Adrian Wing-Keung Law

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3637600/adrian-wing-keung-law-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

188 6,185 38 73 g-index

197 7,247 5.3 6.55 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
188	Fluid-structural analysis of modular floating solar farms under wave motion. <i>Solar Energy</i> , 2022 , 233, 161-181	6.8	O
187	Surface wave interaction with a vertical viscoelastic barrier. <i>Applied Ocean Research</i> , 2022 , 120, 103073	3.4	О
186	Application of molecular dynamics simulation in thermal problems 2022 , 183-235		
185	Application of molecular dynamics simulation in mass transport problems 2022 , 237-314		
184	Reducing emissions of atmospheric pollutants along major dry bulk and tanker routes through autonomous shipping. <i>Journal of Environmental Management</i> , 2022 , 302, 114080	7.9	O
183	Performance of Dual Viscoelastic Wave Barrier System with Unequal Draft. <i>Journal of Engineering Mechanics - ASCE</i> , 2022 , 148,	2.4	2
182	Determination of surface film thickness of heavy fuel oil using hyperspectral imaging and deep neural networks. <i>International Journal of Remote Sensing</i> , 2022 , 43, 997-1014	3.1	2
181	Combined Anomaly Detection Framework for Digital Twins of Water Treatment Facilities. <i>Water</i> (Switzerland), 2022 , 14, 1001	3	1
180	PAC-UF Process Improving Surface Water Treatment: PAC Effects and Membrane Fouling Mechanism. <i>Membranes</i> , 2022 , 12, 487	3.8	
179	A Framework for Survey Planning Using Portable Unmanned Aerial Vehicles (pUAVs) in Coastal Hydro-Environment. <i>Remote Sensing</i> , 2022 , 14, 2283	5	
178	Modelling of Melting in Packed Media due to Forced Air Convection with Higher Temperature using Euler-Euler-Lagrangian approach. <i>International Journal of Heat and Mass Transfer</i> , 2022 , 194, 123055	4.9	1
177	Assessment of COVID-19 pandemic effects on ship pollutant emissions in major international seaports. <i>Environmental Research</i> , 2021 , 112246	7.9	1
176	Stabilisation of compliant floating platforms with sheet barriers under wave action. <i>Ocean Engineering</i> , 2021 , 240, 109933	3.9	1
175	Zeolitic imidazolate frameworks as capacitive deionization electrodes for water desalination and Cr(VI) adsorption: A molecular simulation study. <i>Applied Surface Science</i> , 2021 , 546, 149080	6.7	10
174	Remote sensing of coastal hydro-environment with portable unmanned aerial vehicles (pUAVs) a state-of-the-art review. <i>Journal of Hydro-Environment Research</i> , 2021 ,	2.3	2
173	Mixing characteristics of 45° inclined duckbill dense jets in co-flowing currents. <i>Journal of Hydro-Environment Research</i> , 2021 , 36, 77-86	2.3	
172	Laser-Induced Annealing of MetalDrganic Frameworks on Conductive Substrates for Electrochemical Water Splitting. <i>Advanced Functional Materials</i> , 2021 , 31, 2102648	15.6	14

(2020-2021)

