List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3637840/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Evaluation of a Knowledge-Based Planning Solution for Head and Neck Cancer. International Journal of Radiation Oncology Biology Physics, 2015, 91, 612-620.                                                                                                  | 0.8  | 230       |
| 2  | An integrated multidisciplinary algorithm for the management of spinal metastases: an International<br>Spine Oncology Consortium report. Lancet Oncology, The, 2017, 18, e720-e730.                                                                          | 10.7 | 220       |
| 3  | Radiographic changes after lung stereotactic ablative radiotherapy (SABR) – Can we distinguish<br>recurrence from fibrosis? A systematic review of the literature. Radiotherapy and Oncology, 2012, 102,<br>335-342.                                         | 0.6  | 209       |
| 4  | Stereotactic ablative radiotherapy for comprehensive treatment of oligometastatic tumors (SABR-COMET): Study protocol for a randomized phase II trial. BMC Cancer, 2012, 12, 305.                                                                            | 2.6  | 207       |
| 5  | Outcomes of Hypofractionated High-Dose Radiotherapy in Poor-Risk Patients with "Ultracentral―<br>Non–Small Cell Lung Cancer. Journal of Thoracic Oncology, 2016, 11, 1081-1089.                                                                              | 1.1  | 176       |
| 6  | Stereotactic Body Radiotherapy for Medically Inoperable Lung Cancer: Prospective, Single-Center<br>Study of 108 Consecutive Patients. International Journal of Radiation Oncology Biology Physics, 2012,<br>82, 967-973.                                     | 0.8  | 161       |
| 7  | Radiological Changes After Stereotactic Radiotherapy for Stage I Lung Cancer. Journal of Thoracic<br>Oncology, 2011, 6, 1221-1228.                                                                                                                           | 1.1  | 151       |
| 8  | Radical treatment of synchronous oligometastatic non-small cell lung carcinoma (NSCLC): Patient outcomes and prognostic factors. Lung Cancer, 2013, 82, 95-102.                                                                                              | 2.0  | 149       |
| 9  | A critical review of recent developments in radiotherapy for non-small cell lung cancer. Radiation<br>Oncology, 2016, 11, 115.                                                                                                                               | 2.7  | 112       |
| 10 | Can knowledge-based DVH predictions be used for automated, individualized quality assurance of radiotherapy treatment plans?. Radiation Oncology, 2015, 10, 234.                                                                                             | 2.7  | 103       |
| 11 | Physical Activity Monitoring: A Responsive and Meaningful Patient-Centered Outcome for Surgery,<br>Chemotherapy, or Radiotherapy?. Journal of Pain and Symptom Management, 2012, 43, 1025-1035.                                                              | 1.2  | 102       |
| 12 | Using 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposes. Medical Physics, 2018, 45, 92-100.                                                                                                                    | 3.0  | 97        |
| 13 | Dosimetric Impact of the Interplay Effect During Stereotactic Lung Radiation Therapy Delivery Using<br>Flattening Filter-Free Beams and Volumetric Modulated Arc Therapy. International Journal of<br>Radiation Oncology Biology Physics, 2013, 86, 743-748. | 0.8  | 95        |
| 14 | Management of early-stage non-small cell lung cancer using stereotactic ablative radiotherapy:<br>Controversies, insights, and changing horizons. Radiotherapy and Oncology, 2015, 114, 138-147.                                                             | 0.6  | 88        |
| 15 | Metrics to evaluate the performance of auto-segmentation for radiation treatment planning: A critical review. Radiotherapy and Oncology, 2021, 160, 185-191.                                                                                                 | 0.6  | 88        |
| 16 | Stereotactic body radiotherapy (SBRT) for non-small cell lung cancer (NSCLC): Is FDG-PET a predictor of outcome?. Radiotherapy and Oncology, 2012, 104, 62-66.                                                                                               | 0.6  | 87        |
| 17 | Bringing FLASH to the Clinic: Treatment Planning Considerations for Ultrahigh Dose-Rate Proton<br>Beams. International Journal of Radiation Oncology Biology Physics, 2020, 106, 621-629.<br>                                                                | 0.8  | 87        |
