Electronics, 2017, 28, 6308-6319.	1.1	2
38	Simulations of Potential Distribution and Efficiency Optimization in Carbon Fiber Electrochemical Oxidation. Journal of the Electrochemical Society, 2018, 165, E115-E120.	1.3	2
39	Effect of surface post-oxidation of epoxy-sized carbon fibre on interlaminar shear strength of the polyamide 66 composites. Composite Interfaces, 0, , 1-22.	1.3	2
40	Fabrication and Study on Thermal Conductivity, Electrical Properties, and Mechanical Properties of the Lightweight Carbon/Carbon Fiber Composite. Journal of Chemistry, 2020, 2020, 1-15.	0.9	1
41	Effects of doping aluminum chloride on stabilization and properties of polyacrylonitrileâ€based carbon fibers. Journal of Applied Polymer Science, 2018, 135, 46902.	1.3	0
42	Micro-kinetics of pitch polymerization with regards to molecular weight distribution. Reaction Chemistry and Engineering, 0, , .	1.9	0