List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3638479/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Applications and usage of the real-time Neutron Monitor Database. Advances in Space Research, 2011,<br>47, 2210-2222.                                                            | 2.6 | 105       |
| 2  | Magnetospheric effects in cosmic rays during the unique magnetic storm on November 2003. Journal of Geophysical Research, 2005, 110, .                                           | 3.3 | 101       |
| 3  | Proton Enhancements and Their Relation to the X-Ray Flares During the Three Last Solar Cycles. Solar<br>Physics, 2005, 229, 135-159.                                             | 2.5 | 93        |
| 4  | Modeling ground level enhancements: Event of 20 January 2005. Journal of Geophysical Research, 2007,<br>112, n/a-n/a.                                                            | 3.3 | 79        |
| 5  | Coronal Mass Ejections and Non-recurrent Forbush Decreases. Solar Physics, 2014, 289, 3949-3960.                                                                                 | 2.5 | 74        |
| 6  | A catalogue of high-speed solar-wind streams: Further evidence of their relationship to Ap-index.<br>Solar Physics, 1988, 115, 345-365.                                          | 2.5 | 69        |
| 7  | Positive and negative ionospheric disturbances at middle latitudes during geomagnetic storms.<br>Geophysical Research Letters, 2000, 27, 3579-3582.                              | 4.0 | 59        |
| 8  | Solar Activity Parameters and Associated Forbush Decreases During the Minimum Between Cycles 23 and 24 and the Ascending Phase of Cycle 24. Solar Physics, 2016, 291, 1025-1041. | 2.5 | 59        |
| 9  | The Global Survey Method Applied to Ground-level Cosmic Ray Measurements. Solar Physics, 2018, 293,<br>1.                                                                        | 2.5 | 54        |
| 10 | Statistical analysis of solar proton events. Annales Geophysicae, 2004, 22, 2255-2271.                                                                                           | 1.6 | 53        |
| 11 | Galactic Cosmic Ray Density Variations in Magnetic Clouds. Solar Physics, 2015, 290, 1429-1444.                                                                                  | 2.5 | 49        |
| 12 | On Mid-Term Periodicities in Cosmic Rays. Solar Physics, 2010, 266, 173-180.                                                                                                     | 2.5 | 48        |
| 13 | The First Ground-Level Enhancement of Solar Cycle 24 on 17 May 2012 and Its Real-Time Detection. Solar Physics, 2014, 289, 423-436.                                              | 2.5 | 47        |
| 14 | Cosmic-Ray Modulation: An Empirical Relation with Solar and Heliospheric Parameters. Solar Physics, 2007, 245, 369-390.                                                          | 2.5 | 44        |
| 15 | Peak-Size Distributions of Proton Fluxes and Associated Soft X-Ray Flares. Solar Physics, 2007, 246, 457-470.                                                                    | 2.5 | 42        |
| 16 | Optimizing the realâ€ŧime ground level enhancement alert system based on neutron monitor<br>measurements: Introducing <i>GLE Alert Plus</i> . Space Weather, 2014, 12, 633-649.  | 3.7 | 37        |
| 17 | On the Analysis of the Complex Forbush Decreases ofÂJanuaryÂ2005. Solar Physics, 2010, 266, 181-193.                                                                             | 2.5 | 35        |
| 18 | Galactic Cosmic Ray Modulation and the Last Solar Minimum. Solar Physics, 2012, 280, 255-271.                                                                                    | 2.5 | 35        |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Precursor Effects in Different Cases of Forbush Decreases. Solar Physics, 2012, 276, 337-350.                                                                                        | 2.5 | 35        |
| 20 | Low- and high-frequency spectral behavior of cosmic-ray intensity for the period 1953–1996. Annales<br>Geophysicae, 2003, 21, 1681-1689.                                             | 1.6 | 35        |
| 21 | Time-lag of cosmic-ray intensity. Astrophysics and Space Science, 1984, 106, 61-71.                                                                                                  | 1.4 | 34        |
| 22 | Fast Plasma Streams Recorded Near the Earth During 1985–1996. Solar Physics, 1998, 183, 181-200.                                                                                     | 2.5 | 34        |
| 23 | A Complete Catalogue of High-Speed Solar Wind Streams during Solar Cycle 23. Solar Physics, 2014, 289, 995-1012.                                                                     | 2.5 | 34        |