| 18 | Deep Learning-Based Delineation of Head and Neck Organs at Risk: Geometric and Dosimetric<br>Evaluation. International Journal of Radiation Oncology Biology Physics, 2019, 104, 677-684.                                                                    | 0.8  | 83        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect of Dosimetric Outliers on the Performance of a Commercial Knowledge-Based Planning<br>Solution. International Journal of Radiation Oncology Biology Physics, 2016, 94, 469-477.                                                    | 0.8 | 80        |
| 20 | Objective Physical Activity and Self-Reported Quality of Life in Patients Receiving Palliative Chemotherapy. Journal of Pain and Symptom Management, 2007, 33, 676-685.                                                                   | 1.2 | 74        |
| 21 | Fast Arc Delivery for Stereotactic Body Radiotherapy of Vertebral and Lung Tumors. International<br>Journal of Radiation Oncology Biology Physics, 2012, 83, e137-e143.                                                                   | 0.8 | 71        |
| 22 | Volumetric modulated arc therapy versus conventional intensity modulated radiation therapy for<br>stereotactic spine radiotherapy: A planning study and early clinical data. Radiotherapy and Oncology,<br>2010, 94, 224-228.             | 0.6 | 70        |
| 23 | Stereotactic Ablative Radiotherapy for the Management of Spinal Metastases. JAMA Oncology, 2020, 6,<br>567.                                                                                                                               | 7.1 | 64        |
| 24 | Flattening Filter Free vs Flattened Beams for Breast Irradiation. International Journal of Radiation<br>Oncology Biology Physics, 2013, 85, 506-513.                                                                                      | 0.8 | 59        |
| 25 | PET CT Thresholds for Radiotherapy Target Definition in Non–Small-Cell Lung Cancer: How Close Are<br>We to the Pathologic Findings?. International Journal of Radiation Oncology Biology Physics, 2010, 77,<br>699-706.                   | 0.8 | 56        |
| 26 | Stereotactic ablative radiotherapy (SABR) for central lung tumors: Plan quality and long-term clinical outcomes. Radiotherapy and Oncology, 2015, 117, 64-70.                                                                             | 0.6 | 56        |
| 27 | Patterns of Disease Recurrence after SABR for Early Stage Non–Small-Cell Lung Cancer: Optimizing<br>Follow-Up Schedules for Salvage Therapy. Journal of Thoracic Oncology, 2015, 10, 1195-1200.                                           | 1.1 | 54        |
| 28 | Predictors of Radiotherapy Induced Bone Injury (RIBI) after stereotactic lung radiotherapy. Radiation<br>Oncology, 2012, 7, 159.                                                                                                          | 2.7 | 49        |
| 29 | Factors Associated With Early Mortality in Patients Treated With Concurrent Chemoradiation<br>Therapy for Locally Advanced Non-Small Cell Lung Cancer. International Journal of Radiation<br>Oncology Biology Physics, 2016, 94, 612-620. | 0.8 | 49        |
| 30 | Patient-focused endpoints in advanced cancer: Criterion-based validation of accelerometer-based activity monitoring. Clinical Nutrition, 2011, 30, 812-821.                                                                               | 5.0 | 46        |
| 31 | Accelerated Hypofractionated Radiotherapy for Early-Stage Non–Small-Cell Lung Cancer: Long-Term<br>Results. International Journal of Radiation Oncology Biology Physics, 2011, 79, 459-465.                                               | 0.8 | 45        |
| 32 | Practical Considerations Arising from the Implementation of Lung Stereotactic Body Radiation<br>Therapy (SBRT) at a Comprehensive Cancer Center. Journal of Thoracic Oncology, 2008, 3, 1332-1341.                                        | 1.1 | 42        |
| 33 | Use of Stereotactic Ablative Radiotherapy (SABR) in Non–Small Cell Lung Cancer Measuring More Than<br>5 cm. Journal of Thoracic Oncology, 2017, 12, 974-982.                                                                              | 1.1 | 42        |
| 34 | Research methodology: cancer cachexia syndrome. Palliative Medicine, 2004, 18, 409-417.                                                                                                                                                   | 3.1 | 40        |
| 35 | High-dose, conventionally fractionated thoracic reirradiation for lung tumors. Lung Cancer, 2014, 83, 356-362.                                                                                                                            | 2.0 | 40        |
| 36 | Using a knowledge-based planning solution to select patients for proton therapy. Radiotherapy and Oncology, 2017, 124, 263-270.                                                                                                           | 0.6 | 40        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | An analysis of patient positioning during stereotactic lung radiotherapy performed without rigid external immobilization. Radiotherapy and Oncology, 2012, 104, 28-32.                                                                     | 0.6 | 37        |