171	Assessment of atmospheric pollutant emissions with maritime energy strategies using bayesian simulations and time series forecasting. <i>Environmental Pollution</i> , 2021 , 270, 116068	9.3	8
170	Laser-Assisted Printing of Electrodes Using Metal®rganic Frameworks for Micro-Supercapacitors. <i>Advanced Functional Materials</i> , 2021 , 31, 2009057	15.6	30
169	Surface wave interactions with submerged horizontal viscoelastic sheets. <i>Applied Ocean Research</i> , 2021 , 107, 102483	3.4	4
168	Application of Coagulation-Membrane Rotation to Improve Ultrafiltration Performance in Drinking Water Treatment. <i>Membranes</i> , 2021 , 11,	3.8	1
167	Simulations of Melting in Fluid-filled Packed Media due to Forced Convection with Higher Temperature. <i>International Journal of Heat and Mass Transfer</i> , 2021 , 175, 121358	4.9	2
166	Abatement of atmospheric pollutant emissions with autonomous shipping in maritime transportation using Bayesian probabilistic forecasting. <i>Atmospheric Environment</i> , 2021 , 261, 118593	5.3	2
165	Soft sensing of water depth in combined sewers using LSTM neural networks with missing observations. <i>Journal of Hydro-Environment Research</i> , 2021 , 38, 106-116	2.3	5
164	Solid Waste Incineration Modelling for Advanced Moving Grate Incinerators. <i>Sustainability</i> , 2020 , 12, 8007	3.6	2
163	Characterization of two carbon allotropes, cyclicgraphene and graphenylene, as semi-permeable materials for membranes. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2020 , 259, 114569	3.1	15
162	Spreading and Deposition of Turbidity Currents: Application to Open-Water Sediment Disposal. Journal of Waterway, Port, Coastal and Ocean Engineering, 2020 , 146, 04020002	1.7	1
161	Evaporation Kinetics of Nano Water Droplets using Coarse-Grained Molecular Dynamic Simulations. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 156, 119884	4.9	3
160	Optimizing Speedup Performance of Computational Hydrodynamic Simulations with UPC Programming Model. <i>Journal of Computing in Civil Engineering</i> , 2020 , 34, 06020001	5	2
159	Experimental study on surface wave modifications by different ice covers. <i>Cold Regions Science and Technology</i> , 2020 , 174, 103042	3.8	7
158	Application of feed flow reversal for nanofiltration of highly concentrated industrial wastewaters. <i>Desalination</i> , 2020 , 485, 114462	10.3	2
157	Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction. <i>Progress in Materials Science</i> , 2020 , 108, 100618	42.2	93
156	Application of coagulation-ultrafiltration-nanofiltration in a pilot study for Tai Lake water treatment. <i>Water Environment Research</i> , 2020 , 92, 579-587	2.8	7
155	Homogenization theory with multiscale perturbation analysis for supervised learning of complex adsorption-desorption process in porous-media systems. <i>Journal of Computational Science</i> , 2020 , 40, 101071	3.4	2
154	Ionised graphene oxide membranes for seawater desalination. <i>Desalination</i> , 2020 , 496, 114637	10.3	9

153	An experimental study of gravity waves through segmented floating viscoelastic covers. <i>Applied Ocean Research</i> , 2020 , 101, 102233	3.4	3
152	Recent Progress on Polymer Materials for Additive Manufacturing. <i>Advanced Functional Materials</i> , 2020 , 30, 2003062	15.6	162
151	Atomistic simulation study of GO/HKUST-1 MOF membranes for seawater desalination via pervaporation. <i>Applied Surface Science</i> , 2020 , 503, 144198	6.7	25
150	Quantitative Risk Assessment of Seafarers' Nonfatal Injuries Due to Occupational Accidents Based on Bayesian Network Modeling. <i>Risk Analysis</i> , 2020 , 40, 8-23	3.9	8
149	Taylor Dispersion of Contaminants by Dual-peak Spectral Random Waves. <i>China Ocean Engineering</i> , 2019 , 33, 537-543	1.1	1
148	3D Printing of Mixed Matrix Films Based on Metal-Organic Frameworks and Thermoplastic Polyamide 12 by Selective Laser Sintering for Water Applications. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2019 , 11, 40564-40574	9.5	46
147	Numerical modeling of municipal waste bed incineration. <i>International Journal of Numerical Methods for Heat and Fluid Flow</i> , 2019 , 29, 504-522	4.5	4
146	Surface morphology effect on the evaporation of water on graphene oxide: A molecular dynamics study. <i>Applied Surface Science</i> , 2019 , 488, 335-342	6.7	14
145	A second-order integral model for buoyant jets with background homogeneous and isotropic turbulence. <i>Journal of Fluid Mechanics</i> , 2019 , 871, 271-304	3.7	4
144	Molecular Insights into the Composition-Structure-Property Relationships of Polyamide Thin Films for Reverse Osmosis Desalination. <i>Environmental Science & Environmental Scie</i>	10.3	16
143	Feature engineering using homogenization theory with multiscale perturbation analysis for supervised model-based learning of physical clogging condition in seepage filters. <i>Journal of Computational Science</i> , 2019 , 32, 21-35	3.4	4
142	An Experimental Study on Surface Wave Modulation Due to Viscoelastic Bottom. <i>Lecture Notes in Civil Engineering</i> , 2019 , 199-206	0.3	
141	Turbulence characteristics of 45° inclined dense jets. <i>Environmental Fluid Mechanics</i> , 2019 , 19, 27-54	2.2	14
140	Carbon the tal compound composite electrodes for capacitive deionization: synthesis, development and applications. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26693-26743	13	39
139	Mixing characteristics of inclined dense jets with different nozzle geometries. <i>Journal of Hydro-Environment Research</i> , 2019 , 27, 116-128	2.3	3
138	Polymeric composites for powder-based additive manufacturing: Materials and applications. <i>Progress in Polymer Science</i> , 2019 , 91, 141-168	29.6	201
137	Computational Flood Modeling with UPC Architecture. <i>Journal of Computing in Civil Engineering</i> , 2019 , 33, 04019002	5	3
136	Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications. <i>Progress in Materials Science</i> , 2019 , 100, 99-169	42.2	160