| 24 | Monitoring and Forecasting of Great Solar Proton Events Using the Neutron Monitor Network in<br>Real Time. IEEE Transactions on Plasma Science, 2004, 32, 1478-1488.                 | 1.3 | 33        |
| 25 | THE GROUND-LEVEL ENHANCEMENT OF 2012 MAY 17: DERIVATION OF SOLAR PROTON EVENT PROPERTIES THROUGH THE APPLICATION OF THE NMBANGLE PPOLA MODEL. Astrophysical Journal, 2014, 785, 160. | 4.5 | 33        |
| 26 | Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass<br>Ejections. Solar Physics, 2017, 292, 1.                                         | 2.5 | 32        |
| 27 | Geant4 software application for the simulation of cosmic ray showers in the Earth's atmosphere. New Astronomy, 2014, 33, 26-37.                                                      | 1.8 | 31        |
| 28 | Space weather hazards and their impact on human cardio-health state parameters on Earth. Natural<br>Hazards, 2012, 64, 1447-1459.                                                    | 3.4 | 30        |
| 29 | Short-term variations of cosmic-ray intensity and flare related data in 1981–1983. New Astronomy, 2003, 8, 777-794.                                                                  | 1.8 | 29        |
| 30 | Intense Ground-Level Enhancements of Solar Cosmic Rays During the Last Solar Cycles. Solar Physics, 2011, 269, 155-168.                                                              | 2.5 | 29        |
| 31 | Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956. Annales<br>Geophysicae, 2005, 23, 2281-2291.                                               | 1.6 | 26        |
| 32 | Space weather prediction by cosmic rays. Advances in Space Research, 2006, 37, 1141-1147.                                                                                            | 2.6 | 26        |
| 33 | Modeling the solar cosmic ray event of 13 December 2006 using ground level neutron monitor data.<br>Advances in Space Research, 2009, 43, 474-479.                                   | 2.6 | 26        |
| 34 | High-Speed Solar Wind Streams and Geomagnetic Storms During Solar Cycle 24. Solar Physics, 2018, 293, 1.                                                                             | 2.5 | 26        |
| 35 | Asymmetric variations of the coronal green line intensity. Solar Physics, 1988, 115, 367-384.                                                                                        | 2.5 | 25        |
| 36 | Effect of geomagnetic disturbances on physiological parameters: An investigation on aviators.<br>Advances in Space Research, 2011, 48, 1545-1550.                                    | 2.6 | 24        |

| #  | Article                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A study of the ground level enhancement of 23 February 1956. Advances in Space Research, 2005, 35, 697-701.                                                | 2.6 | 23        |
| 38 | Interplanetary Coronal Mass Ejections as the Driver of Non-recurrent Forbush Decreases.<br>Astrophysical Journal, 2020, 890, 101.                          | 4.5 | 22        |
| 39 | Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001–2014.<br>Annales Geophysicae, 2016, 34, 1053-1068.                | 1.6 | 21        |
| 40 | Realâ€Time Detection of the Ground Level Enhancement on 10 September 2017 by A.Ne.Mo.S.: System Report. Space Weather, 2018, 16, 1797-1805.                | 3.7 | 21        |
| 41 | Time-evolution of cosmic-ray intensity modulation. Solar Physics, 1989, 122, 345-363.                                                                      | 2.5 | 20        |
| 42 | The burst of solar and geomagnetic activity in August–September 2005. Annales Geophysicae, 2009, 27,<br>1019-1026.                                         | 1.6 | 20        |
| 43 | Unexpected burst of solar activity recorded by neutron monitors during October–November 2003.<br>Advances in Space Research, 2005, 35, 691-696.            | 2.6 | 19        |
| 44 | Real-time GLE alert in the ANMODAP Center for December 13, 2006. Advances in Space Research, 2009, 43, 728-734.                                            | 2.6 | 19        |
| 45 | Implementation of the ground level enhancement alert software at NMDB database. New Astronomy, 2010, 15, 744-748.                                          | 1.8 | 19        |
| 46 | Solar energetic particle interactions with the Venusian atmosphere. Annales Geophysicae, 2016, 34, 595-608.                                                | 1.6 | 19        |
| 47 | Cosmic-ray intensity related to solar and terrestrial activity indices in solar cycle No. 20.<br>Astrophysics and Space Science, 1981, 74, 303-317.        | 1.4 | 18        |
| 48 | The Asymptotic Longitudinal Cosmic Ray Intensity Distribution as a Precursor of Forbush Decreases.<br>Solar Physics, 2012, 280, 641-650.                   | 2.5 | 18        |
| 49 | Galactic cosmic ray spectral index: the case of Forbush decreases of March 2012. Astrophysics and Space Science, 2018, 363, 1.                             | 1.4 | 18        |