| 38 | Frameless high dose rate stereotactic lung radiotherapy: Intrafraction tumor position and delivery time. Radiotherapy and Oncology, 2013, 107, 419-422.                                                                                    | 0.6 | 36        |
| 39 | Markerless tracking of small lung tumors for stereotactic radiotherapy. Medical Physics, 2015, 42, 1640-1652.                                                                                                                              | 3.0 | 36        |
| 40 | Imaging for Stereotactic Spine Radiotherapy: Clinical Considerations. International Journal of Radiation Oncology Biology Physics, 2011, 81, 321-330.                                                                                      | 0.8 | 35        |
| 41 | Automatic interactive optimization for volumetric modulated arc therapy planning. Radiation Oncology, 2015, 10, 75.                                                                                                                        | 2.7 | 35        |
| 42 | Is there a preferred IMRT technique for leftâ€breast irradiation?. Journal of Applied Clinical Medical<br>Physics, 2015, 16, 197-205.                                                                                                      | 1.9 | 34        |
| 43 | Benefits of Using Stereotactic Body Radiotherapy in Patients With Metachronous Oligometastases of<br>Hormone-Sensitive Prostate Cancer Detected by [18F]fluoromethylcholine PET/CT. Clinical<br>Genitourinary Cancer, 2017, 15, e773-e782. | 1.9 | 33        |
| 44 | The Role of Stereotactic Ablative Radiotherapy for Early-Stage and Oligometastatic Non-small Cell<br>Lung Cancer: Evidence for Changing Paradigms. Cancer Research and Treatment, 2011, 43, 75-82.                                         | 3.0 | 33        |
| 45 | Adjuvant Radiotherapy for Gastric Cancer: A Dosimetric Comparison of 3-Dimensional Conformal<br>Radiotherapy, Tomotherapy® and Conventional Intensity Modulated Radiotherapy Treatment Plans.<br>Medical Dosimetry, 2010, 35, 115-121.     | 0.9 | 31        |
| 46 | Comparison of organâ€atâ€risk sparing and plan robustness for spotâ€scanning proton therapy and<br>volumetric modulated arc photon therapy in headâ€andâ€neck cancer. Medical Physics, 2015, 42, 6589-6598.                                | 3.0 | 30        |
| 47 | Dosimetric Impact of Intrafraction Motion During RapidArc Stereotactic Vertebral Radiation Therapy<br>Using Flattened and Flattening Filter-Free Beams. International Journal of Radiation Oncology Biology<br>Physics, 2013, 86, 420-425. | 0.8 | 29        |
| 48 | Toward optimal organ at risk sparing in complex volumetric modulated arc therapy: An exponential tradeâ€off with target volume dose homogeneity. Medical Physics, 2014, 41, 021722.                                                        | 3.0 | 29        |
| 49 | Subsecond and Submillimeter Resolution Positional Verification for Stereotactic Irradiation of Spinal Lesions. International Journal of Radiation Oncology Biology Physics, 2016, 94, 1154-1162.                                           | 0.8 | 28        |
| 50 | Population-Based Patterns of Surgical Care for Stage IIIA NSCLC in the Netherlands between 2010 and 2013. Journal of Thoracic Oncology, 2016, 11, 566-572.                                                                                 | 1.1 | 28        |
| 51 | Late radiologic changes after stereotactic ablative radiotherapy for early stage lung cancer: A<br>comparison of fixed-beam versus arc delivery techniques. Radiotherapy and Oncology, 2013, 109, 77-81.                                   | 0.6 | 27        |
| 52 | Personalized automated treatment planning for breast plus locoregional lymph nodes using Hybrid<br>RapidArc. Practical Radiation Oncology, 2018, 8, 332-341.                                                                               | 2.1 | 26        |
| 53 | Markerless positional verification using template matching and triangulation of kV images acquired during irradiation for lung tumors treated in breath-hold. Physics in Medicine and Biology, 2018, 63, 115005.                           | 3.0 | 24        |
| 54 | Analysis of EORTC-1219-DAHANCA-29 trial plans demonstrates the potential of knowledge-based planning to provide patient-specific treatment plan quality assurance. Radiotherapy and Oncology, 2019, 130, 75-81.                            | 0.6 | 24        |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Ultra-High Dose Rate Transmission Beam Proton Therapy for Conventionally Fractionated Head and<br>Neck Cancer: Treatment Planning and Dose Rate Distributions. Cancers, 2021, 13, 1859.                                                                       | 3.7 | 22        |
| 56 | Stereotactic body radiotherapy: A survey of contemporary practice in six selected European countries. Acta Oncológica, 2015, 54, 1237-1241.                                                                                                                   | 1.8 | 21        |
