
Norbert Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3639158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the Influence of Temperature on Phase Evolution during Lithiumâ€Graphite (Deâ€)Intercalation Processes: An Operando Xâ€ray Diffraction Study. ChemElectroChem, 2022, 9, e202101342.	1.7	3
2	Operando UV/vis Spectroscopy Providing Insights into the Sulfur and Polysulfide Dissolution in Magnesium–Sulfur Batteries. ACS Energy Letters, 2022, 7, 1-9.	8.8	29
3	Identification of the Underlying Processes in Impedance Response of Sulfur/Carbon Composite Cathodes at Different SOC. Journal of the Electrochemical Society, 2022, 169, 030505.	1.3	3
4	Wetting Behavior of Aprotic Li–Air Battery Electrolytes. Advanced Materials Interfaces, 2022, 9, 2101569.	1.9	4
5	Understanding the Nature of Solidâ€Electrolyte Interphase on Lithium Metal in Liquid Electrolytes: A Review on Growth, Properties, and Applicationâ€Related Challenges. Batteries and Supercaps, 2021, 4, 909-922.	2.4	13
6	Optimizing Reaction Conditions and Gas Diffusion Electrodes Applied in the CO ₂ Reduction Reaction to Formate to Reach Current Densities up to 1.8 A cm ^{–2} . ACS Sustainable Chemistry and Engineering, 2021, 9, 4213-4223.	3.2	33
7	Importance of Timeâ€Dependent Wetting Behavior of Gasâ€Diffusion Electrodes for Reactivity Determination. Chemie-Ingenieur-Technik, 2021, 93, 1015-1019.	0.4	8
8	Degradation Effects in Metal–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 2365-2376.	2.5	12
9	Influence of Organic Additives for Zinc-Air Batteries on Cathode Stability and Performance. Journal of the Electrochemical Society, 2021, 168, 050531.	1.3	5
10	Modeling of Electronâ€Transfer Kinetics in Magnesium Electrolytes: Influence of the Solvent on the Battery Performance. ChemSusChem, 2021, 14, 4820-4835.	3.6	15
11	Degradation study on tin- and bismuth-based gas-diffusion electrodes during electrochemical CO2 reduction in highly alkaline media. Journal of Energy Chemistry, 2021, 62, 367-376.	7.1	30
12	Ultramicroporous carbon aerogels encapsulating sulfur as the cathode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 6508-6519.	5.2	30
13	A Segmented Cell Measuring Technique for Current Distribution Measurements in Batteries, Exemplified by the Operando Investigation of a Zn-Air Battery. Journal of the Electrochemical Society, 2021, 168, 120530.	1.3	3
14	Revealing Mechanistic Processes in Gas-Diffusion Electrodes During CO ₂ Reduction via Impedance Spectroscopy. ACS Sustainable Chemistry and Engineering, 2020, 8, 13759-13768.	3.2	25
15	Insights into Self-Discharge of Lithium– and Magnesium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 8457-8474.	2.5	26
16	Investigation of CO ₂ Electrolysis on Tin Foil by Electrochemical Impedance Spectroscopy. ACS Sustainable Chemistry and Engineering, 2020, 8, 5192-5199.	3.2	27
17	Investigation of Magnesium–Sulfur Batteries using Electrochemical Impedance Spectroscopy. Electrochimica Acta, 2020, 338, 135787.	2.6	48
18	Influence of Temperature on the Performance of Gas Diffusion Electrodes in the CO ₂ Reduction Reaction. ChemElectroChem, 2019, 6, 4497-4506.	1.7	72

NORBERT WAGNER

#	Article	IF	CITATIONS
19	Utilizing Formate as an Energy Carrier by Coupling CO ₂ Electrolysis with Fuel Cell Devices. Chemie-Ingenieur-Technik, 2019, 91, 872-882.	0.4	30
20	Investigation of the Influence of Nanostructured LiNi _{0.33} Co _{0.33} Mn _{0.33} O ₂ Lithium-Ion Battery Electrodes on Performance and Aging. Journal of the Electrochemical Society, 2018, 165, A273-A282.	1.3	23
21	Design-Considerations regarding Silicon/Graphite and Tin/Graphite Composite Electrodes for Lithium-Ion Batteries. Scientific Reports, 2018, 8, 15851.	1.6	24
22	Investigation of the Solid Electrolyte Interphase Formation at Graphite Anodes in Lithium-Ion Batteries with Electrochemical Impedance Spectroscopy. Electrochimica Acta, 2017, 228, 652-658.	2.6	130
23	Insights into solid electrolyte interphase formation on alternative anode materials in lithium-ion batteries. Journal of Applied Electrochemistry, 2017, 47, 249-259.	1.5	17
24	In Situ Studies of Solid Electrolyte Interphase (SEI) Formation on Crystalline Carbon Surfaces by Neutron Reflectometry and Atomic Force Microscopy. ACS Applied Materials & Interfaces, 2017, 9, 35794-35801.	4.0	59
25	Correlation of capacity fading processes and electrochemical impedance spectra in lithium/sulfur cells. Journal of Power Sources, 2016, 323, 107-114.	4.0	55
26	Transferring Electrochemical CO ₂ Reduction from Semiâ€Batch into Continuous Operation Mode Using Gas Diffusion Electrodes. Chemical Engineering and Technology, 2016, 39, 2042-2050.	0.9	52
27	Entwicklung und Einsatz von Gasdiffusionselektroden zur elektrochemischen Reduktion vonÂCO ₂ . Chemie-Ingenieur-Technik, 2015, 87, 855-859.	0.4	17
28	Screening and further investigations on promising bi-functional catalysts for metal–air batteries with an aqueous alkaline electrolyte. Journal of Applied Electrochemistry, 2014, 44, 73-85.	1.5	17
29	Bifunctional, Carbon-Free Nickel/Cobalt-Oxide Cathodes for Lithium-Air Batteries with an Aqueous Alkaline Electrolyte. Electrochimica Acta, 2014, 149, 355-363.	2.6	21
30	Modified carbon-free silver electrodes for the use as cathodes in lithium–air batteries with an aqueous alkaline electrolyte. Journal of Power Sources, 2014, 265, 299-308.	4.0	30
31	Experimental and Theoretical Analysis of Products and Reaction Intermediates of Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2014, 118, 12106-12114.	1.5	101
32	In-situ X-ray diffraction studies of lithium–sulfur batteries. Journal of Power Sources, 2013, 226, 313-319.	4.0	195
33	Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochimica Acta, 2013, 97, 42-51.	2.6	353
34	Impedance Spectroscopic Investigation of Proton Conductivity in Nafion Using Transient Electrochemical Atomic Force Microscopy (AFM). Membranes, 2012, 2, 237-252.	1.4	15