David A Cullen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3637679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science, 2017, 357, 479-484.	6.0	1,273
2	Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nature Catalysis, 2018, 1, 935-945.	16.1	1,075
3	Nitrogenâ€Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Advanced Materials, 2018, 30, 1706758.	11.1	788
4	Highly active atomically dispersed CoN ₄ fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy and Environmental Science, 2019, 12, 250-260.	15.6	691
5	Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature Communications, 2021, 12, 2870.	5.8	605
6	Bulk Production of a New Form of sp ² Carbon: Crystalline Graphene Nanoribbons. Nano Letters, 2008, 8, 2773-2778.	4.5	588
7	New roads and challenges for fuel cells in heavy-duty transportation. Nature Energy, 2021, 6, 462-474.	19.8	480
8	High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy and Environmental Science, 2019, 12, 2548-2558.	15.6	457
9	Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells. Nature Catalysis, 2020, 3, 1044-1054.	16.1	443
10	Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy, 2018, 48, 217-226.	8.2	406
11	Unveiling Active Sites of CO ₂ Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts. ACS Catalysis, 2018, 8, 3116-3122.	5.5	405
12	Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes. Nano Letters, 2009, 9, 1527-1533.	4.5	369
13	Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN ₄ Sites for Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 18971-18980.	7.2	362
14	General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nature Chemistry, 2021, 13, 887-894.	6.6	362
15	Chemical vapour deposition of Fe–N–C oxygen reduction catalysts with full utilization of dense Fe–N4 sites. Nature Materials, 2021, 20, 1385-1391.	13.3	359
16	Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Scientific Reports, 2012, 2, 363.	1.6	329
17	Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis. Joule, 2019, 3, 124-135.	11.7	326
18	Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nature Nanotechnology, 2022, 17, 759-767.	15.6	318

#	Article	IF	CITATIONS
19	P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nature Materials, 2020, 19, 1215-1223.	13.3	278
20	A physical catalyst for the electrolysis of nitrogen to ammonia. Science Advances, 2018, 4, e1700336.	4.7	264
21	Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and Highâ€Power PGMâ€Free Cathodes in Fuel Cells. Advanced Materials, 2020, 32, e2003577.	11.1	262
22	Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nature Energy, 2022, 7, 652-663.	19.8	258
23	Recent developments in catalyst-related PEM fuel cell durability. Current Opinion in Electrochemistry, 2020, 21, 192-200.	2.5	216
24	Ozonated Graphene Oxide Film as a Protonâ€Exchange Membrane. Angewandte Chemie - International Edition, 2014, 53, 3588-3593.	7.2	214
25	Nitrogen-Mediated Carbon Nanotube Growth: Diameter Reduction, Metallicity, Bundle Dispersability, and Bamboo-like Structure Formation. ACS Nano, 2007, 1, 369-375.	7.3	207
26	Heterodoped Nanotubes: Theory, Synthesis, and Characterization of Phosphorusâ^'Nitrogen Doped Multiwalled Carbon Nanotubes. ACS Nano, 2008, 2, 441-448.	7.3	192
27	Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C–C Bond. Journal of the American Chemical Society, 2013, 135, 132-141.	6.6	184
28	Ultrasensitive gas detection of large-area boron-doped graphene. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14527-14532.	3.3	177
29	A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science, 2018, 362, 560-564.	6.0	176
30	Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting. Science Advances, 2016, 2, e1600690.	4.7	161
31	Distribution and Valence State of Ru Species on CeO ₂ Supports: Support Shape Effect and Its Influence on CO Oxidation. ACS Catalysis, 2019, 9, 11088-11103.	5.5	159
32	Platinum–Ruthenium Nanotubes and Platinum–Ruthenium Coated Copper Nanowires As Efficient Catalysts for Electro-Oxidation of Methanol. ACS Catalysis, 2015, 5, 1468-1474.	5.5	155
33	Investigation of thin/well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting. Energy and Environmental Science, 2017, 10, 166-175.	15.6	154
34	Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N ₂ and H ₂ O. Small Methods, 2020, 4, 1900821.	4.6	148
35	Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization. Nano Energy, 2018, 44, 476-488.	8.2	145
36	Fabrication of Au ₂₅ (SG) ₁₈ –ZIFâ€8 Nanocomposites: A Facile Strategy to Position Au ₂₅ (SG) ₁₈ Nanoclusters Inside and Outside ZIFâ€8. Advanced Materials, 2018, 30, 1704576.	11.1	129

#	Article	IF	CITATIONS
37	Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells. Energy and Environmental Science, 2020, 13, 3544-3555.	15.6	129
38	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. Angewandte Chemie - International Edition, 2020, 59, 21698-21705.	7.2	128
39	Engineering Atomically Dispersed FeN ₄ Active Sites for CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2021, 60, 1022-1032.	7.2	121