| 57 | Automated Knowledge-Based Intensity-Modulated Proton Planning: An International Multicenter<br>Benchmarking Study. Cancers, 2018, 10, 420.                                                                                                                    | 3.7 | 21        |
| 58 | Short interactive workshops reduce variability in contouring treatment volumes for spine stereotactic body radiation therapy: Experience with the ESTRO FALCON programme and EduCaseâ,,¢ training tool. Radiotherapy and Oncology, 2018, 127, 150-153.        | 0.6 | 19        |
| 59 | Complete pathological response is predictive for clinical outcome after tri-modality therapy for<br>carcinomas of the superior pulmonary sulcus. Virchows Archiv Fur Pathologische Anatomie Und<br>Physiologie Und Fur Klinische Medizin, 2013, 462, 547-556. | 2.8 | 18        |
| 60 | Concurrent chemoradiotherapy for large-volume locally-advanced non-small cell lung cancer. Lung<br>Cancer, 2013, 80, 62-67.                                                                                                                                   | 2.0 | 17        |
| 61 | ls accurate contouring of salivary and swallowing structures necessary to spare them in head and neck VMAT plans?. Radiotherapy and Oncology, 2018, 127, 190-196.                                                                                             | 0.6 | 16        |
| 62 | High-dose conventional thoracic re-irradiation for lung cancer: Updated results. Lung Cancer, 2015, 88, 235-236.                                                                                                                                              | 2.0 | 15        |
| 63 | First Experience With Markerless Online 3D Spine Position Monitoring During SBRT Delivery Using a<br>Conventional LINAC. International Journal of Radiation Oncology Biology Physics, 2018, 101, 1253-1258.                                                   | 0.8 | 15        |
| 64 | Evaluation of an Automated Proton Planning Solution. Cureus, 2018, 10, e3696.                                                                                                                                                                                 | 0.5 | 15        |
| 65 | Digital tomosynthesis (DTS) for verification of target position in early stage lung cancer patients.<br>Medical Physics, 2013, 40, 091904.                                                                                                                    | 3.0 | 14        |
| 66 | Knowledge-based planning for stereotactic radiotherapy of peripheral early-stage lung cancer. Acta<br>Oncológica, 2017, 56, 490-495.                                                                                                                          | 1.8 | 14        |
| 67 | Optimizing SABR delivery for synchronous multiple lung tumors using volumetric-modulated arc therapy. Acta Oncológica, 2017, 56, 548-554.                                                                                                                     | 1.8 | 14        |
| 68 | Different treatment planning protocols can lead to large differences in organ at risk sparing.<br>Radiotherapy and Oncology, 2014, 113, 267-271.                                                                                                              | 0.6 | 13        |
| 69 | Improving radiotherapy planning for large volume lung cancer: A dosimetric comparison between hybrid-IMRT and RapidArc. Acta Oncológica, 2015, 54, 427-432.                                                                                                   | 1.8 | 13        |
| 70 | Detailed evaluation of an automated approach to interactive optimization for volumetric modulated arc therapy plans. Medical Physics, 2016, 43, 1818-1828.                                                                                                    | 3.0 | 13        |
| 71 | Verifying tumor position during stereotactic body radiation therapy delivery using (limited-arc) cone beam computed tomography imaging. Radiotherapy and Oncology, 2017, 123, 355-362.                                                                        | 0.6 | 13        |
| 72 | Knowledge-Based Planning for Identifying High-Risk Stereotactic Ablative Radiation Therapy Treatment<br>Plans for Lung Tumors Larger Than 5Acm. International Journal of Radiation Oncology Biology Physics,<br>2019, 103, 259-267.                           | 0.8 | 13        |

MAX DAHELE

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Systematic review of educational interventions to improve contouring in radiotherapy. Radiotherapy and Oncology, 2020, 144, 86-92.                                                                                                                                      | 0.6 | 13        |