135	Graphene nanoribbon as an elastic damper. <i>Nanotechnology</i> , 2018 , 29, 215704	3.4	17
134	Study on Recirculation Between Intakes and Outfalls of Desalination Plants. Springer Water, 2018, 795-	80 13	O
133	Improved Light Attenuation Method for 2D Data Acquisition of Sediment Depths. <i>Journal of Hydraulic Engineering</i> , 2018 , 144, 04018028	1.8	1
132	DRFM hybrid model to optimize energy performance of pre-treatment depth filters in desalination facilities. <i>Applied Energy</i> , 2018 , 220, 576-597	10.7	2
131	Mass Loss to the Trailing Stem of a Sediment Cloud. <i>Journal of Hydraulic Engineering</i> , 2018 , 144, 060186	00:38	2
130	Molecular dynamics study of water evaporation enhancement through a capillary graphene bilayer with tunable hydrophilicity. <i>Applied Surface Science</i> , 2018 , 452, 372-380	6.7	22
129	Coarse-grained molecular dynamics study of membrane distillation through meso-size graphene channels. <i>Journal of Membrane Science</i> , 2018 , 558, 34-44	9.6	19
128	Mixing behavior of 45° inclined dense jets in currents. <i>Journal of Hydro-Environment Research</i> , 2018 , 18, 37-48	2.3	10
127	CFD analyses of the wind drags on Khaya Senegalensis and Eugenia Grandis. <i>Urban Forestry and Urban Greening</i> , 2018 , 34, 29-43	5.4	5
126	Wave interactions with circular ice ridge embedded in level ice. <i>Cold Regions Science and Technology</i> , 2018 , 155, 90-99	3.8	3
125	Interaction of longitudinal phonons with discrete breather in strained graphene. <i>European Physical Journal B</i> , 2018 , 91, 1	1.2	9
124	High Performance Computational Hydrodynamic Simulations: UPC Parallel Architecture as a Future Alternative. <i>Lecture Notes in Computer Science</i> , 2018 , 444-455	0.9	1
123	Metal-Organic-Framework-Based Catalysts for Photoreduction of CO. Advanced Materials, 2018, 30, e1	7 <u>0</u> 551	2 265
122	Multiscale Homogenization of Pre-treatment Rapid and Slow Filtration Processes with Experimental and Computational Validations. <i>Lecture Notes in Computer Science</i> , 2018 , 833-845	0.9	O
121	Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering. <i>Composites Part A: Applied Science and Manufacturing</i> , 2018 , 105, 203-213	8.4	81
120	Strained single-layer C2N membrane for efficient seawater desalination via forward osmosis: A molecular dynamics study. <i>Journal of Membrane Science</i> , 2018 , 550, 554-562	9.6	43
119	Mixing of swirling inclined dense jets 🖟 numerical study. <i>Journal of Hydro-Environment Research</i> , 2018 , 21, 118-130	2.3	6
118	An experimental study on gravity waves through a floating viscoelastic cover. <i>Cold Regions Science and Technology</i> , 2018 , 155, 289-299	3.8	16