| 50 | Spectral Analysis of Solar and Geomagnetic Parameters in Relation to Cosmic-ray Intensity for the<br>Time Period 1965 – 2018. Solar Physics, 2019, 294, 1. | 2.5 | 18        |
| 51 | Neutron Monitor Network in Real Time and Space Weather. , 2004, , 301-317.                                                                                 |     | 18        |
| 52 | Hale-cycle effects in cosmic-ray intensity during the last four cycles. Astrophysics and Space Science, 1997, 246, 7-14.                                   | 1.4 | 17        |
| 53 | Frequency distributions of solar proton events. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64, 489-496.                                   | 1.6 | 17        |
| 54 | Forbush Decreases Associated with Western Solar Sources and Geomagnetic Storms: A Study on Precursors. Solar Physics, 2013, 283, 557-563.                  | 2.5 | 17        |

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A study on the various types of arrhythmias in relation to the polarity reversal of the solar magnetic<br>field. Natural Hazards, 2014, 70, 1575-1587.                       | 3.4 | 17        |
| 56 | Interplanetary Coronal Mass Ejections Resulting from Earth-Directed CMEs Using SOHO and ACE Combined Data During Solar Cycle 23. Solar Physics, 2017, 292, 1.                | 2.5 | 17        |
| 57 | World grid of cosmic ray vertical cut-off rigidity for the last decade. Advances in Space Research, 2021, 67, 2231-2240.                                                     | 2.6 | 17        |
| 58 | The sun as a significant agent provoking earthquakes. European Physical Journal: Special Topics, 2021, 230, 287-333.                                                         | 2.6 | 17        |
| 59 | Solar-cycle phenomena in cosmic-ray intensity: Differences between even and odd cycles. Earth, Moon<br>and Planets, 1988, 42, 233-244.                                       | 0.6 | 16        |
| 60 | Long-term modulation of the coronal index of solar activity. Solar Physics, 2002, 206, 401-414.                                                                              | 2.5 | 16        |
| 61 | Coronal index as a solar activity index applied to space weather. Advances in Space Research, 2005, 35, 410-415.                                                             | 2.6 | 16        |
| 62 | A New Version of the Neutron Monitor Based Anisotropic GLE Model: Application to GLE60. Solar<br>Physics, 2010, 264, 239-254.                                                | 2.5 | 16        |
| 63 | Application of diffusion ? Convection model to diurnal anisotropy data. Earth, Moon and Planets, 1989, 47, 61-72.                                                            | 0.6 | 15        |
| 64 | 28 OCTOBER 2003 FLARE: HIGH-ENERGY GAMMA EMISSION, TYPE II RADIO EMISSION AND SOLAR PARTICLE OBSERVATIONS. International Journal of Modern Physics A, 2005, 20, 6705-6707.   | 1.5 | 15        |
| 65 | Impact of space weather on human heart rate during the years 2011–2013. Astrophysics and Space<br>Science, 2017, 362, 1.                                                     | 1.4 | 15        |
| 66 | Simulation of long-term cosmic-ray intensity variation. Solar Physics, 1990, 125, 409-414.                                                                                   | 2.5 | 14        |
| 67 | Cosmic Ray Radiation Effects on Space Environment Associated to Intense Solar and Geomagnetic Activity. IEEE Transactions on Nuclear Science, 2007, 54, 1089-1096.           | 2.0 | 14        |
| 68 | Cosmic ray variations of solar origin in relation to human physiological state during the December 2006 solar extreme events. Advances in Space Research, 2009, 43, 523-529. | 2.6 | 14        |
| 69 | The unusual cosmic ray variations in July 2005 resulted from western and behind the limb solar activity. Advances in Space Research, 2009, 43, 582-588.                      | 2.6 | 14        |
| 70 | Coronal line intensity as an integrated index of solar activity. Astrophysics and Space Science, 1990, 164, 117-130.                                                         | 1.4 | 13        |
| 71 | Cosmic-Ray Variations During the Two Greatest Bursts of Solar Activity in the 23rd Solar Cycle. Solar Physics, 2004, 224, 345-358.                                           | 2.5 | 13        |
| 72 | Solar activity and the associated ground level enhancements of solar cosmic rays during solar cycle 23. Astrophysics and Space Sciences Transactions, 2011, 7, 439-443.      | 1.0 | 13        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Online application for the barometric coefficient calculation of the NMDB stations. New Astronomy, 2013, 19, 10-18.                                                                            | 1.8 | 13        |
