Daniel K Unruh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3638033/publications.pdf

Version: 2024-02-01

116 papers 2,117 citations

304743 22 h-index 315739 38 g-index

126 all docs 126 docs citations

126 times ranked

2082 citing authors

#	ARTICLE	IF	CITATIONS
1	Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-lecsup>1 C _{25.71 Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-lecsup>1 C_{25.71 Synthesis and crystal structure of nonacarbonyltris (2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-lecsup>1 C_{25.71 Synthesis and crystal structure of nonacarbonyltris (2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-lecsup>1 C_{15.71 Synthesis and crystal structure of nonacarbonyltris (2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-lecsup>1 C_{15.71 Synthesis and crystal structure of nonacarbonyltris (2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-lecsup>1 C_{15.71 Synthesis and crystal structure of nonacarbonyltris (2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-lecsup>1 Synthesis and crystal structure of nonacarbonyltris (2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-lecsup>1 Synthesis and crystal structure of nonacarbonyltris (2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-lecsup>1}}}}}}	0.3	О
2	Zeitschrift Fur Kristallographie - New Crystal Structures, 2022, 237, 17-21. Differences in thermal expansion and motion ability for herringbone and face-to-face π-stacked solids. IUCrJ, 2022, 9, 31-42.	2.2	6
3	Mechanochemistry as a Tool for Crystallizing Inaccessible Solids from Viscous Liquid Components. Crystal Growth and Design, 2022, 22, 285-292.	3.0	9
4	Asymmetric Catalytic Assembly of Tripleâ€Columned and Multilayered Chiral Folding Polymers Showing Aggregationâ€Induced Emission (AIE). Chemistry - A European Journal, 2022, 28, e202200183.	3.3	4
5	Asymmetric Catalytic Assembly of Tripleâ€Columned and Multilayered Chiral Folding Polymers Showing Aggregationâ€Induced Emission (AIE). Chemistry - A European Journal, 2022, 28, .	3.3	10
6	Multilayer 3D Chiral Folding Polymers and Their Asymmetric Catalytic Assembly. Research, 2022, 2022, 9847949.	5.7	8
7	Cocrystallization and Thermal Behaviors of the Micropollutants Gemfibrozil, Aceclofenac, and Bisphenol A. Crystal Growth and Design, 2022, 22, 2208-2217.	3.0	1
8	Controlling Thermal Expansion in Supramolecular Halogenâ€Bonded Mixed Cocrystals through Synthetic Feed and Dynamic Motion. Angewandte Chemie, 2022, 134, .	2.0	2
9	Central-to-Folding Chirality Control: Asymmetric Synthesis of Multilayer 3D Targets With Electron-Deficient Bridges. Frontiers in Chemistry, 2022, 10, 860398.	3.6	6
10	Controlling Thermal Expansion in Supramolecular Halogenâ€Bonded Mixed Cocrystals through Synthetic Feed and Dynamic Motion. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
11	Azo or Not: Continuing the Crystallographic Investigations of $\langle i \rangle \hat{l}^2 - \langle i \rangle Naphthol Reds$. Crystal Growth and Design, 2022, 22, 5168-5175.	3.0	4
12	From Center-to-Multilayer Chirality: Asymmetric Synthesis of Multilayer Targets with Electron-Rich Bridges. Journal of Organic Chemistry, 2022, 87, 5976-5986.	3.2	7
13	Cooperative non-covalent interactions and synthetic feed as driving forces to structural diversity within organic co-crystals containing isosteric perhalobenzenes. CrystEngComm, 2022, 24, 3841-3845.	2.6	3
14	Batch-screening guided continuous flow synthesis of the metal-organic framework HKUST-1 in a millifluidic droplet reactor. Microporous and Mesoporous Materials, 2022, 339, 112005.	4.4	4
15	Molecular Motion and Ligand Stacking Influence Thermal Expansion Behavior and Argentophilic Forces in Silver Coordination Complexes. Crystal Growth and Design, 2022, 22, 4538-4545.	3.0	4
16	Zirconium and hafnium polyhedral oligosilsesquioxane complexes – green homogeneous catalysts in the formation of bio-derived ethers ⟨i⟩via⟨ i⟩ a MPV etherification reaction cascade. Catalysis Science and Technology, 2021, 11, 211-218.	4.1	16
17	Cocrystallization of Trimethoprim and Solubility Enhancement via Salt Formation. Crystal Growth and Design, 2021, 21, 1507-1517.	3.0	19
18	Positive thermal expansion facilitates the formation of argentophilic forces following an order–disorder phase transition. New Journal of Chemistry, 2021, 45, 8898-8901.	2.8	1