| 74 | Pancreatic cancer resistance conferred by stellate cells: looking for new preclinical models.<br>Experimental Hematology and Oncology, 2020, 9, 18.                                                                                                                     | 5.0 | 13        |
| 75 | Once daily versus twice-daily radiotherapy in the management of limited disease small cell lung cancer – Decision criteria in routine practise. Radiotherapy and Oncology, 2020, 150, 26-29.                                                                            | 0.6 | 13        |
| 76 | Stereotactic radiation therapy for inoperable, early-stage non-small-cell lung cancer. Cmaj, 2009, 180,<br>1326-1328.                                                                                                                                                   | 2.0 | 12        |
| 77 | Stereotactic Radiotherapy: An Emerging Treatment for Spinal Metastases. Canadian Journal of<br>Neurological Sciences, 2011, 38, 247-250.                                                                                                                                | 0.5 | 12        |
| 78 | Digital tomosynthesis for verifying spine position during radiotherapy: a phantom study. Physics in<br>Medicine and Biology, 2013, 58, 5717-5733.                                                                                                                       | 3.0 | 12        |
| 79 | A Brief Report of 10-Year Trends in the Use of Stereotactic Lung Radiotherapy at a Dutch Academic<br>Medical Center. Journal of Thoracic Oncology, 2014, 9, 114-117.                                                                                                    | 1.1 | 12        |
| 80 | Stereotactic Ablative Radiation Therapy for Subcentimeter Lung Tumors: Clinical, Dosimetric, and<br>Image Guidance Considerations. International Journal of Radiation Oncology Biology Physics, 2014, 90,<br>843-849.                                                   | 0.8 | 12        |
| 81 | Sub-millimeter spine position monitoring for stereotactic body radiotherapy using offline digital tomosynthesis. Radiotherapy and Oncology, 2015, 115, 223-228.                                                                                                         | 0.6 | 12        |
| 82 | Stereotactic body radiotherapy for spine and bony pelvis using flattening filter free volumetric<br>modulated arc therapy, 6D cone-beam CT and simple positioning techniques: Treatment time and patient<br>stability. Acta OncolA3gica, 2016, 55, 795-798.             | 1.8 | 12        |
| 83 | A longitudinal evaluation of improvements in radiotherapy treatment plan quality for head and neck cancer patients. Radiotherapy and Oncology, 2016, 119, 337-343.                                                                                                      | 0.6 | 12        |
| 84 | Markerless Real-Time 3-Dimensional kV Tracking of Lung Tumors During Free Breathing Stereotactic<br>Radiation Therapy. Advances in Radiation Oncology, 2021, 6, 100705.                                                                                                 | 1.2 | 12        |
| 85 | Changes in non-surgical management of stage III non-small cell lung cancer at a single institution between 2003 and 2010. Acta OncolÃ <sup>3</sup> gica, 2014, 53, 316-323.                                                                                             | 1.8 | 11        |
| 86 | Investigating strategies to reduce toxicity in stereotactic ablative radiotherapy for central lung tumors. Acta OncolA <sup>3</sup> gica, 2014, 53, 330-335.                                                                                                            | 1.8 | 11        |
| 87 | Prognostic Value of [ 18 F]-Fluoromethylcholine Positron Emission Tomography/Computed<br>Tomography Before Stereotactic Body Radiation Therapy for Oligometastatic Prostate Cancer.<br>International Journal of Radiation Oncology Biology Physics, 2018, 101, 406-410. | 0.8 | 11        |
| 88 | Salvage surgery for recurrent or persistent tumour after radical (chemo)radiotherapy for locally<br>advanced non-small cell lung cancer: a systematic review. Therapeutic Advances in Medical Oncology,<br>2018, 10, 175883591880415.                                   | 3.2 | 11        |
| 89 | Targeted Intervention to Improve the Quality of Head and Neck Radiation Therapy Treatment Planning<br>in the Netherlands: Short and Long-Term Impact. International Journal of Radiation Oncology Biology<br>Physics, 2019, 105, 514-524.                               | 0.8 | 11        |
| 90 | The multidisciplinary lung cancer team meeting: increasing evidence that it should be considered a medical intervention in its own right. Journal of Thoracic Disease, 2019, 11, S311-S314.                                                                             | 1.4 | 11        |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Factors influencing multi-disciplinary tumor board recommendations in stage III non-small cell lung cancer. Lung Cancer, 2021, 152, 149-156.                                                                                    | 2.0 | 11        |