| 74 | Onset Time of the GLE 72 Observed at Neutron Monitors and its Relation to Electromagnetic Emissions. Solar Physics, 2019, 294, 1.                                                              | 2.5 | 13        |
| 75 | Large amplitude wave-trains of cosmic-ray intensity. Astrophysics and Space Science, 1980, 71, 101-110.                                                                                        | 1.4 | 12        |
| 76 | Neutron monitor asymptotic directions of viewing during the event of 13 December 2006. Advances in Space Research, 2009, 43, 518-522.                                                          | 2.6 | 12        |
| 77 | An empirical model for the 11-year cosmic-ray modulation. Earth, Moon and Planets, 1987, 37, 79-88.                                                                                            | 0.6 | 11        |
| 78 | The first Forbush decrease of solar cycle 24. Journal of Physics: Conference Series, 2013, 409, 012202.                                                                                        | 0.4 | 11        |
| 79 | A study of the possible relation of the cardiac arrhythmias occurrence to the polarity reversal of the solar magnetic field. Advances in Space Research, 2017, 59, 366-378.                    | 2.6 | 11        |
| 80 | The large amplitude event observed over the period 22 may to 4 June, 1973. Astrophysics and Space Science, 1980, 68, 137-149.                                                                  | 1.4 | 10        |
| 81 | The evolution and the secondary maximum of the green line intensity. Solar Physics, 1982, 76, 181-190.                                                                                         | 2.5 | 10        |
| 82 | GLEs as a Warning Tool for Radiation Effects on Electronics and Systems: A New Alert System Based on<br>Real-Time Neutron Monitors. IEEE Transactions on Nuclear Science, 2007, 54, 1082-1088. | 2.0 | 10        |
| 83 | Cosmic radiation influence on the physiological state of aviators. Natural Hazards, 2012, 61, 719-727.                                                                                         | 3.4 | 10        |
| 84 | Diurnal anisotropy of cosmic rays during intensive solar activity for the period 2001–2014. New<br>Astronomy, 2016, 46, 78-84.                                                                 | 1.8 | 10        |
| 85 | An Extended Study of the Precursory Signs of Forbush Decreases: New Findings over the Years<br>2008 – 2016. Solar Physics, 2019, 294, 1.                                                       | 2.5 | 10        |
| 86 | The effect of cosmic ray intensity variations and geomagnetic disturbances on the physiological state of aviators. Astrophysics and Space Sciences Transactions, 2011, 7, 373-377.             | 1.0 | 9         |
| 87 | ASSESSING RADIATION EXPOSURE INSIDE THE EARTH'S ATMOSPHERE. Radiation Protection Dosimetry, 2020, 190, 427-436.                                                                                | 0.8 | 9         |
| 88 | Radiation Exposure in the Lower Atmosphere during Different Periods of Solar Activity. Atmosphere, 2022, 13, 166.                                                                              | 2.3 | 9         |
| 89 | Human Physiological Parameters Related to Solar and Geomagnetic Disturbances: Data from Different Geographic Regions. Atmosphere, 2021, 12, 1613.                                              | 2.3 | 9         |
| 90 | Estimation of Cosmic-Ray-Induced Atmospheric Ionization and Radiation at Commercial Aviation Flight<br>Altitudes. Applied Sciences (Switzerland), 2022, 12, 5297.                              | 2.5 | 9         |

| #   | Article                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | ALERT SYSTEM FOR GROUND LEVEL COSMIC-RAY ENHANCEMENTS PREDICTION AT THE ATHENS NEUTRON MONITOR NETWORK IN REAL-TIME. International Journal of Modern Physics A, 2005, 20, 6711-6713.    | 1.5 | 8         |
| 92  | Space weather forecasting at the new Athens center: the recent extreme events of January 2005. IEEE Transactions on Nuclear Science, 2005, 52, 2307-2312.                               | 2.0 | 8         |
| 93  | Artificial Neural Network Approach of Cosmic Ray Primary Data Processing. Solar Physics, 2013, 282, 303-318.                                                                            | 2.5 | 8         |
| 94  | Possible Estimation of the Solar Cycle Characteristic Parameters by the 10.7 cm Solar Radio Flux.<br>Solar Physics, 2016, 291, 989-1002.                                                | 2.5 | 8         |
| 95  | Study of the longitudinal expansion velocity of the substorm current wedge. Annales Geophysicae, 1998, 16, 1423-1433.                                                                   | 1.6 | 7         |