40	Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design Highâ€Efficient Atomically Dispersed CoN ₄ Active Sites. Angewandte Chemie - International Edition, 2021, 60, 9516-9526.	7.2	119
41	Promoting Atomically Dispersed MnN ₄ Sites <i>via</i> Sulfur Doping for Oxygen Reduction: Unveiling Intrinsic Activity and Degradation in Fuel Cells. ACS Nano, 2021, 15, 6886-6899.	7.3	119
42	Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells. Nano Energy, 2018, 47, 434-441.	8.2	118
43	Phosphate-Tolerant Oxygen Reduction Catalysts. ACS Catalysis, 2014, 4, 3193-3200.	5.5	116
44	Chemical Vapor Deposition Synthesis of N-, P-, and Si-Doped Single-Walled Carbon Nanotubes. ACS Nano, 2010, 4, 1696-1702.	7.3	113
45	Atomistic-Scale Simulations of Defect Formation in Graphene under Noble Gas Ion Irradiation. ACS Nano, 2016, 10, 8376-8384.	7.3	113
46	Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting. Applied Energy, 2016, 177, 817-822.	5.1	101
47	Enhancing Ce <i>_x</i> Zr _{1–<i>x</i>} O ₂ Activity for Methane Dry Reforming Using Subsurface Ni Dopants. ACS Catalysis, 2020, 10, 4070-4079.	5.5	99
48	Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS ₂ monolayers produced by different growth methods. Journal of Materials Research, 2016, 31, 931-944.	1.2	95
49	Single-Iron Site Catalysts with Self-Assembled Dual-size Architecture and Hierarchical Porosity for Proton-Exchange Membrane Fuel Cells. Applied Catalysis B: Environmental, 2020, 279, 119400.	10.8	94
50	The degradation mitigation effect of cerium oxide in polymer electrolyte membranes in extended fuel cell durability tests. Journal of Power Sources, 2013, 225, 75-83.	4.0	92
51	Efficient Hot Electron Transfer from Small Au Nanoparticles. Nano Letters, 2020, 20, 4322-4329.	4.5	92
52	Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nature Catalysis, 2022, 5, 288-299.	16.1	90
53	In situ investigation on ultrafast oxygen evolution reactions of water splitting in proton exchange membrane electrolyzer cells. Journal of Materials Chemistry A, 2017, 5, 18469-18475.	5.2	87
54	Pt Particle Size Affects Both the Charge Separation and Water Reduction Efficiencies of CdS–Pt Nanorod Photocatalysts for Light Driven H ₂ Generation. Journal of the American Chemical Society, 2022, 144, 2705-2715.	6.6	80

#	Article	IF	CITATIONS
55	Evaluation of Al3Mg2 Precipitates and Mn-Rich Phase in Aluminum-Magnesium Alloy Based on Scanning Transmission Electron Microscopy Imaging. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4933-4939.	1.1	79
56	Platinum-Coated Nickel Nanowires as Oxygen-Reducing Electrocatalysts. ACS Catalysis, 2014, 4, 1114-1119.	5.5	79
57	Spiny Rhombic Dodecahedral CuPt Nanoframes with Enhanced Catalytic Performance Synthesized from Cu Nanocube Templates. Chemistry of Materials, 2017, 29, 5681-5692.	3.2	77
58	An Atomistic Branching Mechanism for Carbon Nanotubes: Sulfur as the Triggering Agent. Angewandte Chemie - International Edition, 2008, 47, 2948-2953.	7.2	76
59	3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports. ACS Applied Materials & Interfaces, 2017, 9, 29839-29848.	4.0	76
60	Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides. Applied Catalysis A: General, 2016, 517, 187-195.	2.2	73
61	Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 26231-26237.	5.2	72
62	Heatâ€Treated Aerogel as a Catalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 2483-2489.	7.2	71
63	Porphyrin Aerogel Catalysts for Oxygen Reduction Reaction in Anionâ€Exchange Membrane Fuel Cells. Advanced Functional Materials, 2021, 31, 2100963.	7.8	70
64	Selective and Stable Non-Noble-Metal Intermetallic Compound Catalyst for the Direct Dehydrogenation of Propane to Propylene. Journal of the American Chemical Society, 2018, 140, 14010-14014.	6.6	69
65	Super-Stable, Highly Monodisperse Plasmonic Faradaurate-500 Nanocrystals with 500 Gold Atoms: Au _{â^1⁄4500} (SR) _{â^1⁄4120} . Journal of the American Chemical Society, 2014, 136, 7410-74	1 6 .6	67
66	Faradaurate-940: Synthesis, Mass Spectrometry, Electron Microscopy, High-Energy X-ray Diffraction, and X-ray Scattering Study of Au _{â^¼940±20} (SR) _{â^¼160±4} Nanocrystals. ACS Nano 2014, 8, 6431-6439.	, 7.3	66
67	Durability of Pt-Co Alloy Polymer Electrolyte Fuel Cell Cathode Catalysts under Accelerated Stress Tests. Journal of the Electrochemical Society, 2018, 165, F3166-F3177.	1.3	66
68	Turning the Halide Switch in the Synthesis of Au–Pd Alloy and Core–Shell Nanoicosahedra with Terraced Shells: Performance in Electrochemical and Plasmon-Enhanced Catalysis. Nano Letters, 2016, 16, 5514-5520.	4.5	65
69	A novel PEMEC with 3D printed non-conductive bipolar plate for low-cost hydrogen production from water electrolysis. Energy Conversion and Management, 2019, 182, 108-116.	4.4	65
70	Elucidation of Fe-N-C electrocatalyst active site functionality via in-situ X-ray absorption and operando determination of oxygen reduction reaction kinetics in a PEFC. Applied Catalysis B: Environmental, 2019, 257, 117929.	10.8	61
71	Platinum-Coated Cobalt Nanowires as Oxygen Reduction Reaction Electrocatalysts. ACS Catalysis, 2014, 4, 2680-2686.	5.5	59