#	Article	lF	CITATIONS
19	Solid-state behaviors of imines: colossal biaxial positive thermal expansion, motion capability, and phase transitions. CrystEngComm, 2021, 23, 4439-4443.	2.6	5
20	Honeycomb molecular network based upon a hydrate of 4,6-dichlororesorcinol and the photoproduct <i>rtct</i> -tetrakis(pyridin-4-yl)cyclobutane. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 111-115.	0.5	3
21	Synthesis, structures and catalytic activity of some BINOL based boronates and boronium salts. Dalton Transactions, 2021, 50, 5044-5049.	3.3	1
22	Triple-Columned and Multiple-Layered 3D Polymers: Design, Synthesis, Aggregation-Induced Emission (AIE), and Computational Study. Research, 2021, 2021, 3565791.	5.7	10
23	Small Molecule Activation with Intramolecular "Inverse―Frustrated Lewis Pairs. Chemistry - A European Journal, 2021, 27, 6263-6273.	3.3	7
24	Asymmetric Catalytic Approach to Multilayer 3D Chirality. Chemistry - A European Journal, 2021, 27, 8013-8020.	3.3	16
25	Controlling Topology within Halogen-Bonded Networks by Varying the Regiochemistry of the Cyclobutane-Based Nodes. Molecules, 2021, 26, 3152.	3.8	4
26	Asymmetric Catalytic Approach to Multilayer 3D Chirality. Chemistry - A European Journal, 2021, 27, 7977-7977.	3.3	4
27	Self-Assembly of Complementary Components Using a Tripodal Bismuth Compound: Pnictogen Bonding or Coordination Chemistry?. Inorganic Chemistry, 2021, 60, 11242-11250.	4.0	9
28	Thermal Expansion Properties and Mechanochemical Synthesis of Stoichiometric Cocrystals Containing Tetrabromobenzene as a Hydrogen―and Halogenâ€Bond Donor. Chemistry - A European Journal, 2021, 27, 16329-16333.	3.3	9
29	Influence of heterocyclic N-donors on the structural topologies and vibrational spectra of uranyl selenate phases. Journal of Solid State Chemistry, 2021, 304, 122619.	2.9	1
30	Cobalt- and iron-catalyzed regiodivergent alkene hydrosilylations. Organic Chemistry Frontiers, 2021, 8, 2174-2181.	4.5	15
31	Carbon monoxide bond cleavage mediated by an intramolecular frustrated Lewis pair: access to new B/N heterocycles <i>via</i> selective incorporation of single carbon atoms. Chemical Communications, 2021, 57, 12528-12531.	4.1	4
32	Iodoperchlorobenzene acts as a dual halogen-bond donor to template a $[2 + 2]$ cycloaddition reaction within an organic co-crystal. CrystEngComm, 2021, 23, 8265-8268.	2.6	6
33	Asymmetric synthesis of functionalized 2,3-dihydrobenzofurans using salicyl <i>N</i> -phosphonyl imines facilitated by group-assisted purification (GAP) chemistry. Organic and Biomolecular Chemistry, 2021, 19, 10319-10325.	2.8	3
34	Asymmetric $[4+2]$ cycloaddition synthesis of $4H$ -chromene derivatives facilitated by group-assisted-purification (GAP) chemistry. RSC Advances, 2021, 11, 39790-39796.	3.6	4
35	Removal of the Micropollutants Propranolol Hydrochloride and 2-Naphthol From Water by Pyridine-Functionalized Polymers. Frontiers in Chemistry, 2021, 9, 793870.	3.6	4
36	Hydroboration of Alkenes and Alkynes Employing Earthâ€Abundant Metal Catalysts. Asian Journal of Organic Chemistry, 2020, 9, 416-420.	2.7	18