| 96  | COSMIC RAY EVENTS RELATED TO SOLAR ACTIVITY RECORDED AT THE ATHENS NEUTRON MONITOR STATION FOR THE PERIOD 2000–2003. International Journal of Modern Physics A, 2005, 20, 6714-6716.    | 1.5 | 7         |
| 97  | Solar proton enhancements in different energy channels and coronal mass ejections during the last solar cycle. Advances in Space Research, 2009, 43, 687-693.                           | 2.6 | 7         |
| 98  | Solar particle event analysis using the standard radiation environment monitors: applying the neutron monitor's experience. Astrophysics and Space Sciences Transactions, 2011, 7, 1-5. | 1.0 | 7         |
| 99  | Long-Term Cosmic Ray Variability and the CME-Index. Advances in Astronomy, 2012, 2012, 1-8.                                                                                             | 1.1 | 7         |
| 100 | Calculation of the cosmic ray induced ionization for the region of Athens. Journal of Physics:<br>Conference Series, 2013, 409, 012232.                                                 | 0.4 | 7         |
| 101 | Unusual Cosmic Ray Variations During the Forbush Decreases of June 2015. Solar Physics, 2018, 293, 1.                                                                                   | 2.5 | 7         |
| 102 | On the link between atmospheric cloud parameters and cosmic rays. Journal of Atmospheric and<br>Solar-Terrestrial Physics, 2019, 189, 98-106.                                           | 1.6 | 7         |
| 103 | Preferred Bartels days of high speed solar wind streams: An update. Solar Physics, 1989, 122, 187-189.                                                                                  | 2.5 | 6         |
| 104 | Cosmic-ray long-term variations due to the solar activity for the 22nd solar cycle. Advances in Space<br>Research, 1995, 16, 245-248.                                                   | 2.6 | 6         |
| 105 | Title is missing!. Solar Physics, 1999, 189, 199-216.                                                                                                                                   | 2.5 | 6         |
| 106 | Prediction of basic elements of the forthcoming solar cycles 24 and 25 (years 2005–2027). AIP<br>Conference Proceedings, 2006, , .                                                      | 0.4 | 6         |
| 107 | Worldwide Integration of Neutron Monitors. Eos, 2010, 91, 305-306.                                                                                                                      | 0.1 | 6         |
| 108 | The Updated Version of the A.Ne.Mo.S. GLE Alert System: The Case of the Ground-Level Enhancement<br>GLE73 on 28 October 2021. Universe, 2022, 8, 378.                                   | 2.5 | 6         |

| #   | Article                                                                                                                                                                                                                                                                   | IF               | CITATIONS                  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------|
| 109 | Power-spectrum analysis of local geomagnetic disturbances and their relationship to cosmic-ray and aurora intensity. Earth, Moon and Planets, 1989, 45, 1-15.                                                                                                             | 0.6              | 5                          |
| 110 | A possible E-W asymmetry of the coronal emission line intensities and K-corona brightness.<br>Astrophysics and Space Science, 1994, 218, 35-57.                                                                                                                           | 1.4              | 5                          |
| 111 | Possible east side predominance of the optical emissions of the solar corona. New Astronomy, 1997, 2, 437-447.                                                                                                                                                            | 1.8              | 5                          |
| 112 | An empirical model of the daily evolution of the coronal index. Solar Physics, 2003, 218, 63-78.                                                                                                                                                                          | 2.5              | 5                          |
| 113 | Statistical analysis of interplanetary coronal mass ejections and their geoeffectiveness during the solar cycles 23 and 24. Astrophysics and Space Science, 2019, 364, 1.                                                                                                 | 1.4              | 5                          |
| 114 | On reproduction of long-term cosmic-ray modulation as seen by neutron monitor stations.<br>Astrophysics and Space Science, 1995, 232, 315-326.                                                                                                                            | 1.4              | 4                          |