| 92  | An International Expert Survey on the Indications and Practice of Radical Thoracic Reirradiation for Non-Small Cell Lung Cancer. Advances in Radiation Oncology, 2021, 6, 100653.                                               | 1.2 | 11        |
| 93  | Increasing the number of arcs improves head and neck volumetric modulated arc therapy plans. Acta Oncológica, 2015, 54, 283-287.                                                                                                | 1.8 | 10        |
| 94  | Feasibility of markerless 3D position monitoring of the central airways using kilovoltage projection<br>images: Managing the risks of central lung stereotactic radiotherapy. Radiotherapy and Oncology,<br>2018, 129, 234-241. | 0.6 | 10        |
| 95  | Use of diffusion-weighted magnetic resonance imaging (DW-MRI) to investigate the effect of chemoradiotherapy on the salivary glands. Acta OncolA³gica, 2015, 54, 1068-1071.                                                     | 1.8 | 9         |
| 96  | Using Spatial Probability Maps to Highlight Potential Inaccuracies in Deep Learning-Based Contours:<br>Facilitating Online Adaptive Radiation Therapy. Advances in Radiation Oncology, 2021, 6, 100658.                         | 1.2 | 9         |
| 97  | Surgical Treatment of Complications After High-Dose Chemoradiotherapy for Lung Cancer. Annals of Thoracic Surgery, 2017, 104, 436-442.                                                                                          | 1.3 | 8         |
| 98  | Salvage surgery for local recurrence after stereotactic body radiotherapy for early stage non-small<br>cell lung cancer: a systematic review. Therapeutic Advances in Medical Oncology, 2018, 10,<br>175883591878798.           | 3.2 | 8         |
| 99  | Is the introduction of more advanced radiotherapy techniques for locally-advanced head and neck cancer associated with improved quality of life and reduced symptom burden?. Radiotherapy and Oncology, 2020, 151, 298-303.     | 0.6 | 8         |
| 100 | Markerless 3D tumor tracking during single-fraction free-breathing 10MV flattening-filter-free stereotactic lung radiotherapy. Radiotherapy and Oncology, 2021, 164, 6-12.                                                      | 0.6 | 8         |
| 101 | Analysis of components of variance determining probability of setup errors in CBCTâ€guided stereotactic radiotherapy of lung tumors. Medical Physics, 2017, 44, 382-388.                                                        | 3.0 | 6         |
| 102 | Strategies to improve deep learning-based salivary gland segmentation. Radiation Oncology, 2020, 15, 272.                                                                                                                       | 2.7 | 6         |
| 103 | Clinical verification of 18F-DCFPyL PET-detected lesions in patients with biochemically recurrent prostate cancer. PLoS ONE, 2020, 15, e0239414.                                                                                | 2.5 | 6         |
| 104 | The effect of induction chemotherapy on tumor volume and organ-at-risk doses in patients with locally advanced oropharyngeal cancer. Radiotherapy and Oncology, 2013, 109, 269-274.                                             | 0.6 | 5         |
| 105 | Bowel-sparing intensity-modulated radiotherapy (IMRT) for palliation of large-volume pelvic bone<br>metastases: Rationale, technique and clinical implementation. Acta OncolA³gica, 2013, 52, 877-880.                          | 1.8 | 5         |
| 106 | Roll and pitch set-up errors during volumetric modulated arc delivery. Strahlentherapie Und<br>Onkologie, 2015, 191, 272-280.                                                                                                   | 2.0 | 5         |
| 107 | An analysis of planned versus delivered airway doses during stereotactic lung radiotherapy for central tumors. Acta Oncológica, 2016, 55, 934-937.                                                                              | 1.8 | 5         |
| 108 | Radiotherapy in Fibrodysplasia Ossificans Progressiva: A Case Report and Systematic Review of the Literature. Frontiers in Endocrinology, 2020, 11, 6.                                                                          | 3.5 | 5         |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Investigating the potential of deep learning for patient-specific quality assurance of salivary gland contours using EORTC-1219-DAHANCA-29 clinical trial data. Acta Oncológica, 2021, 60, 575-581.                                                                                                                                                                                    | 1.8  | 5         |