117	A Cobalt-Based Metal-Organic Framework as Cocatalyst on BiVO Photoanode for Enhanced Photoelectrochemical Water Oxidation. <i>ChemSusChem</i> , 2018 , 11, 2710-2716	8.3	50
116	Large eddy simulations of 45° and 60° inclined dense jets with bottom impact. <i>Journal of Hydro-Environment Research</i> , 2017 , 15, 54-66	2.3	27
115	Transport of salty water through graphene bilayer in an electric field: A molecular dynamics study. <i>Computational Materials Science</i> , 2017 , 131, 100-107	3.2	23
114	Control of Nanoplane Orientation in voBN for High Thermal Anisotropy in a Dielectric Thin Film: A New Solution for Thermal Hotspot Mitigation in Electronics. <i>ACS Applied Materials & Company: Interfaces</i> , 2017 , 9, 7456-7464	9.5	9
113	Thermionic Energy Conversion Based on Graphene van der Waals Heterostructures. <i>Scientific Reports</i> , 2017 , 7, 46211	4.9	46
112	Thermal Conductivity and Tensile Response of Phosphorene Nanosheets with Vacancy Defects. Journal of Physical Chemistry C, 2017 , 121, 13876-13887	3.8	39
111	A review of the current status of small-scale seawater reverse osmosis desalination. <i>Water International</i> , 2017 , 42, 618-631	2.4	15
110	Ultrafast permeation of seawater pervaporation using single-layered CN via strain engineering. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 15973-15979	3.6	16
109	Corrugated graphene layers for sea water desalination using capacitive deionization. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 8552-8562	3.6	20
108	Graphene membranes with nanoslits for seawater desalination via forward osmosis. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 30551-30561	3.6	30
107	Pressure-driven water permeation through multilayer graphene nanosheets. <i>Physica Status Solidi</i> (B): Basic Research, 2017 , 254, 1700074	1.3	14
106	Fouling of submerged hollow fiber membrane filtration in turbulence: Statistical dependence and cost-benefit analysis. <i>Journal of Membrane Science</i> , 2017 , 521, 43-52	9.6	9
105	Flow patterns and mixing characteristics of horizontal buoyant jets at low and moderate Reynolds numbers. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 105, 831-846	4.9	13
104	An experimental study on the interactions between surface waves and floating viscoelastic covers. <i>Wave Motion</i> , 2017 , 70, 195-208	1.8	18
103	Influence of backwashing on the pore size of hollow fiber ultrafiltration membranes. <i>Journal of Membrane Science</i> , 2017 , 521, 33-42	9.6	33
102	Modelling clogging dynamism within dual-media pre-treatment rapid filters in seawater desalination. <i>Energy Procedia</i> , 2017 , 143, 466-474	2.3	
101	Deployment of Recyclable Polycarbonate as Alternative Coarse Media in Dual-media Rapid Filters. Energy Procedia, 2017 , 143, 475-480	2.3	1
100	Pressure-driven water permeation through multilayer graphene nanosheets (Phys. Status Solidi B 10/2017). <i>Physica Status Solidi (B): Basic Research</i> , 2017 , 254, 1770254	1.3	2