#	Article	IF	Citations
37	Effects of Solution Conditions on Polymorph Development in 2,4,6-Trinitrotoluene. Crystal Growth and Design, 2020, 20, 568-579.	3.0	13
38	Permeability and elastic properties assessment of alumina nanofiber (ANF) cementitious composites under simulated wellbore cyclic pressure. Construction and Building Materials, 2020, 239, 117867.	7.2	15
39	Enantioselective assembly of multi-layer <i>3D</i> chirality. National Science Review, 2020, 7, 588-599.	9.5	36
40	Polynuclear lanthanide–diketonato clusters for the catalytic hydroboration of carboxamides and esters. Nature Catalysis, 2020, 3, 154-162.	34.4	65
41	Study of Physicochemical and Explosive Properties of a 2,4,6-Trinitrotoluene/Aniline Cocrystal Solvate. Crystal Growth and Design, 2020, 20, 116-129.	3.0	10
42	Experimental and Computational Studies of Phosphine Ligand Displacement in Iridium–Pincer Complexes Employing Pyridine or Acetonitrile. Organometallics, 2020, 39, 3461-3468.	2.3	6
43	Hydrogen-Bond Synthon Preferences in Cocrystals of Acetazolamide. Crystal Growth and Design, 2020, 20, 5048-5060.	3.0	7
44	Verkade Base in FLP Chemistry–From Stoichiometric C–H Bond Cleavage to the Catalytic Dimerization of Alkynes. Organometallics, 2020, 39, 4307-4311.	2.3	7
45	Controlling thermal expansion within mixed cocrystals by tuning molecular motion capability. Chemical Science, 2020, 11, 7701-7707.	7.4	33
46	Boronic, diboronic and boric acid esters of 1,8-naphthalenediol – synthesis, structure and formation of boronium salts. Dalton Transactions, 2020, 49, 4834-4842.	3.3	12
47	Synthesis, structures, photophysical properties, and catalytic characteristics of 2,9â€dimesitylâ€1,10â€phenanthroline (dmesp) transition metal complexes. Journal of Polymer Science, 2020, 58, 1130-1143.	3.8	8
48	Multi-layer 3D chirality: new synthesis, AIE and computational studies. Science China Chemistry, 2020, 63, 692-698.	8.2	27
49	Self-assembly of reversed bilayer vesicles through pnictogen bonding: water-stable supramolecular nanocontainers for organic solvents. Chemical Science, 2020, 11, 4374-4380.	7.4	12
50	Cobalt(II)-Catalyzed Stereoselective Olefin Isomerization: Facile Access to Acyclic Trisubstituted Alkenes. Journal of the American Chemical Society, 2020, 142, 8910-8917.	13.7	58
51	BPh ₃ -Catalyzed [2+3] Cycloaddition of Ph ₃ PCCO with Aldonitrones: Access to 5-Isoxazolidinones with Exocyclic Phosphonium Ylide Moieties. Organic Letters, 2019, 21, 6305-6309.	4.6	8
52	Application of the pK _a rule to synthesize salts of bezafibrate. Supramolecular Chemistry, 2019, 31, 558-564.	1.2	5
53	Triple-Pnictogen Bonding as a Tool for Supramolecular Assembly. Inorganic Chemistry, 2019, 58, 16227-16235.	4.0	42
54	Pnictogen bonding with alkoxide cages: which pnictogen is best?. New Journal of Chemistry, 2019, 43, 14305-14312.	2.8	28