| 115 | Solar cycle and 27-day variations of the diurnal anisotropy of cosmic rays during the solar cycle 23.<br>Astrophysics and Space Science, 2016, 361, 1.                                                                                                                    | 1.4              | 4                          |
| 116 | Implications for preferred longitudes in the coronal optical intensities. Advances in Space Research, 1996, 17, 277-280.                                                                                                                                                  | 2.6              | 3                          |
| 117 | Athens Neutron Monitor Data Processing Center – ANMODAP Center. Advances in Space Research, 2009, 44, 1237-1246.                                                                                                                                                          | 2.6              | 3                          |
| 118 | Space storm measurements of the July 2005 solar extreme events from the low corona to the Earth.<br>Advances in Space Research, 2009, 43, 600-604.                                                                                                                        | 2.6              | 3                          |
| 119 | A quantitative study of the 6NM-64 neutron monitor by using Geant4: 1. Detection efficiency for different particles. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 729, 877-887. | 1.6              | 3                          |
| 120 | Recent Research applications at the Athens Neutron Monitor Station. Journal of Physics: Conference Series, 2015, 632, 012071.                                                                                                                                             | 0.4              | 3                          |
| 121 | The Solar Polar Field in the Cosmic-Ray Intensity Modulation. Journal of Physics: Conference Series, 2015, 632, 012074.                                                                                                                                                   | 0.4              | 3                          |
| 122 | Spectral Analysis of Forbush Decreases Using a New Yield Function. Solar Physics, 2020, 295, 1.                                                                                                                                                                           | 2.5              | 3                          |
| 123 | Large Forbush Decreases and their Solar Sources: Features and Characteristics. Solar Physics, 2020, 295, 1.                                                                                                                                                               | 2.5              | 3                          |
| 124 | Solar cycle variation of the ionization by cosmic rays in the atmosphere at the mid-latitude region of<br>Athens. Astrophysics and Space Science, 2021, 366, 1.                                                                                                           | 1.4              | 3                          |
| 125 | Cosmic-ray variations related to solar, geomagnetic and interplanetary disturbances (23 March?7) Tj ETQq1 1 0.                                                                                                                                                            | 784314 r§<br>1.4 | gBT <sub>2</sub> /Overlock |
| 126 | Structure of the July 1982 event in relation to the magnetosphere's response. Astrophysics and Space Science, 1991, 180, 173-183.                                                                                                                                         | 1.4              | 2                          |

| #   | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Energy dissipation during a small substorm. Annales Geophysicae, 1995, 13, 494-504.                                                                                                                                                                                     | 1.6 | 2         |
| 128 | Analysis of Changes of Cardiological Parameters at Middle Latitude Region in Relation to Geomagnetic<br>Disturbances and Cosmic Ray Variations. , 2010, , .                                                                                                             |     | 2         |
| 129 | Optimization of neutron monitor data correction algorithms. Nuclear Instruments and Methods in<br>Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013,<br>714, 38-47.                                                    | 1.6 | 2         |