99	Spreading Hypothesis of a Particle Plume. Journal of Hydraulic Engineering, 2016, 142, 04016065	1.8	18
98	Cobalt diselenide nanoparticles embedded within porous carbon polyhedra as advanced electrocatalyst for oxygen reduction reaction. <i>Journal of Power Sources</i> , 2016 , 330, 132-139	8.9	31
97	Industrial water treatment and industrial marine outfalls: Achieving the right balance. <i>Frontiers of Chemical Science and Engineering</i> , 2016 , 10, 472-479	4.5	9
96	Modeling and experiments of polydisperse particle clouds. <i>Environmental Fluid Mechanics</i> , 2016 , 16, 875	5 <u>-£</u> 98	13
95	Coordination polymer-derived mesoporous Co3O4 hollow nanospheres for high-performance lithium-ions batteries. <i>RSC Advances</i> , 2016 , 6, 50846-50850	3.7	12
94	Large eddy simulations of 45° inclined dense jets. <i>Environmental Fluid Mechanics</i> , 2016 , 16, 101-121	2.2	33
93	Fouling control of submerged hollow fibre membrane bioreactor with transverse vibration. <i>Journal of Membrane Science</i> , 2016 , 505, 216-224	9.6	26
92	Molecular dynamics study of pressure-driven water transport through graphene bilayers. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 1886-1896	3.6	74
91	Analytical Study on Drift of Small Floating Objects under Regular Waves. <i>Journal of Engineering Mechanics - ASCE</i> , 2016 , 142, 06016002	2.4	1
90	Channel morphology effect on water transport through graphene bilayers. <i>Scientific Reports</i> , 2016 , 6, 38583	4.9	28
89	Effect of turbulence on fouling control of submerged hollow fibre membrane filtration. <i>Water Research</i> , 2016 , 99, 101-111	12.5	34
88	Motion response of immersing tunnel element under random waves. <i>Ships and Offshore Structures</i> , 2016 , 11, 561-574	1.4	10
87	Open-Water Disposal of Barged Sediments. <i>Journal of Waterway, Port, Coastal and Ocean Engineering</i> , 2016 , 142, 04016006	1.7	4
86	Highly enhanced thermal conductivity of thermoplastic nanocomposites with a low mass fraction of MWCNTs by a facilitated latex approach. <i>Composites Part A: Applied Science and Manufacturing</i> , 2016 , 90, 699-710	8.4	60
85	Longitudinal dispersion of turbulent oscillatory pipe flows. <i>Environmental Fluid Mechanics</i> , 2015 , 15, 563	3- 5 - 9 3	5
84	In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. <i>Advanced Materials</i> , 2015 , 27, 3038-44	24	534
83	Thermal transport in a grapheneMoS2 bilayer heterostructure: a molecular dynamics study. <i>RSC Advances</i> , 2015 , 5, 29193-29200	3.7	71
82	A general approach towards multi-faceted hollow oxide composites using zeolitic imidazolate frameworks. <i>Nanoscale</i> , 2015 , 7, 965-74	7.7	49

81	Large eddy simulations of turbulent circular wall jets. <i>International Journal of Heat and Mass Transfer</i> , 2015 , 80, 72-84	4.9	11
80	A numerical and analytical study of the effect of aspect ratio on the behavior of a round thermal. <i>Environmental Fluid Mechanics</i> , 2015 , 15, 85-108	2.2	18
79	From flat graphene to bulk carbon nanostructures. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 1502-1507	1.3	32
78	Scaling Particle Cloud Dynamics: From Lab to Field. <i>Journal of Hydraulic Engineering</i> , 2015 , 141, 060150	06 .8	10
77	MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications. <i>Chemical Communications</i> , 2015 , 51, 3109-12	5.8	135
76	Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 18180-8	9.5	99
75	Interface thermal conductance and rectification in hybrid graphene/silicene monolayer. <i>Carbon</i> , 2014 , 79, 236-244	10.4	93
74	Dispersion in oscillatory electro-osmotic flow through a parallel-plate channel with kinetic sorptive exchange at walls. <i>Journal of Hydrodynamics</i> , 2014 , 26, 363-373	3.3	14
73	Porous Spinel Zn(x)Co(3-x)O(4) hollow polyhedra templated for high-rate lithium-ion batteries. <i>ACS Nano</i> , 2014 , 8, 6297-303	16.7	357
72	Large-Eddy Simulation (LES) of settling particle cloud dynamics. <i>International Journal of Multiphase Flow</i> , 2014 , 67, 65-75	3.6	22
71	Submerged hollow fibre membrane filtration with transverse and longitudinal vibrations. <i>Journal of Membrane Science</i> , 2014 , 455, 83-91	9.6	31
70	Generalized criterion for the onset of particle deposition in crossflow microfiltration via DOTM I Modeling and experimental validation. <i>Journal of Membrane Science</i> , 2014 , 457, 128-138	9.6	11
69	Zeolitic imidazolate framework 67-derived high symmetric porous CoDIhollow dodecahedra with highly enhanced lithium storage capability. <i>Small</i> , 2014 , 10, 1932-8	11	403
68	Formation of particle clouds. <i>Journal of Fluid Mechanics</i> , 2014 , 746, 193-213	3.7	16
67	Thermal conductivity of silicene nanosheets and the effect of isotopic doping. <i>Journal Physics D: Applied Physics</i> , 2014 , 47, 165301	3	41
66	Mixing of 30° and 45° Inclined Dense Jets in Shallow Coastal Waters. <i>Journal of Hydraulic Engineering</i> , 2014 , 140, 241-253	1.8	30
65	Wave power extraction from a bottom-mounted oscillating water column converter with a V-shaped channel. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2014 , 470, 20140074	2.4	24
64	MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11126	13	314