| 110 | Auto-segmentation of the brachial plexus assessed with TaCTICS – A software platform for rapid multiple-metric quantitative evaluation of contours. Acta Oncológica, 2015, 54, 562-566.                                                                                                                                                                                                | 1.8  | 4         |
| 111 | Centralization of lung cancer surgery in the Netherlands: differences in care and survival of patients with stage I non-small cell lung cancer between hospitals with and without in-house lung cancer surgery. Acta Oncológica, 2020, 59, 384-387.                                                                                                                                    | 1.8  | 4         |
| 112 | Tumour marker reference ranges and patients' anxiety. Lancet, The, 2003, 361, 882.                                                                                                                                                                                                                                                                                                     | 13.7 | 3         |
| 113 | Can the probability of radiation esophagitis be reduced without compromising lung tumor control: A radiobiological modeling study. Acta Oncológica, 2016, 55, 926-930.                                                                                                                                                                                                                 | 1.8  | 3         |
| 114 | Radical-Intent Treatment of Lung Cancer after Prior Thoracic Radiotherapy. Journal of Thoracic Oncology, 2017, 12, e26-e27.                                                                                                                                                                                                                                                            | 1.1  | 3         |
| 115 | Bronchoscopic Manifestations of Airway Toxicity After Radiotherapy. Clinical Lung Cancer, 2018, 19, e875-e878.                                                                                                                                                                                                                                                                         | 2.6  | 3         |
| 116 | Collaboration Around Rare Bone Diseases Leads to the Unique Organizational Incentive of the Amsterdam Bone Center. Frontiers in Endocrinology, 2020, 11, 481.                                                                                                                                                                                                                          | 3.5  | 3         |
| 117 | Relationship between Treatment Plan Dosimetry, Toxicity, and Survival following Intensity-Modulated<br>Radiotherapy, with or without Chemotherapy, for Stage III Inoperable Non-Small Cell Lung Cancer.<br>Cancers, 2021, 13, 5923.                                                                                                                                                    | 3.7  | 3         |
| 118 | Non-coplanar volumetric modulated arc therapy for irradiation of paranasal sinus tumors: In response to Al-Mamgani et al., Highly-conformal intensity-modulated radiotherapy reduced toxicity without jeopardizing outcome in patients with paranasal sinus cancer treated by surgery and radiotherapy or (chemo)radiation. Oral Oncol 2012;48(9):905–11. Oral Oncology, 2013, 49, e8. | 1.5  | 2         |
| 119 | Tumor size does not predict pathological complete response rates after pre-operative chemoradiotherapy for non-small cell lung cancer. Acta Oncológica, 2013, 52, 676-678.                                                                                                                                                                                                             | 1.8  | 2         |
| 120 | Complications of endoscopic ultrasound-guided needle aspiration. Acta Oncológica, 2014, 53, 1265-1268.                                                                                                                                                                                                                                                                                 | 1.8  | 2         |
| 121 | A critical approach to the clinical use of deformable image registration software. In response to<br>Meijneke et al Radiotherapy and Oncology, 2014, 112, 447-448.                                                                                                                                                                                                                     | 0.6  | 2         |
| 122 | The Relationship between Histology, Stage, and TypeÂof Treatment in Patients with Early-Stage Lung<br>Cancer. Journal of Thoracic Oncology, 2017, 12, e58-e59.                                                                                                                                                                                                                         | 1.1  | 2         |