72	Imaging and Microanalysis of Thin Ionomer Layers by Scanning Transmission Electron Microscopy. Journal of the Electrochemical Society, 2014, 161, F1111-F1117.	1.3	58

#	Article	IF	CITATIONS
73	Thin film surface modifications of thin/tunable liquid/gas diffusion layers for high-efficiency proton exchange membrane electrolyzer cells. Applied Energy, 2017, 206, 983-990.	5.1	58
74	Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN ₄ Sites for Oxygen Reduction. Angewandte Chemie, 2019, 131, 19147-19156.	1.6	57
75	Cation–Eutectic Transition <i>via</i> Sublattice Melting in CuInP ₂ S ₆ /In _{4/3} P ₂ S ₆ van der Waals Layered Crystals. ACS Nano, 2017, 11, 7060-7073.	7.3	54
76	Durability evaluation of a Fe–N–C catalyst in polymer electrolyte fuel cell environment via accelerated stress tests. Nano Energy, 2020, 78, 105209.	8.2	54
77	Status and challenges for the application of platinum group metal-free catalysts in proton-exchange membrane fuel cells. Current Opinion in Electrochemistry, 2021, 25, 100627.	2.5	54
78	Constructing Ultrathin W-Doped NiFe Nanosheets via Facile Electrosynthesis as Bifunctional Electrocatalysts for Efficient Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 20070-20080.	4.0	54
79	Local Platinum Environments in a Solid Analogue of the Molecular Periana Catalyst. ACS Catalysis, 2016, 6, 2332-2340.	5.5	53
80	Developing titanium micro/nano porous layers on planar thin/tunable LGDLs for high-efficiency hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 14618-14628.	3.8	52
81	The Role of Sulfur in the Synthesis of Novel Carbon Morphologies: From Covalent Yâ€Junctions to Seaâ€Urchinâ€Like Structures. Advanced Functional Materials, 2009, 19, 1193-1199.	7.8	51
82	Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Science Advances, 2022, 8, eabm4322.	4.7	49
83	Standardized protocols for evaluating platinum group metal-free oxygen reduction reaction electrolyte fuel cells. Nature Catalysis, 2022, 5, 455-462.	16.1	47
84	Third order nonlinear optical response exhibited by mono- and few-layers of WS 2. 2D Materials, 2016, 3, 021005.	2.0	46
85	Direct Characterization of Atomically Dispersed Catalysts: Nitrogenâ€Coordinated Ni Sites in Carbonâ€Based Materials for CO ₂ Electroreduction. Advanced Energy Materials, 2020, 10, 2001836.	10.2	46
86	On the enhanced sulfur and coking tolerance of Ni-Co-rare earth oxide catalysts for the dry reforming of methane. Journal of Catalysis, 2021, 393, 215-229.	3.1	46
87	Mesoporous textured Fe-N-C electrocatalysts as highly efficient cathodes for proton exchange membrane fuel cells. Journal of Power Sources, 2022, 520, 230819.	4.0	46
88	Quantitative phase imaging of nanoscale electrostatic and magnetic fields using off-axis electron holography. Ultramicroscopy, 2010, 110, 375-382.	0.8	45
89	The chemical behavior and degradation mitigation effect of cerium oxide nanoparticles in perfluorosulfonic acid polymer electrolyte membranes. Polymer Degradation and Stability, 2013, 98, 1766-1772.	2.7	44
90	Engineering the mechanical properties of ultrabarrier films grown by atomic layer deposition for the encapsulation of printed electronics. Journal of Applied Physics, 2015, 118, .	1.1	42

#	Article	IF	CITATIONS
91	Ultrathin platinum nanowire based electrodes for high-efficiency hydrogen generation in practical electrolyzer cells. Chemical Engineering Journal, 2021, 410, 128333.	6.6	40
92	Engineering Atomically Dispersed FeN ₄ Active Sites for CO ₂ Electroreduction. Angewandte Chemie, 2021, 133, 1035-1045.	1.6	39
93	Insights into the rapid two-phase transport dynamics in different structured porous transport layers of water electrolyzers through high-speed visualization. Journal of Power Sources, 2021, 516, 230641.	4.0	39
94	Electric-Field-Driven Degradation in off-State Step-Stressed AlGaN/GaN High-Electron Mobility Transistors. IEEE Transactions on Device and Materials Reliability, 2011, 11, 187-193.	1.5	38
95	Geometry-Induced Spatial Variation of Microstructure Evolution During Selective Electron Beam Melting of Rene-N5. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5080-5096.	1.1	38
96	Building Electron/Proton Nanohighways for Full Utilization of Water Splitting Catalysts. Advanced Energy Materials, 2020, 10, 1903871.	10.2	38
97	Highly Efficient Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Gold Supported on Zinc Oxide Materials. Journal of Physical Chemistry C, 2015, 119, 28885-28894.	1.5	37
98	Voltage gated inter-cation selective ion channels from graphene nanopores. Nanoscale, 2019, 11, 9856-9861.	2.8	37
99	The Impact of Ink and Spray Variables on Catalyst Layer Properties, Electrolyzer Performance, and Electrolyzer Durability. Journal of the Electrochemical Society, 2020, 167, 144512.	1.3	37
100	Catalyst-Layer lonomer Imaging of Fuel Cells. ECS Transactions, 2015, 69, 455-464.	0.3	36
101	Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems. Science Advances, 2016, 2, e1501178.	4.7	36
102	Formation of the Conducting Filament in TaO _{<i>x</i>} -Resistive Switching Devices by Thermal-Gradient-Induced Cation Accumulation. ACS Applied Materials & Interfaces, 2018, 10, 23187-23197.	4.0	35