(2011-2013)

63	Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor. <i>Water Research</i> , 2013 , 47, 3762-72	12.5	36	
62	Hydrodynamic analysis of vibrating hollow fibre membranes. <i>Journal of Membrane Science</i> , 2013 , 429, 304-312	9.6	22	
61	Wave power extraction by an axisymmetric oscillating-water-column converter supported by a coaxial tube-sector-shaped structure. <i>Applied Ocean Research</i> , 2013 , 42, 114-123	3.4	28	
60	Discrete breathers in hydrogenated graphene. <i>Journal Physics D: Applied Physics</i> , 2013 , 46, 305302	3	51	
59	Two-phase modeling of sediment clouds. <i>Environmental Fluid Mechanics</i> , 2013 , 13, 435-463	2.2	16	
58	An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction. <i>Applied Energy</i> , 2013 , 106, 222-231	10.7	151	
57	Dynamics of Particle Clouds in Ambient Currents with Application to Open-Water Sediment Disposal. <i>Journal of Hydraulic Engineering</i> , 2013 , 139, 114-123	1.8	17	
56	Fouling control of submerged hollow fibre membranes by vibrations. <i>Journal of Membrane Science</i> , 2013 , 427, 230-239	9.6	65	
55	Non-interfering multiport brine diffusers in shallow coastal waters. <i>Journal of Applied Water Engineering and Research</i> , 2013 , 1, 148-157	1.2	4	
54	Hydrodynamic performance of a rectangular floating breakwater with and without pneumatic chambers: An experimental study. <i>Ocean Engineering</i> , 2012 , 51, 16-27	3.9	83	
53	Discrete breather clusters in strained graphene. <i>Europhysics Letters</i> , 2012 , 100, 36005	1.6	62	
52	Morphology and in-plane thermal conductivity of hybrid graphene sheets. <i>Applied Physics Letters</i> , 2012 , 101, 211909	3.4	47	
51	Unidirectional ripples in strained graphene nanoribbons with clamped edges at zero and finite temperatures. <i>Physical Review B</i> , 2012 , 86,	3.3	56	
50	On the significance of recirculation between intakes and outfalls of desalination and thermal power plants. <i>Desalination and Water Treatment</i> , 2012 , 42, 304-308		2	
49	Effect of air release height on the formation of sediment thermals in water. <i>Journal of Hydraulic Research/De Recherches Hydrauliques</i> , 2012 , 50, 532-540	1.9	17	
48	Boundary impingement and attachment of horizontal offset dense jets. <i>Journal of Hydro-Environment Research</i> , 2011 , 5, 15-24	2.3	11	
47	Large-eddy simulation of starting buoyant jets. Environmental Fluid Mechanics, 2011, 11, 591-609	2.2	19	
46	Taylor dispersion of contaminants by random waves. <i>Journal of Engineering Mathematics</i> , 2011 , 70, 389)-31927	4	