| 130 | A new approximate coupling function: The case of Forbush decreases. New Astronomy, 2021, 82, 101453.                                                                                                                                                                    | 1.8 | 2         |
| 131 | Improved Approach in the Coupling Function Between Primary and Ground Level Cosmic Ray Particles<br>Based on Neutron Monitor Data. Solar Physics, 2021, 296, 1.                                                                                                         | 2.5 | 2         |
| 132 | Precursory Signs of Large Forbush Decreases. Solar Physics, 2021, 296, 1.                                                                                                                                                                                               | 2.5 | 2         |
| 133 | Precursory Signals of Forbush Decreases Not Connected with Shock Waves. Solar Physics, 2022, 297, 1.                                                                                                                                                                    | 2.5 | 2         |
| 134 | Mechanisms and time-scales of the magnetospheric response to the interplanetary magnetic field<br>changes during the 8 May 1986 substorm. Journal of Atmospheric and Solar-Terrestrial Physics, 1993,<br>55, 1459-1467.                                                 | 0.9 | 1         |
| 135 | Long-term Cosmic-ray Modulation during Solar Cycle 23. AlP Conference Proceedings, 2006, , .                                                                                                                                                                            | 0.4 | 1         |
| 136 | Real time processing of neutron monitor data using the edge editor algorithm. Journal of Space<br>Weather and Space Climate, 2012, 2, A15.                                                                                                                              | 3.3 | 1         |
| 137 | Magnetospheric cut-off rigidity variations recorded by neutron monitors in the events from 2001 to 2010. Journal of Physics: Conference Series, 2013, 409, 012201.                                                                                                      | 0.4 | 1         |
| 138 | Statistical analysis on the current capability to predict the Ap Geomagnetic Index. New Astronomy, 2021, 86, 101570.                                                                                                                                                    | 1.8 | 1         |
| 139 | A periodical analysis of the cosmic-ray diffusion coefficient and the high-speed solar-wind streams.<br>Earth, Moon and Planets, 1988, 43, 165-179.                                                                                                                     | 0.6 | 0         |
| 140 | Unequal optical emissions between the east and the west part of the solar corona. Advances in Space<br>Research, 1996, 17, 273-276.                                                                                                                                     | 2.6 | 0         |
| 141 | A Study for an Unmanned Aerial Vehicle carrying a radiation spectrometer networked to the new<br>Athens Center active in Space Weather Events forecasting. European Conference on Radiation and Its<br>Effects on Components and Systems, Proceedings of the, 2005, , . | 0.0 | 0         |
| 142 | The new Athens Center applied to Space Weather Forecasting. AIP Conference Proceedings, 2006, , .                                                                                                                                                                       | 0.4 | 0         |
| 143 | Anomalous Forbush effects from sources far from Sun center. Proceedings of the International Astronomical Union, 2008, 4, 451-456.                                                                                                                                      | 0.0 | 0         |
| 144 | Precursors of Forbush decreases connected to western solar sources and geomagnetic storms.<br>Journal of Physics: Conference Series, 2013, 409, 012182.                                                                                                                 | 0.4 | 0         |

| #   | Article                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Modulation Effectiveness of Coronal Mass Ejections with Different Structure of the Magnetic Field.<br>Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 1183-1186. | 0.6 | 0         |
| 146 | First Application of a Theoretically Derived Coupling Function in Cosmic-Ray Intensity for the Case of                                                                           | 2.5 | 0         |

First Application of a Theoretically Derived Coupling Function in Cosmic-Ray Intensity for the Case of the 10 September 2017 Ground-Level Enhancement (GLE 72). Solar Physics, 2022, 297, . 146