103	Solid-state graphene formation via a nickel carbide intermediate phase. RSC Advances, 2015, 5, 99037-99043.	1.7	34
104	Mass-transport properties of electrosprayed Pt/C catalyst layers for polymer-electrolyte fuel cells. Journal of Power Sources, 2019, 427, 250-259.	4.0	34
105	MoS2 nanosheet integrated electrodes with engineered 1T-2H phases and defects for efficient hydrogen production in practical PEM electrolysis. Applied Catalysis B: Environmental, 2022, 313, 121458.	10.8	33
106	Polarization field mapping of Al0.85In0.15N/AlN/GaN heterostructure. Applied Physics Letters, 2009, 94,	1.5	32
107	Stepâ€by‣tep Growth of Complex Oxide Microstructures. Angewandte Chemie - International Edition, 2015, 54, 9011-9015.	7.2	32
108	Impact of Catalyst Ink Dispersing Solvent on PEM Fuel Cell Performance and Durability. Journal of the Electrochemical Society, 2021, 168, 044517.	1.3	32

#	Article	IF	CITATIONS
109	W-induced morphological modification of NiFe layered double hydroxides as efficient electrocatalysts for overall water splitting. Electrochimica Acta, 2021, 395, 139199.	2.6	32
110	Novel high pressure hexagonal OsB2 by mechanochemistry. Journal of Solid State Chemistry, 2014, 215, 16-21.	1.4	31
111	Characterization of Al-Mg Alloy Aged at Low Temperatures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2040-2050.	1.1	31
112	Characterization of the effects of different tempers and aging temperatures on the precipitation behavior of Al-Mg (5.25 at.%)-Mn alloys. Materials and Design, 2017, 118, 22-35.	3.3	30
113	Strain-Driven Stacking Faults in CdSe/CdS Core/Shell Nanorods. Journal of Physical Chemistry Letters, 2018, 9, 1900-1906.	2.1	30
114	Highly Efficient Plasmon Induced Hot-Electron Transfer at Ag/TiO ₂ Interface. ACS Photonics, 2021, 8, 1497-1504.	3.2	30
115	Tuning Catalyst Activation and Utilization Via Controlled Electrode Patterning for Lowâ€Loading and Highâ€Efficiency Water Electrolyzers. Small, 2022, 18, e2107745.	5.2	30
116	Fuel Cells Catalyst for Start-Up and Shutdown Conditions: Electrochemical, XPS, and STEM Evaluation of Sputter-Deposited Ru, Ir, and Ti on Pt-Coated Nanostructured Thin Film Supports. Electrocatalysis, 2012, 3, 284-297.	1.5	29
117	Correlative Energy-Dispersive X-Ray Spectroscopic Tomography and Atom Probe Tomography of the Phase Separation in an Alnico 8 Alloy. Microscopy and Microanalysis, 2016, 22, 1251-1260.	0.2	29
118	Direct-write liquid phase transformations with a scanning transmission electron microscope. Nanoscale, 2016, 8, 15581-15588.	2.8	29
119	Todorokite-type manganese oxide nanowires as an intercalation cathode for Li-ion and Na-ion batteries. RSC Advances, 2015, 5, 106265-106271.	1.7	28
120	PtCo Cathode Catalyst Morphological and Compositional Changes after PEM Fuel Cell Accelerated Stress Testing. Journal of the Electrochemical Society, 2018, 165, F3078-F3084.	1.3	28
121	Ionic Conductance through Graphene: Assessing Its Applicability as a Proton Selective Membrane. ACS Nano, 2019, 13, 12109-12119.	7.3	28
122	Stable Metallic Enrichment in Conductive Filaments in TaO <i>_x</i> â€Based Resistive Switches Arising from Competing Diffusive Fluxes. Advanced Electronic Materials, 2019, 5, 1800954.	2.6	28
123	Linking morphology with activity through the lifetime of pretreated PtNi nanostructured thin film catalysts. Journal of Materials Chemistry A, 2015, 3, 11660-11667.	5.2	27
124	Characterizing and modeling the precipitation of Mg-rich phases in Al 5xxx alloys aged at low temperatures. Journal of Materials Science and Technology, 2017, 33, 991-1003.	5.6	27
125	Design of PGM-free cathodic catalyst layers for advanced PEM fuel cells. Applied Catalysis B: Environmental, 2022, 312, 121424.	10.8	26
126	Effect of source field plate on the characteristics of off-state, step-stressed AlGaN/GaN high electron mobility transistors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	25

#	Article	IF	CITATIONS
127	Electroluminescence and Transmission Electron Microscopy Characterization of Reverse-Biased AlGaN/GaN Devices. IEEE Transactions on Device and Materials Reliability, 2013, 13, 126-135.	1.5	25
128	Study on corrosion migrations within catalyst-coated membranes of proton exchangeÂmembrane electrolyzer cells. International Journal of Hydrogen Energy, 2017, 42, 27343-27349.	3.8	24
129	Colloidal cobalt-doped ZnO nanoparticles by microwave-assisted synthesis and their utilization in thin composite layers with MEH-PPV as an electroluminescent material for polymer light emitting diodes. Organic Electronics, 2018, 59, 337-348.	1.4	24
130	Aqueous Synthesis of Concave Rh Nanotetrahedra with Defect-Rich Surfaces: Insights into Growth-, Defect-, and Plasmon-Enhanced Catalytic Energy Conversion. Chemistry of Materials, 2018, 30, 4448-4458.	3.2	24
131	Atomic Structure of Au ₃₂₉ (SR) ₈₄ Faradaurate Plasmonic Nanomolecules. Journal of Physical Chemistry C, 2015, 119, 11260-11266.	1.5	23
132	Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability. Chemistry of Materials, 2017, 29, 9369-9377.	3.2	22