45	Modulation of stochastic diffusion by wave motion. <i>Probabilistic Engineering Mechanics</i> , 2011 , 26, 142-1	4<u>7</u>. 6	4
44	Pinch-off and formation number of negatively buoyant jets. <i>Physics of Fluids</i> , 2011 , 23, 052101	4.4	11
43	Wave-induced drift of small floating objects in regular waves. <i>Ocean Engineering</i> , 2011 , 38, 712-718	3.9	30
42	Mixing and boundary interactions of 30° and 45° inclined dense jets. <i>Environmental Fluid Mechanics</i> , 2010 , 10, 521-553	2.2	84
41	Stochastic diffusion by progressive waves in turbulence. <i>Journal of Hydrodynamics</i> , 2010 , 22, 588-593	3.3	
40	SALINITY BUILD-UP DUE TO BRINE DISCHARGES INTO SHALLOW COASTAL WATERS. <i>Modern Physics Letters B</i> , 2009 , 23, 541-544	1.6	6
39	The use of Constant Temperature Anemometry for permeate flow distribution measurement in a submerged hollow fibre system. <i>Journal of Membrane Science</i> , 2009 , 339, 195-203	9.6	10
38	Buoyant formation number of a starting buoyant jet. <i>Physics of Fluids</i> , 2009 , 21, 125104	4.4	20
37	Turbulent mass and momentum transport of a circular offset dense jet. <i>Journal of Turbulence</i> , 2009 , 10, N40	2.1	6
36	Brine discharges into shallow coastal waters with mean and oscillatory tidal currents. <i>Journal of Hydro-Environment Research</i> , 2008 , 2, 91-97	2.3	11
35	Circulation and energy of the leading vortex ring in a gravity-driven starting jet. <i>Physics of Fluids</i> , 2008 , 20, 093604	4.4	7
34	Observations and measurements of wave-induced drift of surface inextensible film in deep and shallow waters. <i>Ocean Engineering</i> , 2007 , 34, 94-102	3.9	3
33	Vortex formation process in gravity-driven starting jets. Experiments in Fluids, 2007, 42, 783-797	2.5	15
32	The relationship between performance of submerged hollow fibers and bubble-induced phenomena examined by particle image velocimetry. <i>Journal of Membrane Science</i> , 2007 , 304, 125-137	9.6	67
31	On Boussinesq and non-Boussinesq starting forced plumes. <i>Journal of Fluid Mechanics</i> , 2006 , 558, 357	3.7	28
30	Factors affecting the performance of a submerged hollow fiber bundle. <i>Journal of Membrane Science</i> , 2006 , 280, 969-982	9.6	74
29	Velocity and Concentration Distributions of Round and Plane Turbulent Jets. <i>Journal of Engineering Mathematics</i> , 2006 , 56, 69-78	1.2	16
28	Two-Phase Analysis of Vertical Sediment-Laden Jets. <i>Journal of Engineering Mechanics - ASCE</i> , 2005 , 131, 308-318	2.4	30

(2001-2005)

