Livia Roseti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/363868/publications.pdf

Version: 2024-02-01

38 papers	2,034 citations	17 h-index	395343 33 g-index
41	41	41	3163 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Materials Science and Engineering C, 2017, 78, 1246-1262.	3.8	919
2	Transplantation of chondrocytes seeded on a hyaluronan derivative (Hyaff®-11) into cartilage defects in rabbits. Biomaterials, 2001, 22, 2417-2424.	5.7	255
3	Articular Cartilage Regeneration in Osteoarthritis. Cells, 2019, 8, 1305.	1.8	113
4	Differential roles of nitric oxide and oxygen radicals in chondrocytes affected by osteoarthritis and rheumatoid arthritis. Clinical Science, 2001, 101, 593-599.	1.8	87
5	Three-Dimensional Bioprinting of Cartilage by the Use of Stem Cells: A Strategy to Improve Regeneration. Materials, 2018, 11, 1749.	1.3	73
6	Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone and Joint Research, 2019, 8, 101-106.	1.3	65
7	Transplantation of chondrocytes seeded on collagen-based scaffold in cartilage defects in rabbits. Journal of Biomedical Materials Research - Part A, 2005, 75A, 612-622.	2.1	55
8	Human articular chondrocytes immortalized by HPV-16 E6 and E7 genes:. Osteoarthritis and Cartilage, 2002, 10, 879-889.	0.6	50
9	Differential roles of nitric oxide and oxygen radicals in chondrocytes affected by osteoarthritis and rheumatoid arthritis. Clinical Science, 2001, 101, 593.	1.8	43
10	Down regulation of degenerative cartilage molecules in chondrocytes grown on a hyaluronan-based scaffold. Biomaterials, 2005, 26, 5668-5676.	5.7	41
11	Molecular and Immunohistological Characterization of Human Cartilage Two Years Following Autologous Cell Transplantation. Journal of Bone and Joint Surgery - Series A, 2005, 87, 46-57.	1.4	38
12	Human chondrocytes and mesenchymal stem cells grown onto engineered scaffold. Biorheology, 2006, 43, 471-80.	1.2	35
13	A molecular and histological characterization of cartilage from patients with Morquio syndrome. Osteoarthritis and Cartilage, 2007, 15, 1311-1317.	0.6	34
14	Differential roles of nitric oxide and oxygen radicals in chondrocytes affected by osteoarthritis and rheumatoid arthritis. Clinical Science, 2001, 101, 593-9.	1.8	26
15	Learning from Monocyte-Macrophage Fusion and Multinucleation: Potential Therapeutic Targets for Osteoporosis and Rheumatoid Arthritis. International Journal of Molecular Sciences, 2020, 21, 6001.	1.8	24
16	A Roadmap of In Vitro Models in Osteoarthritis: A Focus on Their Biological Relevance in Regenerative Medicine. Journal of Clinical Medicine, 2021, 10, 1920.	1.0	20
17	White cell apoptosis in platelet concentrates. Transfusion, 2000, 40, 160-168.	0.8	19
18	3D printing of musculoskeletal tissues: impact on safety and health at work. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 891-912.	1.1	18

#	Article	IF	CITATIONS
19	Ligament repair: A molecular and immunohistological characterization. Journal of Biomedical Materials Research - Part A, 2008, 84A, 117-127.	2.1	17
20	Cell manipulation in autologous chondrocyte implantation: from research to cleanroom. La Chirurgia Degli Organi Di Movimento, 2008, 91, 147-151.	0.2	15
21	Cathepsin B as a soluble marker to monitor the phenotypic stability of engineered cartilage. Biomaterials, 2003, 24, 1751-1757.	5.7	13
22	Media Fill for Validation of a Good Manufacturing Practice-Compliant Cell Production Process. Methods in Molecular Biology, 2014, 1283, 161-169.	0.4	8
23	Standard Operating Procedure for the Good Manufacturing Practice-Compliant Production of Human Bone Marrow Mesenchymal Stem Cells. Methods in Molecular Biology, 2014, 1283, 171-186.	0.4	8
24	Cartilage Tissue Engineering by Extrusion Bioprinting: Process Analysis, Risk Evaluation, and Mitigation Strategies. Materials, 2021, 14, 3528.	1.3	8
25	MOLECULAR AND IMMUNOHISTOLOGICAL CHARACTERIZATION OF HUMAN CARTILAGE TWO YEARS FOLLOWING AUTOLOGOUS CELL TRANSPLANTATION. Journal of Bone and Joint Surgery - Series A, 2005, 87, 46-57.	1.4	7
26	Osteochondritis dissecans. Histopathology, 2007, 51, 133-134.	1.6	6
27	Host Environment: Scaffolds and Signaling (Tissue Engineering) Articular Cartilage Regeneration: Cells, Scaffolds, and Growth Factors., 2017,, 87-103.		6
28	Current concepts and perspectives for articular cartilage regeneration. Journal of Experimental Orthopaedics, 2022, 9, .	0.8	6
29	In vitro gene and chromosome characterization of expanded bone marrow mesenchymal stem cells for musculo-skeletal applications. European Review for Medical and Pharmacological Sciences, 2014, 18, 3702-11.	0.5	5
30	Failure Mode and Effects Analysis to Reduce Risks of Errors in the Good Manufacturing Practice Production of Engineered Cartilage for Autologous Chondrocyte Implantation. Current Pharmaceutical Analysis, 2015, 12, 43-54.	0.3	4
31	Histopathological Signatures of the Femoral Head in Patients with Osteonecrosis and Potential Applications in a Multi-Targeted Approach: A Pilot Study. Applied Sciences (Switzerland), 2020, 10, 3945.	1.3	3
32	Development of Human Chondrocyte–Based Medicinal Products for Autologous Cell Therapy. , 0, , .		2
33	Induction of original phenotype of human immortalized chondrocytes: A quantitative gene expression analysis. International Journal of Molecular Medicine, 0, , .	1.8	2
34	A novel DNA profiling application for the monitoring of cross-contamination in autologous chondrocyte implantation. European Review for Medical and Pharmacological Sciences, 2013, 17, 820-33.	0.5	1
35	Good manufacturing practices in autologous chondrocyte implantation: the experience in a public hospital. Osteoarthritis and Cartilage, 2012, 20, S132.	0.6	0
36	COVID-19 Impact on Musculoskeletal Regenerative Medicine Research: Maintaining Lab Continuity. International Journal of Environmental Research and Public Health, 2021, 18, 6110.	1.2	0

#	Article	IF	CITATIONS
37	Measures to minimize cross-contamination risks in Advanced Therapy Medicinal Product manufacturing. ScienceOpen Research, 2014, .	0.6	0
38	Tissue Engineering: Scaffolds and Bio-Tissues. , 2022, , 207-216.		0