#	Article	IF	Citations
55	Utilizing Autoxidation of Solvents To Promote the Formation of Uranyl Peroxide Materials. Crystal Growth and Design, 2019, 19, 1756-1766.	3.0	10
56	Unique supramolecular complex of diclofenac: structural robustness, crystal-to-crystal solvent exchange, and mechanochemical synthesis. Chemical Communications, 2019, 55, 7639-7642.	4.1	7
57	Lewis acid base chemistry of Bestmann's ylide, Ph ₃ PCCO, and its bulkier analogue, (cyclohexyl) ₃ PCCO. Chemical Communications, 2019, 55, 3513-3516.	4.1	14
58	Lewis acid-base adducts of zwitterionic alkali metal methanides and silanides with BH3. Tetrahedron, 2019, 75, 1861-1864.	1.9	1
59	Cooling-rate dependent single-crystal-to-single-crystal phase transition in an organic co-crystal. Chemical Communications, 2019, 55, 3258-3261.	4.1	20
60	Influence of Multiple Hydrogen Bonds on Thermal Expansion Within and Between Two-Dimensional Hydrogen-Bonded Sheets. Crystal Growth and Design, 2019, 19, 7380-7384.	3.0	7
61	Effects of dynamic pedal motion and static disorder on thermal expansion within halogen-bonded co-crystals. New Journal of Chemistry, 2019, 43, 18433-18436.	2.8	19
62	Highly reactive energetic films by pre-stressing nano-aluminum particles. RSC Advances, 2019, 9, 40607-40617.	3.6	5
63	Synthesis, characterization, electrochemical properties and theoretical calculations of (BIAN) iron complexes. Polyhedron, 2019, 159, 365-374.	2.2	9
64	Multilayer <i>3D</i> Chirality and Its Synthetic Assembly. Research, 2019, 2019, 6717104.	5.7	23
65	Melting behavior of n -alkanes in anodic aluminum oxide (AAO) nanopores using Flash differential scanning calorimetry. Thermochimica Acta, 2018, 663, 157-164.	2.7	21
66	Diffusion and selectivity of water confined within metal–organic nanotubes Journal of Materials Chemistry A, 2018, 6, 1531-1539.	10.3	10
67	Molecular Pedal Motion Influences Thermal Expansion Properties within Isostructural Hydrogen-Bonded Co-crystals. Crystal Growth and Design, 2018, 18, 566-570.	3.0	33
68	A pseudopericyclic [3,5]-sigmatropic rearrangement of a coumarin trichloroacetimidate derivative. Organic and Biomolecular Chemistry, 2018, 16, 874-879.	2.8	3
69	Co-crystallization of anti-inflammatory pharmaceutical contaminants and rare carboxylic acid–pyridine supramolecular synthon breakdown. CrystEngComm, 2018, 20, 6377-6381.	2.6	11
70	Covalent bond formation <i>via</i> a [2+2] cycloaddition reaction as a tool to alter thermal expansion parameters of organic co-crystals. New Journal of Chemistry, 2018, 42, 16460-16463.	2.8	11
71	Thermal expansion along one-dimensional chains and two-dimensional sheets within co-crystals based on halogen or hydrogen bonds. CrystEngComm, 2018, 20, 7232-7235.	2.6	13
72	"Inverse―Frustrated Lewis Pairs: An Inverse FLP Approach to the Catalytic Metal Free Hydrogenation of Ketones. Chemistry - A European Journal, 2018, 24, 16526-16531.	3.3	23