133	Controlled Assembly of Lignocellulosic Biomass Components and Properties of Reformed Materials. ACS Sustainable Chemistry and Engineering, 2017, 5, 8044-8052.	3.2	22
134	Improving Electronic Conductivity of Layered Oxides through the Formation of Two-Dimensional Heterointerface for Intercalation Batteries. ACS Applied Energy Materials, 2020, 3, 3835-3844.	2.5	21
135	Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design Highâ€Efficient Atomically Dispersed CoN ₄ Active Sites. Angewandte Chemie, 2021, 133, 9602-9612.	1.6	21
136	Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO ₂ Conversion with Carbonâ€Based Materials. Angewandte Chemie - International Edition, 2021, 60, 17472-17480.	7.2	21
137	A Materials-Based Mitigation Strategy for SU/SD in PEM Fuel Cells: Properties and Performance-Specific Testing of IrRu OER Catalysts. ECS Electrochemistry Letters, 2013, 2, F25-F28.	1.9	20
138	Harvesting Sub-Bandgap IR Photons by Photothermionic Hot Electron Transfer in a Plasmonic p–n Junction. Nano Letters, 2021, 21, 4036-4043.	4.5	20
139	Exploring the Impacts of Conditioning on Proton Exchange Membrane Electrolyzers by <i>In Situ</i> Visualization and Electrochemistry Characterization. ACS Applied Materials & Interfaces, 2022, 14, 9002-9012.	4.0	20
140	Simulation of polarization charge on AlGaN/GaN high electron mobility transistors: Comparison to electron holography. Journal of Applied Physics, 2010, 107, 054516.	1.1	19
141	Impact of IrRu oxygen evolution reaction catalysts on Pt nanostructured thin films under start-up/shutdown cycling. Journal of Power Sources, 2014, 269, 671-681.	4.0	19
142	Engineered Thin Diffusion Layers for Anion-Exchange Membrane Electrolyzer Cells with Outstanding Performance. ACS Applied Materials & Interfaces, 2021, 13, 50957-50964.	4.0	19
143	Production and detailed characterization of bean husk-based carbon: Efficient cadmium (II) removal from aqueous solutions. Water Research, 2008, 42, 3473-3479.	5.3	18
144	Proton irradiation effects on AlN/GaN high electron mobility transistors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, L47-L51.	0.6	18

#	Article	IF	CITATIONS
145	Hexagonal OsB2: Sintering, microstructure and mechanical properties. Journal of Alloys and Compounds, 2015, 634, 168-178.	2.8	18
146	Isolation of a 300 kDa, Au _{â^¼1400} Gold Compound, the Standard 3.6 nm Capstone to a Series of Plasmonic Nanocrystals Protected by Aliphatic-like Thiolates. Journal of Physical Chemistry Letters, 2018, 9, 6825-6832.	2.1	18
147	Bias dependent two-channel conduction in InAlN/AlN/GaN structures. Journal of Applied Physics, 2010, 107, .	1.1	16
148	Evaluation of the Effect of Impregnated Platinum on PFSA Degradation for PEM Fuel Cells. Journal of the Electrochemical Society, 2013, 160, F1123-F1128.	1.3	16
149	Solvothermal hot injection synthesis of core-shell AgNi nanoparticles. Journal of Alloys and Compounds, 2019, 770, 377-385.	2.8	16
150	Multi-scale characterization and simulation of impact welding between immiscible Mg/steel alloys. Journal of Materials Science and Technology, 2020, 59, 149-163.	5.6	16
151	Slow Auger Recombination of Trapped Excitons Enables Efficient Multiple Electron Transfer in CdS–Pt Nanorod Heterostructures. Journal of the American Chemical Society, 2021, 143, 20264-20273.	6.6	16
152	Colloidosome like structures: self-assembly of silica microrods. RSC Advances, 2016, 6, 26734-26737.	1.7	15
153	Thermal-gradient-driven elemental segregation in Ge2Sb2Te5 phase change memory cells. Applied Physics Letters, 2019, 114, .	1.5	15
154	Plasma Synthesis of Spherical Crystalline and Amorphous Electrolyte Nanopowders for Solid-State Batteries. ACS Applied Materials & Interfaces, 2020, 12, 11570-11578.	4.0	15
155	Recreating Fuel Cell Catalyst Degradation in Aqueous Environments for Identical-Location Scanning Transmission Electron Microscopy Studies. ACS Applied Materials & Interfaces, 2022, 14, 20418-20429.	4.0	15
156	Transmission electron microscopy characterization of electrically stressed AlGaN/GaN high electron mobility transistor devices. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	0.6	14
157	Thermal stability of hexagonal OsB2. Journal of Solid State Chemistry, 2014, 219, 210-219.	1.4	14
158	Styrene-Based Elastomer Composites with Functionalized Graphene Oxide and Silica Nanofiber Fillers: Mechanical and Thermal Conductivity Properties. Nanomaterials, 2020, 10, 1682.	1.9	14
159	Electrolyzer Performance Loss from Accelerated Stress Tests and Corresponding Changes to Catalyst Layers and Interfaces. Journal of the Electrochemical Society, 2022, 169, 054517.	1.3	14
160	Efficient Oxygen Evolution Reaction Catalysts for Cell Reversal and Start/Stop Tolerance. Lecture Notes in Energy, 2013, , 637-663.	0.2	13
161	Au _{329–<i>x</i>} Ag _{<i>x</i>} (SR) ₈₄ Nanomolecules: Plasmonic Alloy Faradaurate-329. Journal of Physical Chemistry Letters, 2015, 6, 3320-3326.	2.1	13
162	Impact of Polyvinylidene Fluoride on Nanofiber Cathode Structure and Durability in Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2020, 167, 054517.	1.3	13