27	Vortex dynamics in starting square water jets. <i>Physics of Fluids</i> , 2005 , 17, 014106	4.4	23
26	VORTEX DYNAMICS IN STARTING SQUARE JETS(Special Nozzle). <i>The Proceedings of the International Conference on Jets Wakes and Separated Flows (ICJWSF)</i> , 2005 , 2005, 209-214		
25	Two-phase modeling of suspended sediment distribution in open channel flows. <i>Journal of Hydraulic Research/De Recherches Hydrauliques</i> , 2004 , 42, 273-281	1.9	4
24	Double Diffusive Effect on Desalination Discharges. <i>Journal of Hydraulic Engineering</i> , 2004 , 130, 450-45	7 _{1.8}	12
23	Re-entrainment around a low-rise industrial building: 2D versus 3D wind tunnel study. <i>Atmospheric Environment</i> , 2004 , 38, 3817-3825	5.3	2
22	Two-phase modeling of suspended sediment distribution in open channel flows/ Modlisation diphasique de la distribution de sliments en suspension dans un loulement laurface libre. <i>Journal of Hydraulic Research/De Recherches Hydrauliques</i> , 2004 , 42, 273-281	1.9	18
21	Radial velocities in axisymmetric jets and plumes. <i>Journal of Hydraulic Research/De Recherches Hydrauliques</i> , 2004 , 42, 29-33	1.9	6
20	Combined Particle Image Velocimetry/Planar Laser Induced Fluorescence for Integral Modeling of Buoyant Jets. <i>Journal of Engineering Mechanics - ASCE</i> , 2003 , 129, 1189-1196	2.4	4
19	Exponential formula for computing effective viscosity. <i>Powder Technology</i> , 2003 , 129, 156-160	5.2	94
18	Wave-induced drift of an elliptical surface film. <i>Ocean Engineering</i> , 2003 , 30, 413-436	3.9	5
17	Probability distribution of bed particle instability. <i>Advances in Water Resources</i> , 2003 , 26, 427-433	4.7	19
16	Computation of transcritical steady flow over a curved bed with lateral contraction. <i>Journal of Hydraulic Research/De Recherches Hydrauliques</i> , 2003 , 41, 631-637	1.9	1
15	Fluctuations of Turbulent Bed Shear Stress. Journal of Engineering Mechanics - ASCE, 2003, 129, 126-130	0 2.4	18
14	Closure to 🖪 Experimental Study on Turbulent Circular Wall Jets Dy Adrian Wing-Keung Law and Herlina. <i>Journal of Hydraulic Engineering</i> , 2003 , 129, 740-740	1.8	
13	Measurements of turbulent mass transport of a circular wall jet. <i>International Journal of Heat and Mass Transfer</i> , 2002 , 45, 4899-4905	4.9	12
12	Second-order integral model for a round turbulent buoyant jet. <i>Journal of Fluid Mechanics</i> , 2002 , 459, 397-428	3.7	143
11	An Experimental Study on Turbulent Circular Wall Jets. <i>Journal of Hydraulic Engineering</i> , 2002 , 128, 161	-1:784	38
10	Measurements of Turbulence Generated by Oscillating Grid. <i>Journal of Hydraulic Engineering</i> , 2001 , 127, 201-208	1.8	39

9	Measurement of mixing processes with combined digital particle image velocimetry and planar laser induced fluorescence. <i>Experimental Thermal and Fluid Science</i> , 2000 , 22, 213-229	3	79	
8	Oil Transport in Surf Zone. <i>Journal of Hydraulic Engineering</i> , 2000 , 126, 803-809	1.8	11	
7	Taylor dispersion of contaminants due to surface waves. <i>Journal of Hydraulic Research/De Recherches Hydrauliques</i> , 2000 , 38, 41-48	1.9	11	
6	Wind Mixing in Temperature Simulations for Lakes and Reservoirs. <i>Journal of Environmental Engineering, ASCE</i> , 1999 , 125, 420-428	2	9	
5	Wave-induced surface drift of an inextensible thin film. Ocean Engineering, 1999, 26, 1145-1168	3.9	14	
4	Marine Tailings Disposal Simulation. <i>Journal of Hydraulic Engineering</i> , 1998 , 124, 370-383	1.8	18	
3	Initiation of breakout of half-buried submarine pipe from sea bed due to wave action. <i>Applied Ocean Research</i> , 1996 , 18, 129-135	3.4		
2	Incipient Fluidization of Fine Sands in Deep Seabed. <i>Journal of Hydraulic Engineering</i> , 1995 , 121, 653-65	6 1.8	3	
1	Wave-Induced Breakout of Half-Buried Marine Pipes. <i>Journal of Waterway, Port, Coastal and Ocean Engineering</i> , 1990 , 116, 267-286	1.7	12	