#	Article	IF	CITATIONS
73	Make room for iodine: systematic pore tuning of multivariate metal–organic frameworks for the catalytic oxidation of hydroquinones using hypervalent iodine. Catalysis Science and Technology, 2018, 8, 4349-4357.	4.1	20
74	Improved Synthesis of N-Methylcadaverine. Molecules, 2018, 23, 1216.	3.8	0
75	Self-assembled reversed bilayers directed by pnictogen bonding to form vesicles in solution. Chemical Communications, 2018, 54, 8849-8852.	4.1	22
76	Co-Crystallization of the Anti-Cholesterol Drug Bezafibrate: Molecular Recognition of a Pharmaceutical Contaminant in the Solid State and Solution via Hydrogen Bonding. Crystal Growth and Design, 2018, 18, 4838-4843.	3.0	11
77	Nickel-Catalyzed Regioselective 1,4-Hydroboration of N-Heteroarenes. ACS Catalysis, 2018, 8, 6186-6191.	11.2	61
78	Asymmetric $[3 + 2]$ Cycloaddition of Chiral <i>N</i> -Phosphonyl Imines with Methyl Isocyanoacetate for Accessing 2-Imidazolines with Switchable Stereoselectivity. Journal of Organic Chemistry, 2017, 82, 2992-2999.	3.2	26
79	Synthesis and reactive characterization of aluminum iodate hexahydrate crystals [Al(H2O)6](IO3)3(HIO3)2. Combustion and Flame, 2017, 179, 154-156.	5.2	22
80	Replacing the Al ₂ O ₃ Shell on Al Particles with an Oxidizing Salt, Aluminum lodate Hexahydrate. Part I: Reactivity. Journal of Physical Chemistry C, 2017, 121, 23184-23191.	3.1	26
81	Replacing the Al ₂ O ₃ Shell on Al Particles with an Oxidizing Salt, Aluminum lodate Hexahydrate. Part II: Synthesis. Journal of Physical Chemistry C, 2017, 121, 23192-23199.	3.1	15
82	Interactions of Verkade's Superbase with Strong Lewis Acids: From Labile Mono- and Binuclear Lewis Acid–Base Complexes to Phosphenium Cations. Inorganic Chemistry, 2017, 56, 10748-10759.	4.0	33
83	Zwitterionic Alkali-Metal Silanides of Tripodal Ligand Geometry: Synthesis, Structure, and Lewis Acid–Base Chemistry. Inorganic Chemistry, 2017, 56, 9869-9879.	4.0	7
84	Precise Steric Control over 2D versus 3D Self-Assembly of Antimony(III) Alkoxide Cages through Strong Secondary Bonding Interactions. Inorganic Chemistry, 2017, 56, 8372-8380.	4.0	19
85	BIANâ€Fe(η 6 â€C 6 H 6): Synthesis, characterization, and l″actide polymerization. Journal of Polymer Science Part A, 2017, 55, 2824-2830.	2.3	26
86	Synthesis and structure of sterically overloaded tetra-coordinated yttrium and lanthanum disiloxides. Inorganic Chemistry Communication, 2016, 70, 103-106.	3.9	7
87	"Inverse―Frustrated Lewis Pairs – Activation of Dihydrogen with Organosuperbases and Moderate to Weak Lewis Acids. Journal of the American Chemical Society, 2016, 138, 3286-3289.	13.7	73
88	Design, Synthesis, and Structural Characterization of a Bisantimony(III) Compound for Anion Binding and the Density Functional Theory Evaluation of Halide Binding through Antimony Secondary Bonding Interactions. Journal of Physical Chemistry A, 2016, 120, 9257-9269.	2.5	22
89	Directing dimensionality in uranyl malate and copper uranyl malate compounds. Polyhedron, 2016, 114, 378-384.	2.2	14
90	Interplay of Condensation and Chelation in Binary and Ternary Th(IV) Systems. Inorganic Chemistry, 2015, 54, 1395-1404.	4.0	9