#	Article	IF	CITATIONS
163	Assessment of surface damage and sidewall implantation in AlGaN-based high electron mobility transistor devices caused during focused-ion-beam milling. Journal of Applied Physics, 2008, 104, .	1.1	12
164	Exchange of Ions across the TiN/TaO <i>_x</i> Interface during Electroformation of TaO <i>_x</i> -Based Resistive Switching Devices. ACS Applied Materials & Interfaces, 2020, 12, 27378-27385.	4.0	12
165	Long-Term Stability of Nanostructured Thin Film Electrodes at Operating Potentials. Journal of the Electrochemical Society, 2017, 164, F306-F320.	1.3	11
166	Effect of Moisture on Dopant Segregation in Solid Hosts. Journal of Physical Chemistry C, 2019, 123, 12234-12241.	1.5	11
167	Electrospun Particle/Polymer Fiber Electrodes with a Neat Nafion Binder for Hydrogen/Air Fuel Cells. ECS Transactions, 2019, 92, 595-602.	0.3	11
168	Effect of Catalyst and Catalyst Layer Composition on Catalyst Support Durability. Journal of the Electrochemical Society, 2021, 168, 044502.	1.3	11
169	Applications of TEM imaging, analysis and electron holography to III-nitride HEMT devices. Microelectronics Reliability, 2010, 50, 1514-1519.	0.9	10
170	Microstructure and coercivity in alnico 9. Journal of Magnetism and Magnetic Materials, 2019, 471, 142-147.	1.0	10
171	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. Angewandte Chemie, 2020, 132, 21882-21889.	1.6	10
172	Single Atomic Iron Site Catalysts via Benign Aqueous Synthesis for Durability Improvement in Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2021, 168, 044501.	1.3	10
173	Understanding Recoverable vs Unrecoverable Voltage Losses and Long-Term Degradation Mechanisms in Anion Exchange Membrane Fuel Cells. ACS Catalysis, 2022, 12, 8116-8126.	5.5	10
174	Layered YSZ/SCSZ/YSZ Electrolytes for Intermediate Temperature SOFC Part I: Design and Manufacturing. Fuel Cells, 2012, 12, 722-731.	1.5	9
175	Brittle fracture to recoverable plasticity: polytypism-dependent nanomechanics in todorokite-like nanobelts. Nanoscale Advances, 2019, 1, 357-366.	2.2	9
176	Electron tomography of unirradiated and irradiated nuclear graphite. Journal of Nuclear Materials, 2021, 545, 152649.	1.3	9
177	Synthesis of Novel Phases in Si Nanowires Using Diamond Anvil Cells at High Pressures and Temperatures. Nano Letters, 2021, 21, 1427-1433.	4.5	9
178	Investigation of titanium felt transport parameters for energy storage and hydrogen/oxygen production. , 2015, , .		8
179	Improved electrochemical cycling stability of intercalation battery electrodes via control of material morphology. Ionics, 2019, 25, 493-502.	1.2	8
180	Same solution synthesis and self-assembly of porous silica nanoparticles into microspheres. Applied Surface Science, 2019, 467-468, 634-639.	3.1	8

#	Article	IF	CITATIONS
181	Impacts of catalyst nanolayers on water permeation and swelling of polymer electrolyte membranes. Journal of Power Sources, 2020, 448, 227582.	4.0	8
182	Synthesis strategies toward improved ordering of [MnO6] octahedra in tunnel structured 2Â×Â3 and 2Â×Â4 MnO2. Scripta Materialia, 2021, 195, 113713.	2.6	8
183	Covalent Organic Framework (COF) Derived Niâ€Nâ€C Catalysts for Electrochemical CO ₂ Reduction: Unraveling Fundamental Kinetic and Structural Parameters of the Active Sites. Angewandte Chemie, 2022, 134, .	1.6	8
184	Compositionâ€Mediated Orderâ€Disorder Transformation in FePt Nanoparticles. Particle and Particle Systems Characterization, 2013, 30, 678-682.	1.2	7
185	A novel nanocopper-based advanced packaging material. , 2016, , .		7
186	In search of the elusive IrB2: Can mechanochemistry help?. Journal of Solid State Chemistry, 2016, 233, 108-119.	1.4	7
187	Adsorption of Colloidal Metal Nanoparticles via Solvent Engineering. ACS Catalysis, 2020, 10, 2378-2383.	5.5	7
188	Elucidating the Roles of Amorphous Alumina Overcoat in Palladium-Catalyzed Selective Hydrogenation. ACS Applied Materials & Interfaces, 2022, 14, 24290-24298.	4.0	7
189	Electrocatalysis of Oxygen Reduction Reaction in a Polymer Electrolyte Fuel Cell with a Covalent Framework of Iron Phthalocyanine Aerogel. ACS Applied Energy Materials, 2022, 5, 7997-8003.	2.5	7
190	High temperature Ir segregation in Ir–B ceramics: effect of oxygen presence on stability of IrB ₂ and other Ir–B phases. Advances in Applied Ceramics, 2015, 114, 429-435.	0.6	6
191	Method To Synthesize Micronized Spherical Carbon Particles from Lignin. Industrial & Engineering Chemistry Research, 2020, 59, 9-17.	1.8	6
192	Microstructure and field mapping of AlInN-based heterostructures and devices. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2436-2439.	0.8	5
193	Synthesis of Halfâ€5phere/Halfâ€Funnelâ€5haped Silica Structures by Reagent Localization and the Role of Water in Shape Control. Chemistry - A European Journal, 2016, 22, 18700-18704.	1.7	5
194	Hybrid hollow silica particles: synthesis and comparison of properties with pristine particles. RSC Advances, 2020, 10, 22331-22334.	1.7	5
195	Hollow Silica Particles: A Novel Strategy for Cost Reduction. Nanomaterials, 2021, 11, 1627.	1.9	5