| 123 | Relationship Between Tumor Location and Outcome in Patients With Early-Stage LungÂCancer. Clinical<br>Lung Cancer, 2017, 18, e367-e368.                                                                                                                                                                                                                                                | 2.6  | 2         |
| 124 | In Regard to Keall etÂal. International Journal of Radiation Oncology Biology Physics, 2019, 103, 282-283.                                                                                                                                                                                                                                                                             | 0.8  | 2         |
| 125 | Is pneumonectomy justifiable for patients with a locoregional recurrence or persistent disease after curative intent chemoradiotherapy for locally advanced non-small cell lung cancer?. Lung Cancer, 2020, 150, 209-215.                                                                                                                                                              | 2.0  | 2         |
| 126 | Late Central Airway Toxicity after High-Dose Radiotherapy: Clinical Outcomes and a Proposed Bronchoscopic Classification. Cancers, 2021, 13, 1313.                                                                                                                                                                                                                                     | 3.7  | 2         |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | RPM tracing for the detection of changes in lung tumor position: In response to Alderliesten et al.<br>Radiother Oncol 2012;105(2):155–60. Radiotherapy and Oncology, 2013, 107, 261-262.                           | 0.6 | 1         |
| 128 | Parenchymal lung changes on computed tomography after stereotactic radiotherapy using high dose rate flattening filter free beams. Radiotherapy and Oncology, 2015, 114, 357-360.                                   | 0.6 | 1         |
| 129 | In Regard to Mohan etÂal. International Journal of Radiation Oncology Biology Physics, 2018, 101,<br>492-493.                                                                                                       | 0.8 | 1         |
| 130 | Salvage Surgery for Patients With Local Recurrence or Persistent Disease After Treatment With Chemoradiotherapy for SCLC. JTO Clinical and Research Reports, 2021, 2, 100172.                                       | 1.1 | 1         |
| 131 | Cone-beam computed tomography imaging in stereotactic body radiotherapy allows for more than target localization. Journal of Radiosurgery and SBRT, 2013, 2, 141-145.                                               | 0.2 | 1         |
| 132 | Influence of Beam Angle on Normal Tissue Complication Probability of Knowledge-Based Head and<br>Neck Cancer Proton Planning. Cancers, 2022, 14, 2849.                                                              | 3.7 | 1         |
| 133 | Four-dimensional Radiation Therapy for Non-Small Cell Lung Cancer: A Clinical Perspective. Medical Radiology, 2011, , 157-172.                                                                                      | 0.1 | 0         |
| 134 | Implementing new radiotherapy techniques. British Journal of Health Care Management, 2012, 18,<br>266-271.                                                                                                          | 0.2 | 0         |
| 135 | What causes early mortality in patients with large tumors receiving radical chemo-radiotherapy for non-small cell lung cancer? In response to Ball et al Radiotherapy and Oncology, 2013, 109, 179-180.             | 0.6 | 0         |
| 136 | Google Trends can provide objective data on the impact of radiation oncology related media events<br>and the level of interest in specific types of treatment. Radiotherapy and Oncology, 2017, 124, 182-183.       | 0.6 | 0         |
| 137 | Comment on: Targeting the HGF/c-MET pathway in advanced pancreatic cancer: a key element of treatment that limits primary tumour growth and eliminates metastasis. British Journal of Cancer, 2020, 123, 1464-1465. | 6.4 | 0         |
| 138 | In Reply to Moeckli etÂal. International Journal of Radiation Oncology Biology Physics, 2020, 107,<br>1013-1014.                                                                                                    | 0.8 | 0         |
| 139 | 4-Dimensional Imaging for Radiation Oncology:ÂA Clinical Perspective. Biological and Medical Physics Series, 2013, , 251-284.                                                                                       | 0.4 | 0         |
| 140 | In regard to MacKay et al: FLASH radiotherapy: Considerations for multibeam and hypofractionation dose delivery. Radiotherapy and Oncology, 2022, 167, 326-327.                                                     | 0.6 | 0         |