#	Article	IF	CITATIONS
91	Characterization of Phosphate and Arsenate Adsorption onto Keggin-Type Al ₃₀ Cations by Experimental and Theoretical Methods. Inorganic Chemistry, 2015, 54, 8367-8374.	4.0	23
92	Structural Features in Metal–Organic Nanotube Crystals That Influence Stability and Solvent Uptake. Crystal Growth and Design, 2015, 15, 4062-4070.	3.0	27
93	Synthesis, Structure, and Reactivity of Zwitterionic Divalent Rare-Earth Metal Silanides. Inorganic Chemistry, 2015, 54, 4189-4191.	4.0	14
94	Competitive Pseudopericyclic [3,3]- and [3,5]-Sigmatropic Rearrangements of Trichloroacetimidates. Journal of Organic Chemistry, 2015, 80, 11734-11743.	3.2	17
95	Structural characterization of environmentally relevant ternary uranyl citrate complexes present in aqueous solutions and solid state materials. Dalton Transactions, 2015, 44, 2597-2605.	3.3	20
96	An efficient synthesis of 4-substituted coumarin derivatives via a palladium-catalyzed Suzuki cross-coupling reaction. Tetrahedron Letters, 2014, 55, 6627-6630.	1.4	14
97	Use of Charge-Assisted Hydrogen Bonding in the Supramolecular Assembly of Hybrid Uranyl Materials. Crystal Growth and Design, 2014, 14, 1357-1365.	3.0	33
98	Energetics of Formation and Hydration of a Porous Metal Organic Nanotube. Chemistry of Materials, 2014, 26, 5105-5112.	6.7	20
99	Synthesis and characterization of 1-D uranyl thiodigycolate coordination polymers. Polyhedron, 2014, 73, 110-117.	2.2	9
100	Synthesis and Structural Characterization of Hydrolysis Products within the Uranyl Iminodiacetate and Malate Systems. Inorganic Chemistry, 2013, 52, 10191-10198.	4.0	21
101	Synthesis and characterization of homo- and heteronuclear molecular Al3+ and Th4+ species chelated by the ethylenediaminetetraacetate (edta) ligand. Dalton Transactions, 2013, 42, 13706.	3.3	12
102	Surface Modification of Al ₃₀ Keggin-Type Polyaluminum Molecular Clusters. Inorganic Chemistry, 2013, 52, 5991-5999.	4.0	39
103	Development of Metal–Organic Nanotubes Exhibiting Low-Temperature, Reversible Exchange of Confined "lce Channelsâ€, Journal of the American Chemical Society, 2013, 135, 7398-7401.	13.7	89
104	Crystallization of Keggin-Type Polyaluminum Species by Supramolecular Interactions with Disulfonate Anions. Crystal Growth and Design, 2012, 12, 2044-2051.	3.0	59
105	Synthesis, characterization, and crystal structures of uranyl compounds containing mixed chromium oxidation states. Journal of Solid State Chemistry, 2012, 191, 162-166.	2.9	7
106	Synthesis and Structural Characterization of Heterometallic Thorium Aluminum Polynuclear Molecular Clusters. Inorganic Chemistry, 2012, 51, 9491-9498.	4.0	9
107	Synthesis and characterization of uranyl chromate sheet compounds containing edge-sharing dimers of uranyl pentagonal bipyramids. Journal of Solid State Chemistry, 2012, 186, 158-164.	2.9	18
108	Tricriticality in generalized Schloegl models for autocatalysis: Lattice-gas realization with particle diffusion. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 633-646.	2.6	3

#	Article	IF	CITATIONS
109	Complex Nanoscale Cage Clusters Built from Uranyl Polyhedra and Phosphate Tetrahedra. Inorganic Chemistry, 2011, 50, 5509-5516.	4.0	43
110	Uranyl peroxide closed clusters containing topological squares. Dalton Transactions, 2010, 39, 5807.	3.3	45
111	Uranium(VI) Tetraoxido Core Coordinated by Bidentate Nitrate. Inorganic Chemistry, 2010, 49, 6793-6795.	4.0	19
112	Symmetry versus Minimal Pentagonal Adjacencies in Uraniumâ€Based Polyoxometalate Fullerene Topologies. Angewandte Chemie - International Edition, 2009, 48, 2737-2740.	13.8	153
113	Expanding the Crystal Chemistry of Actinyl Peroxides: ν-Î-2:Î-1 Peroxide Coordination in Trimers of U6+Polyhedra. Inorganic Chemistry, 2009, 48, 2346-2348.	4.0	13
114	Uranylâ^Peroxide Interactions Favor Nanocluster Self-Assembly. Journal of the American Chemical Society, 2009, 131, 16648-16649.	13.7	118
115	Affects of Hydrogen Peroxide on the Stability of Becquerelite. Materials Research Society Symposia Proceedings, 2005, 893, 1.	0.1	3
116	The complicating role of pnictogen bond formation in the solution-phase and solid-state structures of the heavier pnictogen atranes. Dalton Transactions, 0, , .	3.3	4