196	Characterization of Durable Nanostructured Thin Film Catalysts Tested under Transient Conditions Using Analytical Aberration-Corrected Electron Microscopy. ECS Transactions, 2011, 41, 1099-1103.	0.3	4
197	XPS and STEM study of the interface formation between ultra-thin Ru and Ir OER catalyst layers and perylene red support whiskers. Journal of the Serbian Chemical Society, 2013, 78, 1993-2005.	0.4	4
198	(Invited Plenary) Ultrathin Film NSTF ORR Electrocatalysts for PEM Fuel Cells. ECS Transactions, 2017, 80, 659-676.	0.3	4

#	Article	IF	CITATIONS
199	AuPd Nanoicosahedra: Atomic-Level Surface Modulation for Optimization of Electrocatalytic and Photocatalytic Energy Conversion. ACS Applied Energy Materials, 2021, 4, 2652-2662.	2.5	4
200	Precipitates in Long Term Aging Al 5083 Alloy. , 2014, , 249-253.		4
201	High-Resolution Mapping of the PFSA Polymer Distribution in PEFC Electrode Layers. ECS Transactions, 2014, 64, 819-827.	0.3	3
202	Ruthenium Diffusion on Different CeO ₂ Surfaces: Support Shape Effect. Microscopy and Microanalysis, 2019, 25, 2198-2199.	0.2	3
203	Electrocatalysts: Building Electron/Proton Nanohighways for Full Utilization of Water Splitting Catalysts (Adv. Energy Mater. 16/2020). Advanced Energy Materials, 2020, 10, 2070075.	10.2	3
204	Tailoring the Radionuclide Encapsulation and Surface Chemistry of La(223Ra)VO4 Nanoparticles for Targeted Alpha Therapy. Journal of Nanotheranostics, 2021, 2, 33-50.	1.7	3
205	Elucidating fuel cell catalyst degradation mechanisms by identical-location transmission electron microscopy. Microscopy and Microanalysis, 2021, 27, 974-976.	0.2	3
206	Conduction electron scattering and spin-flipping at sputtered Al/Cu Interfaces. Journal of Applied Physics, 2011, 109, .	1.1	2
207	XPS and STEM Study of the Interface Formation between Ultra-Thin Ru and Ir OER Catalyst Layers and Perylene Red Support Whiskers. ECS Transactions, 2013, 50, 19-33.	0.3	2
208	Oxygen Interaction with Hexagonal OsB 2 at High Temperature. Journal of the American Ceramic Society, 2016, 99, 4057-4065.	1.9	2
209	Investigation of Pore Shape Effects of Novel Thin LGDLs for High-Efficiency Hydrogen/Oxygen Generation and Energy Storage. , 2017, , .		2
210	Overcoming the Challenges of Beam-sensitivity in Fuel Cell Electrodes. Microscopy and Microanalysis, 2017, 23, 2222-2223.	0.2	2
211	Micro/nano manufacturing of novel multifunctional layers for hydrogen production from water splitting. , 2017, , .		2
212	Atomic-Scale Structural Mapping of Active Sites in Monolayer PGM-Free Catalysts by Low-Voltage 4D-STEM. Microscopy and Microanalysis, 2020, 26, 162-163.	0.2	2
213	Effects of Different Temper and Aging Temperature on the Precipitation Behavior of Al 5xxx Alloy. , 2015, , 361-365.		2
214	Chemical preintercalation synthesis approach for the formation of new layered tungsten oxides. Journal of Materials Science, 2022, 57, 7814-7826.	1.7	2
215	Unveiling mechanism of surface-guided platinum nanowire growth. Journal of Materials Science, 2022, 57, 12875-12885.	1.7	2
216	Effect of the Source Field Plate on AlGaN/GaN High Electron Mobility Transistors during Off-State Stress. ECS Transactions, 2011, 41, 41-49.	0.3	1

#	Article	lF	CITATIONS
217	Electron Tomography of PEM Fuel Cell Catalyst Coarsening on Alternate Carbon Supports. Microscopy and Microanalysis, 2017, 23, 2090-2091.	0.2	1
218	Solutionâ€Phase Synthesis of Silica Fibers and Their Use in Making Transparent High‣trength Silicaâ€Polymer Composites. ChemistrySelect, 2018, 3, 13427-13431.	0.7	1
219	Resolving Active Sites in Atomically Dispersed Electrocatalysts for Energy Conversion Applications. Microscopy and Microanalysis, 2019, 25, 2066-2067.	0.2	1
220	Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO 2 Conversion with Carbonâ€Based Materials. Angewandte Chemie, 2021, 133, 17613-17621.	1.6	1
221	Effects of Ink Formulation on the Structure and Performance of PGM-Free Catalyst Layer in PEMFCs. ECS Transactions, 2021, 104, 327-333.	0.3	1
222	Forum on Materials and Interfaces for Energy Storage and Conversion. ACS Applied Materials & Interfaces, 2022, 14, 20303-20305.	4.0	1
223	Polarization Field Mapping of AlGaN/GaN HEMT Devices using Lorentz-mode Electron Holography. Microscopy and Microanalysis, 2009, 15, 1236-1237.	0.2	0
224	Mapping Polarization Fields in Al0.85In0.15N/AlN/GaN Heterostructures. Microscopy and Microanalysis, 2009, 15, 1048-1049.	0.2	0
225	Electric Field Driven Degradation of AlGaN/GaN High Electron Mobility Transistors during Off-State Stress. ECS Transactions, 2011, 41, 89-100.	0.3	0
226	Structural Characterization of Bimetallic Nanocrystal Electrocatalysts. Microscopy and Microanalysis, 2016, 22, 1286-1287.	0.2	0
227	Anchorage of γ-Al2O3 nanoparticles on nitrogen-doped multiwalled carbon nanotubes. Scripta Materialia, 2016, 123, 17-20.	2.6	0
228	Characterizing Alnico Alloy by Correlative STEM-EDS Tomography and Atom Probe Tomography. Microscopy and Microanalysis, 2016, 22, 668-669.	0.2	0
229	Recent Progress of Correlative Transmission Electron Microscopy and Atom Probe Tomography for Materials Characterization. Microscopy and Microanalysis, 2017, 23, 692-693.	0.2	0
230	Exploring the Activity and Stability of Pt-based Catalysts through Analytical Electron Microscopy. Microscopy and Microanalysis, 2018, 24, 1510-1511.	0.2	0
231	An Identical-Location STEM Study of the Degradation of Oer Electrocatalysts for PEM Electrolyzers. ECS Meeting Abstracts, 2021, MA2021-01, 1181-1181.	0.0	0
232	(Invited) Catalyst Assessments and Device Incorporation in Low Temperature Electrolysis. ECS Meeting Abstracts, 2021, MA2021-01, 1183-1183.	0.0	0
233	Quantifying the projected unit cell size variation of off-axis PtCo catalyst nanoparticles through 4D-STEM. Microscopy and Microanalysis, 2021, 27, 1440-1442.	0.2	0
234	Atomic-scale Imaging of PGM-free Catalyst Active Sites by 30 keV 4D-STEM. Microscopy and Microanalysis, 2021, 27, 2976-2977.	0.2	0

#	Article	IF	CITATIONS
235	Automated methods for improved characterization of alloy nanoparticle catalysts. Microscopy and Microanalysis, 2021, 27, 2616-2618.	0.2	0
236	Construction of Inverse Metal–Zeolite Interfaces via Area-Selective Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2021, 13, 51759-51766.	4.0	0
237	Stabilizing Fuel Cell Materials Through Cryogenic Cooling for Simultaneous EELS-EDS Analysis. Microscopy and Microanalysis, 2020, 26, 1660-1662.	0.2	0
238	Effects of Ink Formulation on the Structure and Performance of PGM-Free Catalyst Layer in PEMFCs. ECS Meeting Abstracts, 2021, MA2021-02, 1150-1150.	0.0	0
239	Amino Functionalization Approach to Synthesis of Carbon Supported Intermetallic Platinum Based Alloy Catalysts for Fuel Cell Application. ECS Meeting Abstracts, 2021, MA2021-02, 1171-1171.	0.0	0
240	Comparison of Anode-Catalyst-Layer Coating Methods for Low-Temperature Electrolysis. ECS Meeting Abstracts, 2021, MA2021-02, 1256-1256.	0.0	0
241	Standardized Protocols for Platinum Group Metal-Free Fuel Cell Catalysts for Oxygen Reduction Reaction. ECS Meeting Abstracts, 2021, MA2021-02, 1149-1149.	0.0	0
242	(Invited) In Situ Electron Microscopy Methods for Understanding Activity and Degradation in Fuel Cell Electrocatalysts. ECS Meeting Abstracts, 2021, MA2021-02, 1487-1487.	0.0	0
243	Anode Catalyst Durability in Low Temperature Electrolysis and the Impact of Hydrogen Crossover. ECS Meeting Abstracts, 2021, MA2021-02, 1259-1259.	0.0	0
244	Highly Efficient Honeycomb Ir Coated LGDL with Low Loading for Green Hydrogen Generation in PEM Electrolyzer Cells. ECS Meeting Abstracts, 2021, MA2021-02, 1270-1270.	0.0	0
245	Enhanced Atomic-Scale Imaging of PGM-Free Catalysts By Low-Voltage Scanning Transmission Electron Microscopy. ECS Meeting Abstracts, 2020, MA2020-02, 2126-2126.	0.0	0
246	Impact of Carbon Support Structure on the Durability of PtCo Electrocatalysts. ECS Meeting Abstracts, 2020, MA2020-02, 2326-2326.	0.0	0
247	Oxygen Reduction Reaction Activity of Nanocolumnar Pt:Ni Alloy Thin Films By High Pressure Sputtering. ECS Meeting Abstracts, 2020, MA2020-02, 3857-3857.	0.0	0
248	Microscopic Insights into the Degradation Mechanisms of Electrocatalysts in PEM Electrolyzers. ECS Meeting Abstracts, 2020, MA2020-02, 2451-2451.	0.0	0
249	Catalyst Assessments and Device Incorporation in Low Temperature Electrolysis. ECS Meeting Abstracts, 2020, MA2020-02, 2448-2448.	0.0	0
250	Platinum Nanowire Based Electrodes with Boosted Catalyst Utilization for Efficient Hydrogen Production in PEM Electrolyzer Cells. ECS Meeting Abstracts, 2021, MA2021-02, 1272-1272.	0.0	0
251	Identical Location Scanning Transmission Electron Microscopy Study of Fuel Cell Catalyst Degradation. ECS Meeting Abstracts, 2021, MA2021-02, 1168-1168.	0.0	0
252	Mapping the Evolution of Surface Strain in PtCo Core-Shell Catalysts By 4D-STEM. ECS Meeting Abstracts, 2021, MA2021-02, 1020-1020.	0.0	0

#	Article	IF	CITATIONS
253	(Invited) Electrode and Cell-Level Insights to Achieve High Performance and Long-Life AEM Fuel Cells and Electrolyzers. ECS Meeting Abstracts, 2021, MA2021-02, 1293-1293.	0.0	0
254	Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) for Analysis of Surface and Interface Chemistry of Porous Transport Layers. ECS Meeting Abstracts, 2022, MA2022-01, 1749-1749.	0.0	0
255	Recreating Fuel Cell Catalyst Degradation in Aqueous Environments for Identical-Location Scanning Transmission Electron Microscopy Studies. ECS Meeting Abstracts, 2022, MA2022-01, 1452-1452.	0.0	0
256	Durable and High-Power Iron-Based Cathodes for Proton-Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2022, MA2022-01, 1465-1465.	0.0	0
257	Atomically Dispersed Single Metal Sites for Promoting Pt and Pt ₃ Co Catalysts in Heavy-Duty Meas. ECS Meeting Abstracts, 2022, MA2022-01, 1463-1463.	0.0	0
258	(Invited, Digital Presentation) Nanostructured Thin Film (NSTF) Iridium Catalyst Powder for Proton Exchange Membrane Water Electrolyzers. ECS Meeting Abstracts, 2022, MA2022-01, 1340-1340.	0.0	0
259	Metal Organic Framework-Based Alkaline Oxygen Evolution Reaction Electrocatalysts: Morphology, Metal Loading, and Durability. FCS Meeting Abstracts, 2022, MA2022-01, 1366-1366.	0.0	0